
Supplement to:
Bruch, Elizabeth E., and M. E. J. Newman. 2019.
“Structure of Online Dating Markets in U.S. Cities.”
Sociological Science 6: 219-234.

S1



Structure of online dating markets:
Supplementary Information

Elizabeth E. Bruch and M. E. J. Newman

1 Data

Our data come from a popular, free online dating site. New users of the site begin by creating a

profile, which includes various socio-demographic information, and they can also answer a set

of open-ended essay questions that ask them to describe who they are and what they are looking

for. The only information a user is required to give is their login handle, age, sexual orientation,

relationship status, and a 5-digit ZIP code identifying their location. After creating a profile,

users can then view the profiles of others, as well as send and receive messages. Unlike other

dating sites, that are largely driven by a matching algorithm, our site allows users to pursue

mates relatively freely according to their own preferences.

1.1 Metropolitan Areas

Our city-level results are based on data from four metropolitan areas—New York City, Boston,

Chicago, and Seattle. In the case of Boston, Chicago, and Seattle, we find a good choice of

boundaries to be the standard Core Based Statistical Areas (CBSAs) established by the Office

of Management and Budget.1 For New York City, however, the data clearly indicate multiple

geographic dating markets within the larger metro area. Instead, therefore, we choose a narrower

1ACBSA is defined to be an urban center of at least 10 000 people plus adjacent areas that are socioeconomically
tied to the urban center by commuting.
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New York Boston Chicago Seattle
Men Women Men Women Men Women Men Women

Total number of users 44 009 50 618 9 113 9 355 28 635 23 236 12 721 9 248
Ethnicity (%)

Asian 8 11 4 6 3 4 7 9
Black 9 9 6 6 7 9 4 3
Hispanic 10 8 3 3 8 7 3 3
White 73 73 87 85 81 80 87 85

College degree (%) 92 96 70 80 63 71 64 68
Children at home (%) 5 6 7 10 7 10 15 17
Mean age 31.6 31.5 30.4 30.3 31.4 32 32.7 33.1
Mean messages sent 23.3 9.4 14.6 6.3 19 10.2 12.4 7.8
Replies received (%) 15 34 17 37 18 40 20 45

Table S1: User attributes for four metropolitan areas. Table reproduced from Ref. (1)

set of geographic boundaries for New York, the five boroughs of Manhattan, Brooklyn, Queens,

the Bronx, and Staten Island.

1.2 Summary statistics

Table S1 provides summary statistics of users in each of the four cities, broken out by gender.

As discussed in the paper, the cities vary in the ratio of men to women on the web site, New York

having the largest fraction of women, followed by Boston, Chicago, and Seattle, in that order.

Recall from Figure 2B that we found the older submarkets to be more female-heavy, while the

younger submarkets tended to be male-heavy. Figure S1, which shows the age distribution of

men and women in each city, suggests that this is not merely a result of age-specific sex ratios

in the overall user population. We observe that New York, for instance, has a surplus of women,

which is most pronounced among younger users in their mid twenties, yet the submarkets for

younger users still have significantly more men than women. (The remaining cities all have

an overall surplus of men, which is most pronounced in the later 20s and early 30s.) These

observations suggest that the submarket sex ratios observed in Figure 2B are driven by users’
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Figure S1: Age distribution of men and women in each city. Boston, Chicgao, and Seattle
all have surpluses of men, the surplus being most pronounced for people around 28 years of
age. New York city has a surplus of women, which is most pronounced among people in their
mid-twenties. Note that because the total number of users varies across cities, the scale of the
y-axis differs across the four panels. Figure reproduced from Ref. (1)

mate seeking behavior, and not broader population demographics.

In addition to the sex ratios, Table S1 also shows that cities differ in their overall market

size and composition. New York City is the largest market, followed by Chicago, Seattle, and

Boston. We also observe some variation in the average number of initial contacts made by men

and women in each city, as well as their reply rates. Consistent with other work (2–4), we see

that men send more messages than women. However, men have a lower chance than women of

receiving replies to their messages.

2 Network analysis

As described in the paper, the starting point for our results is community structure analysis of

networks of reciprocated messaging between pairs of individuals. Our city-level analyses are

restricted to the largest connected component of the network for each city, although in practice

this has little effect since nearly everyone belongs to the largest component. In the network for

New York City, for example, the largest connected component contains 99.8% of all users.

