
Pain et al.  Supplement 

1 

Novel Insight into the Aetiology of Autism Spectrum Disorder Gained by 
Integrating Expression Data with Genome-wide Association Statistics 

Supplement 1 
 

Supplementary Text 

Datasets  

PGC + iPSYCH ASD GWAS summary statistics 

The PGC + iPSYCH ASD GWAS summary statistics are publicly available and were downloaded from: 

https://www.med.unc.edu/pgc/results-and-downloads. The downloaded ASD GWAS summary 

statistics contained 7,583,402 variants. Additional quality control and processing was performed, 

including nomenclature and genome build synchronised to the 1000 genomes reference dataset, 

exclusion of insertion/deletions, and exclusion of strand ambiguous and variants with an INFO score of 

less than 0.8. A final dataset of 6,038,890 single nucleotide polymorphisms (SNPs) was carried forward 

for analysis.  

Gene expression datasets 

The 16 expression SNP-weight sets are listed in Table 1, including gene expression SNP-weights for 

fetal brain tissue, and brain, blood and adipose tissue in adults. Features were derived using data 

collected from the dorsolateral prefrontal cortex of 621 individuals collected by the CommonMind 

Consortium (CMC) (1), peripheral blood from 1,245 individuals from the Netherlands Twin Registry 

(NTR) (2), blood from 1,264 individuals within the Young Finns Study (YFS) (3, 4), adipose tissue 

from 563 individuals from the Metabolic Syndrome in Men study (METSIM) (5), 9 specific brain 

regions in 81-103 individuals in the Genotype-Tissue Expression project (GTEx) (6), and brain 

homogenates from 67 genetically-determined European fetuses aged 12-19 weeks post-conception 

which were collected through the Human Developmental Biology Resource (HDBR) (7). Features used 

in this TWAS primarily represent gene expression, but additional transcript specific expression features 

https://www.med.unc.edu/pgc/results-and-downloads
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are available in the O’Brien fetal brain dataset, and features representing splice events are available in 

the CMC dorsolateral prefrontal cortex dataset. 

CMC, NTR, YFS, METSIM and GTEx SNP-weights were downloaded directly from the 

FUSION/TWAS website (see URLs). Information regarding the analysis of genotypes and gene 

expression from these datasets has been previously described previously: CMC (8), NTR, YFS, 

METSIM (9), GTEx (6), O’Brien fetal brain (7).  

From the processed genotype and gene expression data, TWAS predictors were computed using 

FUSION software (see URLs). In brief, the FUSION software first estimates the cis-SNP-heritability 

of each feature based on SNPs +/-500kb from the feature boundary using the AI-REML algorithm in 

GCTA (10). For features that have nominally significant cis-SNP-heritability (p < 0.01), predictive 

models are generated using BLUP, elastic net, LASSO and BSLMM (CMC, YFS, NTR, METSIM 

only) models. Five-fold cross validation is then used to evaluate the out-of-sample variance explained 

by each model with the best model being used in the TWAS. 

 

TWAS 

Defining transcriptome-wide significance  

Many genes are available in multiple SNP-weight sets and have highly correlated predicted expression. 

Furthermore, genes near one another often have correlated expression and are therefore not 

independent. Therefore, a Bonferroni significance threshold for all features (gene/tissue combinations) 

would be highly conservative. We estimated transcriptome-wide significance using a permutation 

procedure, which accounts for the correlation between features, within and across SNP-weight sets. 

Initially, expression levels for all features from all SNP-weight sets (N features = 38,157) were imputed 

into the 1000 genomes reference dataset used by FUSION (N individuals = 489) using the FUSION 

protocol which involves PLINK (11) (see URLs). Then, for each permutation, a random normally 

distributed phenotype was generated, linear regression was performed to derive a p-value of association 

for each feature, and the minimum p-value was stored. This procedure was repeated 1,000 times. The 
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5% quantile of the minimum p–values is the transcriptome-wide significance threshold with the features 

used in this study. Based on these permutations the transcriptome-wide significance threshold was 

estimated at p = 4.25×10-6 (95% CI = 2.86×10-6 – 5.53×10-6). This approach for estimating 

transcriptome-wide significance is an adaptation of the permutation procedure used, in part, to estimate 

the genome-wide significance threshold (12). 

Colocalisation 

This method uses a Bayesian framework to estimate the posterior probability of five models: Model 0 

= No association with either ASD or gene expression, Model 1 = Association with ASD only, Model 2 

= Association with gene expression only, Model 3 = Association with ASD and gene expression, but 

from two independent SNPs, and Model 4 = Association with ASD and gene expression at a common 

SNP. 

Calculating proportion of SNP association explained by predicted expression 

The proportion of a SNP-level association accounted for by predicted expression in the TWAS was 

calculated as 1-(χ2 of conditioned GWAS association) / (χ2 of unconditioned GWAS association). This 

is the same method used by TWAS-hub to calculate ‘% variance explained’ (http://twas-hub.org). 

