Supplemental Figures

Figure S1. Innate-like V $\delta1^{\star}$ IELs Are Lost in CeD, Related to Figure 2

(A) Expression of NKG2D on $V\delta1^+$ PBLs and IELs. Boxplots display first and third quartiles. (B) Expression of CD94 and NKG2A on $V\delta1^+$ PBLs and IELs. Boxplots display first and third quartiles. CD94⁺/NKG2A⁻, activating; CD94⁺/NKG2A⁺, inhibitory. *p < 0.05, ***p < 0.001. One-way ANOVA with Tukey's test for multiple comparisons. (C) Frequency of $V\delta1^+$ IELs expressing NKp46 among total CD3⁺ lymphocytes. The red box depicts individuals with $V\delta1^+$ IEL expansions of similar magnitude to those found in patients with CeD. (D) Expression of NKp46 and NKp44 on PBLs. Bottom: boxplots display first and third quartiles. (E) Frequency of $V\delta1^+$ IELs expressing NKp46 or NKp46 versus the duration of treatment with a GFD. (F) Expression of CD107a on $V\delta1^+$ IELs after stimulation with platebound α TCR $\gamma\delta \pm \alpha$ NKp46 and α NKp44. *p < 0.05. Paired t test. (G) Expression of granzyme B among subsets of IELs. Bottom: boxplot displays first and third quartiles.

Figure S2. The Transcriptional Program of V δ 1⁺ IELs Is Permanently Altered in CeD, Related to Figure 4

(A) Differentially expressed genes (DEGs) between NCR⁺ V δ 1⁺ IELs from healthy controls and NCR⁻ V δ 1⁺ IELs from patients with active CeD. (FDR < 5%), and DEGs highlighted in red were more highly expressed in NCR⁺ V δ 1⁺ IELs from healthy controls (FDR < 5%). (B) DEGs shown in (A) were used to correlate the magnitude of gene expression differences between NCR⁺ V δ 1⁺ IELs from healthy controls and NCR⁻ V δ 1⁺ IELs from patients with active CeD (x axis) versus the magnitude of gene expression differences between NCR⁺ V δ 1⁺ IELs from healthy controls and NCR⁻ V δ 1⁺ IELs from patients with active CeD (x axis) versus the magnitude of gene expression differences between NCR⁺ V δ 1⁺ IELs from healthy controls and NCR⁻ V δ 1⁺ IELs from patients with active CeD (y axis). Genes with log₂FC values > 0 were more highly expressed in NCR⁻ V δ 1⁺ IELs from patients with active to NCR⁻ V δ 1⁺ IELs from healthy controls, and genes with log₂FC values < 0 were more highly expressed in NCR⁻ V δ 1⁺ IELs from patients with active to NCR⁻ V δ 1⁺ IELs from healthy controls, and genes with log₂FC values < 0 were more highly expressed in NCR⁻ V δ 1⁺ IELs from patients with active or GFD-treated CeD. Top left: log₂FC distribution for all genes in the dot plot summarized as a histogram for each comparison. Pearson correlation. (C) Frequencies of NKp46⁺ V δ 1⁺ IELs. (D) Multidimensional scaling plot showing gene expression profile similarity among NCR⁺ V δ 1⁺ IELs from healthy controls, NCR⁺ V δ 1⁺ IELs from patients with active CeD, NCR⁺ V δ 1⁺ IELs from patients with GFD-treated CeD. (E) DEGs shown in (A) were used to correlate the magnitude of gene expression differences between NCR⁺ V δ 1⁺ IELs from patients with GFD-treated CeD. (E) DEGs shown in (A) were used to correlate the magnitude of gene expression differences between NCR⁺ V δ 1⁺ IELs from patients with GFD-treated CeD. (E) DEGs shown in (A) were used to correlate the magnitude of gene

Cell

versus the magnitude of gene expression differences between NCR⁺ $V\delta1^+$ IELs from healthy controls and NCR⁺ $V\delta1^+$ IELs from patients with active CeD (y axis). Genes with \log_2FC values > 0 were more highly expressed in NCR⁺ and NCR⁻ $V\delta1^+$ IELs from patients with active CeD relative to NCR⁺ $V\delta1^+$ IELs from healthy controls, and genes with \log_2FC values < 0 were more highly expressed in NCR⁺ $V\delta1^+$ IELs from healthy controls relative to NCR⁺ and NCR⁻ $V\delta1^+$ IELs from patients with active CeD. Top left: \log_2FC distribution for all genes in the dot plot summarized as a histogram for each comparison. Pearson correlation.