Our analysis of the full, nationwide messaging network in Fig. 1 of the main paper is based
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on standard modularity maximization, as described in the Methods. The structure within our

individual city networks, however, is more complicated, being partly assortative (with respect

to submarket) but also partly disassortative (with respect to gender, since most messages are

between a man and a woman). To correctly detect and classify this kind of mixed structure

we need a more flexible detection method. The leading such method is the statistical inference

method based on fitting the network to a stochastic block model (5–8), which is the approach

we employ in this work. Specifically, we use the degree-corrected stochastic block model (7),

which is a generative model of a random community-structured network as follows.

Let n be the number of nodes in the observed network (a number typically in the thousands

or tens of thousands for the networks studied here). The degree-corrected block model allows

us to create a model network of the same size by first generating n nodes, numbered from 1

to n, each of which is assigned to one of k communities or submarkets. The communities are

numbered from 1 to k, and nodes are assigned to communities independently at random, with

probability γr of being assigned to community r , where the γr are parameters we choose, subject

to the normalization constraint
k∑

r=1
γr = 1. (S1)

When all nodes have been assigned to communities, edges are placed at random between pairs of

nodes, independently but with probabilities that depend on the communities to which the nodes

belong, such that when all edges have been placed the number falling between any pair of nodes

i, j is Poisson distributed with mean did jωrs, where r and s are, respectively, the communities

to which nodes i and j belong, ωrs are parameters that we choose, and di is the degree of node i

in the observed network that we are fitting (i.e., it is the number of connections node i has to

other nodes). The inclusion of di is what distinguishes this “degree-corrected” model from other

forms of the stochastic block model. As we will see, the degree correction fixes the expected

degree of every node within the model to be equal to the observed degree of the same node in
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the data, allowing the model to give significantly better fits to empirical data.

This defines the “forward” process of generating a random network given the parameters

γ, ω of the model. Using the model for community detection involves the inverse process of

fitting the model to observed data so as to determine the values of the parameters that give

the best fit. This we do by the method of maximum likelihood. Our undirected network of

two-way communication between web site users is represented by an adjacency matrix A with

elements ai j = 1 if there is an edge between nodes i and j and zero otherwise. It is straightforward

to show that the probability, or likelihood, of generating the observed network from the model,

for given values of the parameters γ, ω, is

P(A|γ, ω) =
∑

c

P(A, c |γ, ω) =
∑

c

eL (c), (S2)

where c denotes the complete set of community assignments {ci} and the log-likelihoodL (c) =
log P(A, c |γ, ω) of generating a particular set of community assignments and edges is given by

L (c) =
∑

i j

[
ai j logωci,cj − did jωci,cj

]
=

∑
i jrs

δci,rδcj,s
[
ai j logωrs − did jωrs

]
, (S3)

where δrs is the Kronecker delta and we have neglected additive and multiplicative constants

independent of the parameters, since they have no effect on the position of the likelihood

maximum.

2.1 Expectation-maximization (EM) algorithm

To find the values of the parameters γ and ω most likely to have generated the observed network

we wish to maximize equation (S2) with respect to the parameters. Direct maximization

is cumbersome so we employ a standard trick from the machine learning toolkit. First, we

maximize not the likelihood itself but its logarithm, log P(A|γ, ω), which gives the same result

since the logarithm is a monotone increasing function of its argument and hence the maximum of
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the logarithm falls in the same place as the maximum of the argument. Then we apply Jensen’s

inequality, which says that for any set of nonnegative quantities xi, we have

log
∑

i

xi ≥
∑

i

qi log
xi

qi
, (S4)

where qi is any properly normalized probability distribution satisfying
∑

i qi = 1. The exact

equality is recovered for the special choice

qi =
xi∑
i xi

. (S5)

Applying Jensen’s inequality to the log of equation (S2), we find that

log P(A|γ, ω) = log
∑

c

eL (c) ≥
∑

c

q(c) log
eL (c)

q(c) (S6)