Similarities and differences between TWAS and MAGMA 

MAGMA and TWAS both aggregate SNP associations within gene regions. However, a key difference 

is that MAGMA aggregates the association of SNPs within gene regions without taking into account of 

SNP effects on gene expression. MAGMA is therefore considered functionally agnostic. In contrast, 

TWAS aggregates the association of SNPs within gene regions weighted by their effect on gene 

expression, so comparison of TWAS to MAGMA highlights the effect of considering SNP-effects on 

gene expression. Another important difference is that MAGMA includes any gene region for which 

SNPs are available in the GWAS and linkage disequilibrium (LD) reference, whereas TWAS only 

includes genes with significantly heritable gene expression (based on SNPs within a 500kb window). 

http://twas-hub.org/
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TWAS-based enrichment analysis 

Analytical procedure 

Competitive enrichment was tested for by performing a linear regression for each gene-set, whereby 

gene Z-scores were predicted by membership of each gene-set, including covariates for gene length and 

the number SNPs within the gene region. Given the functional consequence of each genes up- or down-

regulation is unknown, Z-scores were calculated as probit transformed (1-p), resulting in an 

approximately normally distributed Z-score of non-zero association. To avoid potential bias due to 

outliers, Z-scores were truncated to be between -3 and 6. This regression approach for enrichment 

analysis can also be used to test for a correlation between TWAS associations and continuous gene 

annotations, termed gene property analysis, as is also implemented in MAGMA.  

To avoid bias due to the correlation between genes we use lme4qtl (13) to fit a mixed model regression 

of TWAS Z-score on gene-set membership, accounting for the correlation in Z-scores between genes 

due to LD.  The correlation matrix used was computed based on the same predicted gene expression 

values used when estimating the transcriptome wide-significance threshold. The correlation between 

genes that were more than 5Mb apart or on separate chromosomes were set to zero. Any gene-gene 

correlations with an R-squared less than 0.0001 were set to zero. The matrix was stored as a sparse 

matrix substantially reducing the memory requirements and duration of the analysis. The linear mixed 

model with the sparse matrix was performed using the lme4qtl package in R. The software used for this 

analysis (TWAS-GSEA) is publically available (see URLs).  

We analysed TWAS association results from all 16 SNP-weight sets simultaneously to improve genome 

coverage and reduce the multiple testing burden. If multiple features represent the same gene, such as 

when a gene is captured in multiple SNP-weight sets, only the feature that gave the best prediction of 

expression (as measured by cross-validated R2) was retained.   

For gene set analysis, the feature IDs were converted to entrez IDs using the biomaRt package in R, 

matching based on the ‘external_gene_name’ variable. Of the unique TWAS features, 11,470 had entrez 

IDs and could be included in the analysis. The MAGMA gene-set analysis was performed using the 



Pain et al.  Supplement 

5 

MAGMA derived gene-level associations and default settings. 11,424 genes in the MAGMA analysis 

had entrez IDs available and could be included in the gene-set analyses. 

For gene property analysis, of the unique TWAS features, 8,699 were present in the BRAINSPAN 

preferential expression dataset. For comparative gene property analysis in MAGMA, 8,685 genes in the 

MAGMA gene analysis were present in the BRAINSPAN preferential expression dataset and were 

included in the analysis. 

Interpretation of S-LDSC TWAS-based heritability estimates 

Estimates of variance explained by each SNP-weight set should not be interpreted as a measure of 

enrichment as they are highly correlated with the sample size of the dataset used to derive the SNP-

weights. SNP-weights are only available for a gene if the gene’s expression has a statistically significant 

SNP-heritability. Larger samples often have greater power to detect significantly SNP-heritable 

expression, and therefore SNP-weight sets derived from larger samples typically include SNP-weights 

for more genes, which leads to an increased variance explained by the SNP-weight set.  
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Supplementary Figures 

 

 