Figure S3. The TRGV4 Gene-Associated "Gut Signature" Is Lost in CeD, Related to Figure 5

(A) Gating strategy: live CD3⁺ TCR $\gamma\delta^+$ V $\delta1^+$ lymphocytes were flow-sorted for molecular analysis of expressed TCRs. (B) Number of clones per individual/tissue yielding productive sequences for TCR γ and TCR δ . (C) Number of unique CDR3 sequences per group/tissue for TCR γ and TCR δ . (D) Expression of *TRGV* genes in NCR⁺ V $\delta1^+$ IELs from healthy controls (n = 8), NCR⁺ V $\delta1^+$ IELs from patients with active CeD (n = 9), NCR⁻ V $\delta1^+$ IELs from patients with active CeD (n = 9), NCR⁺ V $\delta1^+$ IELs from patients with active CeD (n = 9), NCR⁺ V $\delta1^+$ IELs from patients with active CeD (n = 9), NCR⁺ V $\delta1^+$ IELs from patients with active CeD (n = 9), NCR⁺ V $\delta1^+$ IELs from patients with active CeD (n = 9), NCR⁺ V $\delta1^+$ IELs from patients with active CeD (n = 9), NCR⁺ V $\delta1^+$ IELs from patients with active CeD (n = 9), NCR⁺ V $\delta1^+$ IELs from patients with active CeD (n = 9), NCR⁺ V $\delta1^+$ IELs from patients with active CeD (n = 9), NCR⁺ V $\delta1^+$ IELs from patients with active CeD (n = 9), NCR⁺ V $\delta1^+$ IELs from patients with active CeD (n = 9), NCR⁺ V $\delta1^+$ IELs from patients with active CeD (n = 9), NCR⁺ V $\delta1^+$ IELs from patients with active CeD (n = 9), NCR⁺ V $\delta1^+$ IELs from patients with active CeD (n = 9), NCR⁺ V $\delta1^+$ IELs from patients with active CeD (n = 9), NCR⁺ V $\delta1^+$ IELs from patients with active CeD (n = 9), NCR⁺ V $\delta1^+$ IELs from patients with active CeD (n = 9), NCR⁺ V $\delta1^+$ IELs from patients with active CeD (n = 9), NCR⁺ V $\delta1^+$ IELs from patients with active CeD (n = 9), NCR⁺ V $\delta1^+$ IELS from patients with active CeD (n = 9), NCR⁺ V $\delta1^+$ IELS from patients with active CeD (n = 9), NCR⁺ V $\delta1^+$ IELS from patients with active CeD (n = 9), NCR⁺ V $\delta1^+$ IELS from patients with active CeD (n = 9), NCR⁺ V $\delta1^+$ IELS from patients with active CeD (n = 9), NCR⁺ V $\delta1^+$ IELS from patients with active CeD (n = 9), NCR⁺ V $\delta1^+$ IELS from patients with active CeD (n = 9), NCR⁺ V $\delta1^+$ IELS from patients with active CeD (n = 9), NCR⁺ V $\delta1^+$

Cell

 $V\delta1^+$ IELs from patients with GFD-treated CeD (n = 3), and NCR⁻ $V\delta1^+$ IELs from patients with GFD-treated CeD (n = 5). Germline transcripts were extracted from the RNA-seq dataset. Expression values were standardized (mean centered) on a per gene basis. (E) Frequency of $V\delta1^-$ IELs expressing NKp46 or NKp46/NKp44. Boxplot displays first and third quartiles. ***p < 0.001. One-way ANOVA with Tukey's test for multiple comparisons. (F) Proportion of unique CDR3 γ sequences using a particular *TRGJ* gene summarized by individual.