=
∑
i jrs

qi j
rs

[
ai j logωrs − did jωrs

] −∑
c

q(c) log q(c), (S7)

where we have made use of equation (S3) for the log-likelihoodL (c). Here q(c) is any properly-
normalized probability distribution we choose over community assignments c, and qi j

rs is the

probability within that distribution that nodes i and j belong to communities r and s respectively,

thus:

qi j
rs =

∑
c

δci,rδcj,s q(c). (S8)

Following equation (S5), the exact equality in (S7) is established, and hence the right-hand

side maximized, when we make the choice

q(c) = P(A, c |γ, ω)∑
c′ P(A, c′|γ, ω) =

eL (c)∑
c′ eL (c′) . (S9)

Thus if we maximize the right-hand side of (S7) over possible choices of q(c) it becomes

equal to the left-hand side, and if we further maximize the left-hand size with respect to the

parameters γ, ω we get the answer we are looking for—the values of γ, ω that maximize the

overall likelihood. Put another way, a double maximization of the right-hand side with respect

to both q(c) and ω, γ will achieve our goal.
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At first sight, this appears to make the problem harder: we have turned what was previously

a single maximization into a double one. But in fact the double maximization usefully splits the

problem into two parts that separately are both straightforward, whereas the original combined

problem was difficult. Maximization with respect to q(c) is achieved by making the choice (S9),

as we have said. Maximization with respect to γ andω can be achieved by simple differentiation.

Note that the final sum on the right-hand side of equation (S7) does not depend on γ or ω, so it

vanishes upon differentiating. Taking the derivative of the first sum with respect to γr and ωrs

while imposing the constraint (S1) then gives us

γr =
1
n

∑
i

qi
r, (S10)

and

ωrs =

∑
i j ai jq

i j
rs∑

i diqi
r
∑

j d jq
j
s

, (S11)

where qi
r is the probability within the distribution q(c) that node i belongs to group r:

qi
r =

∑
c

δci,r q(c) =
∑

s

qi j
rs, (S12)

the second equality being true for any value of j.

The result is an expectation-maximization or EM algorithm for fitting the model to the

observed network, requiring the simultaneous solution of equations (S9), (S10), and (S11),

which is accomplished by simple iteration. We first choose initial values of the parameters γ

and ω, for instance at random, and use them to calculate the probability distribution q(c)
from equation (S9). Then we use that distribution to calculate qi j

rs and qi
r from equations (S8)

and (S12), and thence to calculate improved estimates of the parameters from equations (S10)

and (S11). Then we recalculate q(c) again, and repeat until convergence is reached.

The end product is a set of best-fit values of the parameters to the observed network data. In

addition to this, however, and crucially for our purposes, we also calculate a converged value of
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the distribution q(c), which, from equation (S9), is equal to

q(c) = P(A, c |γ, ω)∑
c′ P(A, c′|γ, ω) =

P(A, c |γ, ω)
P(A|γ, ω) = P(c |A, γ, ω). (S13)

In other words, q(c) is the posterior distribution over community assignments, the probability,

given the observed data A and the best-fit parameter values, of any particular division c of the

network into communities. The final step of the calculation is then to assign each node to the

community for which it has the highest probability of membership, which is also equivalent

to choosing the community for which qi
r is maximized. This gives us our best division of the

network into communities or submarkets.

2.2 Expected degree

A key feature of the degree-corrected block model is its ability to provide a good fit to networks

with broad distributions of node degree (the degree of a node in a network being the number of

connections it has to other nodes). Most empirical networks, including our messaging networks,

have widely varying values of node degree and any model we fit to such networks must, at a

minimum, be capable of capturing this variation.

The actual degree of a node in our model network can fluctuate from one realization of the

model to another, since the model contains random elements. But the expected value of the

degree of node i, for the best-fit values of the parameters γ, ω given in Eqs. (S10) and (S11),

is always equal to the degree di of the same node in the observed network. Thus the fitted

network fits the degree distribution exactly apart from fluctuations. To see this, observe that the

expected degree of node i in the model is equal to the sum of the expected number of edges

did jωci,cj between node i and every other node
∑

j did jωci,cj , averaged over the distribution q(c)
of community assignments, thus:

∑
c

q(c)
∑

j

did jωci,cj =
∑

c

q(c)
∑

j

did j

∑
rs

δci,rδcj,sωrs =
∑
jrs

qi j
rsdid jωrs, (S14)
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where we have made use of equation (S8). Most nodes j, however, will be far from node i in a

large network, so that the community assignments of i and j are essentially uncorrelated. This

means that qi j
rs = qi

r q j
s and the expected degree becomes

di

∑
rs

qi
rωrs

∑
j

q j
s d j = di

∑
rs

qi
r
∑

i j ai jq
i j
rs∑

k dk qk
r
= di

∑
r

qi
r
∑

i j ai jqi
r∑

k dk qk
r

= di

∑
r

qi
r
∑

i diqi
r∑

k dk qk
r
= di

∑
r

qi
r = di, (S15)

where we have made use of equation (S11) in the first equality, equation (S12) in the second,

and the trivial observation
∑

j ai j = di in the third.

2.3 Belief propagation and the calculation of the posterior distribution

Elegant though the EM algorithm is for the community detection problem, it is not (yet) a

workable method, because for all but the very smallest of networks is it not feasible to evaluate

the posterior distribution q(c) directly from equation (S9)—the number of possible values of c

is simply too large. The number of possible divisions of n nodes into k communities is kn,

so a division of 10 000 nodes into, say, four communities would have 410000 ' 106000 possible

divisions, which is far more than can be enumerated by even themost powerful computer. Within

the statistical literature, the standard way of circumventing this problem is to approximate the

distribution q(c) using Markov chain Monte Carlo importance sampling, and that could be done

here too. In our work, however, we use a recently-proposed alternative approach based on belief

propagation (8–10), which is significantly more efficient for the particular problem at hand.

The belief propagation method focuses on a quantity µi→ j
r , called the belief, which is equal

to the (posterior) probability that node i belongs to community r if we are not told whether there

is an edge between nodes i and j, i.e., if we are given the entire adjacency matrix A except for

the element ai j . The omission of this one matrix element is crucial to the method: it allows us to

write a self-consistent set of equations for the beliefs that can be solved by numerical iteration.
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For the degree-corrected block model used here, the appropriate equations have been given by

Yan et al. (10):

µ
i→ j
r =

γr

Zi→ j
exp

(
−

∑
k

didk

∑
s

ωrsqk
s

) ∏
k(, j)
aik=1

ωrsµ
k→i
s , (S16)

where Zi→ j is a normalizing constant with value

Zi→ j = γr

∑
r

exp
(
−

∑
k

didk

∑
s

ωrsqk
s

) ∏
k(, j)
aik=1

ωrsµ
k→i
s , (S17)

and qi
r is the one-node marginal posterior probability of node i belonging to group r defined

previously in equation (S12). This probability can itself be calculated directly from the beliefs

according to

qi
r =

γr

Zi
exp

(
−

∑
k

didk

∑
s

ωrsqk
s

) ∏
k

aik=1

ωrsµ
k→i
s , (S18)

with

Zi = γr

∑
r

exp
(
−

∑
k

didk

∑
s

ωrsqk
s

) ∏
k

aik=1

ωrsµ
k→i
s . (S19)

The belief propagation calculation involves choosing an initial set of values for the beliefs and

the one-node probabilities (for instance at random in the interval [0, 1]), using them first to

calculate new values of the qi
r from Eqs. (S18) and (S19), and then using those values, plus the

beliefs, to calculate new values of the beliefs from Eqs. (S16) and (S17). Then we repeat the

procedure, iterating until the beliefs converge.

This gives a set of beliefs for the current values of the parameters γ, ω. Returning to the

EM algorithm, we then use those values to compute improved estimates of the parameters

from equations (S10) and (S11). To do this, we first need to calculate the two-node marginal

probabilities qi j
rs from the beliefs, which we do as follows.