Supplementary Figure S1. Manhattan plot of all ASD TWAS associations. Each point represents a 
single gene tested, with physical position plotted on the x-axis and Z score of association between the 
gene and ASD plotted on the y-axis. Transcriptome-wide significant associations are highlighted as red 
points and are labelled with their ID. If more than one transcriptome-wide significant feature represents 
the same gene, only the most significant feature is highlighted in red and labelled. The blue horizontal 
line indicates transcriptome-wide significance (p < 4.25×10-6). 
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Supplementary Figure S2. Regional association plot. The top panel shows all of the genes in the locus. 
Marginally TWAS associated genes are highlighted in green, jointly significant genes are highlighted 
in blue, non-significant genes are in red, and genes that were not assessed in the TWAS are in grey. The 
bottom panel shows a Manhattan plot of the GWAS data before (grey) and after (blue) conditioning on 
the green genes. 
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Supplementary Figure S3. Correlations between transcriptome-wide significant genes on chromosome 
17. 
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Supplementary Figure S4. Regional association plot. The top panel shows all of the genes in the locus. 
Marginally TWAS associated genes are highlighted in green, jointly significant genes are highlighted 
in blue, non-significant genes are in red, and genes that were not assessed in the TWAS are in grey. The 
bottom panel shows a Manhattan plot of the GWAS data before (grey) and after (blue) conditioning on 
the green genes. 
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Supplementary Figure S5. Regional association plot. The top panel shows all of the genes in the locus. 
Marginally TWAS associated genes are highlighted in green, jointly significant genes are highlighted 
in blue, non-significant genes are in red, and genes that were not assessed in the TWAS are in grey. The 
bottom panel shows a Manhattan plot of the GWAS data before (grey) and after (blue) conditioning on 
the green genes. 
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Supplementary Figure S6. Gene property analysis of preferential gene expression across brain 
development. Results based on TWAS derived Z scores and MAGMA derived Z-scores are shown. The 
dashed lines indicate nominal significance (p=0.05). 
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Supplementary Figure S7. Comparison of gene-level Z scores derived using MAGMA and TWAS, and 
SNP-level Z score in the corresponding GWAS, containing either a significant TWAS or MAGMA 
association. The absolute TWAS Z score is used here. Genes within 250kb of genes significant in the 
either the TWAS of MAGMA analysis are included. Empty cells indicate the gene was not available in 
the TWAS or MAGMA analysis. Asterisks indicate the Z score surpassed the corresponding 
significance threshold (TWAS = p < 4.25x10-6; MAGMA = Bonferroni p-value </= 0.05, GWAS = p 
<=5x10-8). 

  



Pain et al.  Supplement 

13 

 

Supplementary Figure S8. Comparison of gene-level Z scores derived using MAGMA and TWAS, and 
SNP-level Z score in the corresponding GWAS, containing either a significant TWAS or MAGMA 
association. The absolute TWAS Z score is used here. Genes within 250kb of genes significant in the 
either the TWAS of MAGMA analysis are included. Empty cells indicate the gene was not available in 
the TWAS or MAGMA analysis. Asterisks indicate the Z score surpassed the corresponding 
significance threshold (TWAS = p < 4.25x10-6; MAGMA = Bonferroni p-value </= 0.05, GWAS = p 
<=5x10-8). 
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Supplementary Figure S9. Comparison of gene-level Z scores derived using MAGMA and TWAS, and 
SNP-level Z score in the corresponding GWAS, containing either a significant TWAS or MAGMA 
association. The absolute TWAS Z score is used here. Genes within 250kb of genes significant in the 
either the TWAS of MAGMA analysis are included. Empty cells indicate the gene was not available in 
the TWAS or MAGMA analysis. Asterisks indicate the Z score surpassed the corresponding 
significance threshold (TWAS = p < 4.25x10-6; MAGMA = Bonferroni p-value </= 0.05, GWAS = p 
<=5x10-8). 
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Supplementary Figure S10. Comparison of gene-level Z scores derived using MAGMA and TWAS, 
and SNP-level Z score in the corresponding GWAS, containing either a significant TWAS or MAGMA 
association. The absolute TWAS Z score is used here. Genes within 250kb of genes significant in the 
either the TWAS of MAGMA analysis are included. Empty cells indicate the gene was not available in 
the TWAS or MAGMA analysis. Asterisks indicate the Z score surpassed the corresponding 
significance threshold (TWAS = p < 4.25x10-6; MAGMA = Bonferroni p-value </= 0.05, GWAS = p 
<=5x10-8). 
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Supplementary Figure S11. Comparison of gene-level Z scores derived using MAGMA and TWAS, 
and SNP-level Z score in the corresponding GWAS, containing either a significant TWAS or MAGMA 
association. The absolute TWAS Z score is used here. Genes within 250kb of genes significant in the 
either the TWAS of MAGMA analysis are included. Empty cells indicate the gene was not available in 
the TWAS or MAGMA analysis. Asterisks indicate the Z score surpassed the corresponding 
significance threshold (TWAS = p < 4.25x10-6; MAGMA = Bonferroni p-value </= 0.05, GWAS = p 
<=5x10-8). 
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Supplementary Figure S12. Comparison of gene-level Z scores derived using MAGMA and TWAS, 
and SNP-level Z score in the corresponding GWAS, containing either a significant TWAS or MAGMA 
association. The absolute TWAS Z score is used here. Genes within 250kb of genes significant in the 
either the TWAS of MAGMA analysis are included. Empty cells indicate the gene was not available in 
the TWAS or MAGMA analysis. Asterisks indicate the Z score surpassed the corresponding 
significance threshold (TWAS = p < 4.25x10-6; MAGMA = Bonferroni p-value </= 0.05, GWAS = p 
<=5x10-8).  
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