(legend on next page)

Figure S4. V δ 1⁺ IELs Express TCRs with Longer CDR3 δ Loops in CeD, Related to Figure 6

(A) Shannon diversity indices summarized in violin plots for CDR3 γ and CDR3 δ sequences. (B) Proportion of unique CDR3 δ sequences using a particular amino acid (AA). White lines demarcate individual contributions. Healthy controls: PBLs, n = 7; IELs, n = 8. Patients with active CeD: PBLs, n = 8; IELs, n = 8. Patients with GFD-treated CeD: PBLs, n = 5; IELs, n = 7. ‡ denotes amino acids with significant differences between two groups. Firth's penalized logistic regression and beta regression. See Table S5C. (C) Proportion of unique CDR3 δ sequences using a particular *TRDJ* gene summarized by individual. (D) Statistical assignment of *TRDD* gene use for each unique CDR3 δ sequence. Each candidate forward and reverse *TRDD* gene sequence (rows) was tested for a significant substring match to each unique CDR3 δ sequence (columns). Significant *TRDD* gene assignments (FDR < 0.05) are shown in red; non-significant *TRDD* gene assignments (FDR > 0.05) are shown in blue. (E) Frequency of unique CDR3 δ sequences incorporating a particular motif summarized by individual. (F) Proportion of unique CDR3 δ sequences using a particular feature. Healthy controls: PBLs, n = 7; IELs, n = 8. Patients with active CeD: PBLs, n = 8; IELs, n = 8. Patients with GFD-treated CeD: PBLs, n = 5; IELs, n = 7. *p < 0.05, ***p < 0.001. Firth's penalized logistic regression and beta regression. See Table S5D. (G) Cumulative distribution for CDR3 δ length across groups. **p < 0.01. Kolmogorov-Smirnov test. (H) Unique CDR3 γ sequences among V δ 1⁺ IELs from patients with active CeD visualized using iceLogo for enrichment of non-germline-encoded amino acids relative to unique CDR3 γ sequences with an H-J1 motif summarized by individual.

Figure S5. BTNL3/8-Reactive Vo1+ IELs Are Lost in CeD, Related to Figure 7

(A) Proportion of unique CDR3 γ sequences using the *TRGV4* gene versus relative expression of *BTNL3* and *BTNL8* for patients with GFD-treated CeD. Linear regression. (B) Expression of BTNL3 (myc⁺) and BTNL8 (HA⁺) on untransduced (UT) HEK293T cells (left), HEK293T cells transduced with BTNL8-HA (middle), and HEK293T cells transduced with BTNL3-myc and BTNL8-HA (right). (C) Downregulation of CD3 and V δ 1 on the surface of IELs pre-gated for V δ 1 expression after stimulation for 2 hr with 1.5 μ g/mL of plate-bound purified α CD3. (D) Downregulation of CD3 and V δ 1 on the surface of IELs pre-gated for V δ 1 expression after overnight incubation with HEK293T-BTNL8⁺ or HEK293T-BTNL3⁺ cells. (E) SKW3 cell lines stably expressing clonal TCRs were cultured overnight with HEK293T-UT (black), HEK293T-BTNL8⁺ (blue), or HEK293T-BTNL3⁺ cells (red). Top: representative histogram overlays displaying surface expression of CD3 on SKW3 cells. Bottom: boxplots show first and third quartiles (n = 3 independent experiments). *p < 0.05, **p < 0.01. One-way ANOVA followed by Tukey's test for multiple comparisons. (F) SKW3 cells (red) stably expressing clonal TCRs were contract HEK293T-BTNL3⁺ cells. (HEX293T-BTNL3⁺ cells. (HEX293T-BTNL3⁺ cells. (HEX293T-BTNL3⁺ cells. The average of DC3 and Nur77. (G) Expression of CD3 on unstimulated (black) or α CD3⁺ acDD2-stimulated SKW3 cells (red) stably expressing the indicated TCRs. (H) Surface expression of CD3 and intracellular expression of Nur77 for the indicated SKW transductants cultured with HEK293T-UT cells (untreated) or stimulated with α CD3/ α CD28 beads.