Note that qi j
rs appears only in the sum in the numerator of equation (S11) and that the sum

involves only the values of qi j
rs for node pairs i, j that are connected by an edge. (Those not

Bruch and Newman Online Dating Markets in U.S. Cities

sociological science | www.sociologicalscience.com S11 April 2019 | Volume 6



connected by an edge have ai j = 0 and hence do not appear in the sum.) For pairs connected by

an edge, qi j
rs is by definition equal to

qi j
rs = P(ci = r, c j = s |ai j = 1, A′) = P(ai j = 1|ci = r, c j = s, A′)P(ci = r, c j = s |A′)

P(ai j = 1|A′) , (S20)

where the parameters γ, ω are assumed given in each probability and A′ denotes the set of

elements of the adjacency matrix excluding ai j (which is specified separately). But each term

in this expression is now straightforward to write in terms of quantities we already know. The

probability P(ai j = 1|ci = r, c j = s, A′) is just the likelihood of the edge from i to j, which for

our stochastic block model is

P(ai j = 1|ci = r, c j = s, A′) = did jωr,se−didjωrs . (S21)

Since ωrs is typically very small, it is usually acceptable to neglect the exponential. (Recall that

we are only interested in assigning each vertex to the highest-probability community, so small

errors in the probabilities typically make no difference to the final answer.) And the probability

that ci = r given A′ is precisely the belief µi→ j
r , so

P(ci = r, c j = s |A′) = µi→ j
r µ

j→i
s . (S22)

The probability P(ai j = 1|A′) is fixed by the requirement of normalization, meaning it can be

calculated by stipulating that
∑

rs qi j
rs = 1. The end result is

qi j
rs =

did jωrsµ
i→ j
r µ

j→i
s∑

rs did jωrsµ
i→ j
r µ

j→i
s

. (S23)

Substituting this value into equation (S11) now gives us our new value for ωrs.

Our final, combined EM/belief propagation algorithm now consists of the following steps:

1. We choose initial values of the parameters γr and ωrs for all r, s, for instance at random.

2. We choose initial values of the beliefs µi→ j
r and one-node marginal probabilities qi

r , for

instance at random.
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3. We iterate the belief propagation equations (S16)–(S19) to convergence to give values for

the beliefs µi→ j
r and the one-node marginal probabilities qi

r .

4. We use these values to calculate the two-node probabilities qi j
rs from equation (S23).

5. We use the one- and two-node probabilities to calculate improved estimates of γr and ωrs

for all r, s from equations (S10) and (S11).

6. We repeat steps 3 to 5 until the parameters and probabilities converge.

7. We assign each node to the community r for which its probability of membership qi
r is

highest.

2.4 Number of submarkets

When applied to the networks of heterosexual dating studied here, the algorithm of the previous

section finds clear community structure. In fact, there are two different types of structure

found, one essentially trivial, the other not. The trivial structure is a division between men and

women. Almost all messages on the web site between heterosexual users looking for romantic

relationships are between a man and a woman—well over 99%. Very few are between two men

or two women. Our algorithm readily perceives this structure, reliably dividing the network into

men and women without the need for us to identify the sexes explicitly. This “disassortative”

structure is characterized by a matrix ωrs of probabilities that has almost all of its weight off

the diagonal (most connections are between different groups) and virtually none on the diagonal

(connections between members of the same group).

In addition to this trivial structure, however, there is also the nontrivial group structure that

we refer to as submarkets—the tendency of the population to break up into distinct communities

of dating with relatively little message traffic between communities.
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Figure S2: Box plots of the age ranges within submarkets for divisions of the New York City
user population in to three, four, five, and six submarkets. For simplicity, men and women are
combined in each submarket in this plot, but a similar pattern is seen when one examines the
ages of men and women separately.

A practical upshot of this is that if we wish to divide our network into, say, four submarkets,

wemust actually instruct our algorithm to look for twice this number of communities (i.e., eight).

If we do this, then it reliably finds four submarkets, each further divided into men and women.

In the calculations presented in the paper we chose to divide each city into four submarkets,

but divisions into other numbers of submarkets would also be reasonable. To explore the effect

of varying the number of submarkets we have performed divisions of the networks into various

numbers of communities. Figure S2 shows the results of several possible divisions of the New

York City network. (Similar patterns are seen in the other three cities.) The panels of the figure

show the age distribution (men and women combined) for divisions into three, four, five, and

six submarkets (which means six, eight, ten, and twelve communities in total, once the trivial

division between men and women is factored in). As we can see, the primary effect of increasing

the number of submarkets is to divide the population into more closely spaced age ranges, so

that divisions into larger numbers of groups give a finer, more granular, picture of the market

structure but the same overall behavior. As with all statistical analyses in which data are divided

into bins, there is a balance to be struck between larger numbers of bins, which gives finer detail

in the analysis, and smaller numbers of bins, which gives better statistics. Our choice of four
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Figure S3: Fractions of men and women in each submarket for divisions of the New York City
dating market into three, four, five, and six submarkets. The systematic pattern, seen in the
Fig. 1B of the paper, in which the ratio of men to women becomes progressively more female-
heavy as we move into the older submarkets, is duplicated in each case here, demonstrating that
this is a general behavior, and is not particular to any one choice of number of submarkets.

submarkets per city gives a good picture of the overall behavior while maintaining sufficient

statistical power for accurate analysis of the population within submarkets.