A

В

Figure S6. The Tissue-Resident Vo1⁺ IEL Compartment Is Permanently Reshaped in CeD, Related to Figures 1–7

(A) Top: $V\delta1^+$ IELs are expanded in patients with CeD and adopt a tissue-resident phenotype characterized by expression of CD69 and CD103. Mean frequency values are summarized by group/tissue. Middle/top: $V\delta1^+$ IELs expressing NKp46 are lost in CeD and replaced by IFN- γ -producing $V\delta1^+$ IELs. Mean frequency values are summarized by group/tissue. Middle/bottom: $V\delta1^+$ IELs lose the *TRGV4* gene-associated 'gut signature' in patients with CeD (data summarized by group/tissue). This loss is associated with the emergence of CDR3 γ sequences incorporating the H-J1 motif among $V\delta1^+$ IELs in patients with active CeD. These H-J1⁺ CDR3 γ sequences become less common after exclusion of dietary gluten. Bottom: *BTNL8* expression is lost in patients with active CeD, and $V\delta1^+$ IELs no longer recognize BTNL3/8. Although *BTNL8* expression levels recover on a strict GFD, BTNL3/8 reactivity is permanently lost among $V\delta1^+$ IELs. (B) $V\delta1^+$ IELs in the healthy state (black) express NKp46 and NKp44, as well as $V\gamma4^+/V\delta1^+$ TCRs that recognize BTNL3/8. These activating NCRs allow healthy $V\delta1^+$ IELs to recognize and eliminate stressed, infected, or malignant IECs. In patients with CeD, decreased expression of *BTNL3 and BTNL8* is accompanied by a loss of $V\gamma4^+/V\delta1^+$ IELs, which are replaced by $V\delta1^+$ IELs (red) that produce IFN- γ in a gluten-dependent manner and express TCR γ chains enriched for the H-J1 $^+$ CDR3 γ motif that fail to recognize BTNL3/8. These H-J1 $^+$ $V\delta1^+$ IELs (IRC) that produce IFN- γ in a gluten, but are not replaced by NCR $^+$ $V\gamma4^+/V\delta1^+$ IELs. Instead, $V\delta1^+$ IELs in patients with GFD-treated CeD are enriched for TCRs that fail to recognize BTNL3/8. Repertoire diversity also increases (purple color gradient), suggesting of a lack of selection pressure in the absence of gluten-induced inflammation. This model is consistent with a fundamental reshaping of the tissue-resident $V\delta1^+$ IEL compartment after the onset of CeD.

Figure S7. Alterations to the Vô1⁺ IEL Compartment Precede Tissue Damage in CeD, Related to Figure 7

(A) Frequency of V δ 1⁺ cells among CD3⁺ lymphocytes. Boxplot displays first and third quartiles. ***p < 0.001. One-way ANOVA with Tukey's test for multiple comparisons. (B) Expression of *BTNL3* and *BTNL8* relative to *GAPDH* in small intestinal biopsies determined via qPCR. Boxplots display first and third quartiles. *p < 0.05, **p < 0.01, ***p < 0.001. Kruskal-Wallis rank sum test with Dunn's test for multiple comparisons. (C) Frequency of V δ 1⁺ IELs expressing NKp46 with or without NKp44. Boxplot displays first and third quartiles. **p < 0.01. One-way ANOVA with Tukey's test for multiple comparisons. (D) Proportion of unique CDR3 γ sequences using a particular *TRGV* gene among V δ 1⁺ IELs. White lines demarcate individual contributions. (E) Frequency of unique CDR3 γ sequences incorporating the H-J1 motif among V δ 1⁺ IELs. Boxplot displays first and third quartiles. **p < 0.01. Kruskal-Wallis rank sum test with Dunn's test for multiple comparisons.