The systematic variation of the ratio of numbers of men and women among submarkets seen

in Fig. 2B of the paper also extends to divisions into other numbers of submarkets, as shown

in Fig. S3. As the figure shows, the pattern for the four-way division of Fig. 1B, whereby the

sex ratio becomes progressively more female-heavy as we move into the older submarkets, is

duplicated for divisions into three, five, and six submarkets as well.

Bruch and Newman Online Dating Markets in U.S. Cities

sociological science | www.sociologicalscience.com S15 April 2019 | Volume 6



3 Additional analyses and results

In the paper, we observe that minority women tend to be younger than white women in the

same submarket, a trend that is particularly noticeable for black women. While the pattern

holds across all of our four cities, it is most pronounced in Chicago. Here we provide additional

details on the racial composition of Chicago users and insight into processes that give rise to

the age differences we observe between white and black women in Chicago. We also examine

whether the patterns observed in Chicago hold in New York, the other city with a sizable black

population.

Figure S4 shows the mix of ethnicities for men and women in each Chicago submarket.

The predominant group in all submarkets is whites, which reflects the overall composition

of the Chicago user base. There is, however, systematic variation in the relative size of the

minority population across submarkets. Black men and women are more prevalent in the oldest

submarkets, which is surprising given that they are slightly younger, on average, than their white

counterparts. One factor driving this is that the black women messaged by both black and white

men are, on average, significantly younger than the white women messaged by men in the same

submarket, and this phenomenon is most pronounced in the oldest submarkets. This tends to

pull younger women into the older submarkets, and with them the men that they exchanges

messages with. This helps explain not only why there is a surplus of black women in the oldest

submarket, but also why these women are significantly younger, on average, than white women

in the same submarket.

Figure S5 extends our analysis of age differences in messaging by submarket and race (Fig. 3

in the paper) to Boston and Seattle. The pattern is similar overall to that for New York and

Chicago: age differences tend to be larger for first messages than for replies, and also larger in

older submarkets. In submarket 4, for example, white men initiate contact with Asian women
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Figure S4: Racial composition of submarkets in Chicago. All submarkets are predominantly
white, which is consistent with the overall composition of the Chicago market. However, despite
the fact that whites are older, on average, than other race groups, they are disproportionately
concentrated in submarket 2. Black users, especially black women, are over-represented in the
oldest submarkets. Figure 3 in the text suggests one mechanism driving these patterns.

who are around 6 years younger than themselves on average, but receive replies from women

who are only around 3.5 years younger. Also in line with the patterns for NewYork and Chicago,

we see that within a given submarket non-white women tend to receive messages from older

men than do white women; this is especially true in submarket 4.

There are, however, also some striking differences between the results for Seattle and Boston

and those for New York and Chicago. In Boston and Seattle, women in submarket 4 (and for

Seattle submarket 3 as well) display little tolerance for overtures from much older men. Note

how in these cities women’s replies are predominantly to men of similar age to themselves,

despite the fact that men are messaging significantly younger women. Black women in Seattle
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Figure S5: Mean difference in years between the age of men of varying races and the women
they message in Seattle and Boston, by race of women and submarket. Race is coded as: A
= Asian, B = Black, H = Hispanic, and W = white. The first two rows show the average age
difference for, respectively, all initial messages sent in Boston and those that received a reply;
and the bottom two rows show the same patterns for Seattle. We observe zero instances in
Boston where black women receive messages from Asian men in submarket 2, so these cells are
marked with an X.

for example are receiving overtures from black men about 3.5 years older than themselves on

average, but reply primarily to men of about their own age. Notable exceptions to this behavior

are messages from Asian men to Asian women, and from Hispanic men to Hispanic women,

which appear to receive replies despite large average age differences.
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