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expressed metatranscriptomics provides an understanding of the interactions between
different major functional guilds and the environment. Metatranscriptomics typically
utilize short sequence reads, which can either be directly aligned to external reference
databases (“assembly-free approach”) or first assembled into contigs before alignment
(“assembly-based approach”). Here we compared workflows representing both
alternatives, using simulated and real-world metatranscriptomes from Arctic and
Temperate terrestrial environments. We evaluate their accuracy in precision and recall
using generic and specialized hierarchical protein databases.

Results

We show that the assembly-based approach provides significantly fewer false positives
resulting in more precise identification and quantification of functional genes in
metatranscriptomes. Using the comprehensive database M5nr, the assembly-based
approach identifies genes with only 0.6% false positives at thresholds ranging from
inclusive to stringent compared to assembly-free approach (3.6 to 15% false positives).
Using specialized databases (Carbohydrate Active-enzyme and Nitrogen Cycle) the
assembly-based approach identifies and quantifies genes with 3-5x less false
positives. We also evaluated the impact of both approaches on real-world datasets.
Based on this benchmarking we present a standardized and optimized workflow for
identifying functional genes from metatranscriptomes.

Conclusions

Our findings support the argument of assembling short reads into contigs before
alignment to a reference database, since this provides higher precision and minimizes
false positives. By virtue of the extensive benchmarking we also present the open
source metatranscriptomics analysis workflow Comparative Metatranscriptomics
Workflow CoMW.
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Abstract 20 

Background 21 

Metatranscriptomics has been used widely for investigation and quantification of microbial 22 

communities’ activity in response to external stimuli. By assessing the genes expressed 23 

metatranscriptomics provides an understanding of the interactions between different major 24 

functional guilds and the environment. Metatranscriptomics typically utilize short sequence 25 

reads, which can either be directly aligned to external reference databases (“assembly-free 26 

approach”) or first assembled into contigs before alignment (“assembly-based approach”). Here 27 

we compared workflows representing both alternatives, using simulated and real-world 28 

metatranscriptomes from Arctic and Temperate terrestrial environments. We evaluate their 29 

accuracy in precision and recall using generic and specialized hierarchical protein databases. 30 

Results 31 

We show that the assembly-based approach provides significantly fewer false positives resulting 32 

in more precise identification and quantification of functional genes in metatranscriptomes. 33 

Using the comprehensive database M5nr, the assembly-based approach identifies genes with 34 

only 0.6% false positives at thresholds ranging from inclusive to stringent compared to assembly-35 

free approach (3.6 to 15% false positives). Using specialized databases (Carbohydrate Active-36 

enzyme and Nitrogen Cycle) the assembly-based approach identifies and quantifies genes with 37 

3-5x less false positives. We also evaluated the impact of both approaches on real-world datasets. 38 

Based on this benchmarking we present a standardized and optimized workflow for identifying 39 

functional genes from metatranscriptomes. 40 

Conclusions 41 
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Our findings support the argument of assembling short reads into contigs before alignment to a 42 

reference database, since this provides higher precision and minimizes false positives. By virtue 43 

of the extensive benchmarking we also present the open source metatranscriptomics analysis 44 

workflow Comparative Metatranscriptomics Workflow CoMW.   45 
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1. Introduction 48 

Metatranscriptomics provides an unprecedented insight to complex functional dynamics of 49 

microbial communities in various environments. The method has been applied to study the 50 

microbial activity in thawing permafrost and the related biogeochemical mechanisms 51 

contributing to greenhouse gas emissions [1], and Gonzalez et al. [2] applied metatranscriptomics 52 

to evaluate root microbiome response to soil contamination. The method is typically used to 53 

identify, quantify and compare the functional response of microbial communities in natural 54 

habitats or in relation to environmental or physio-chemical impacts. 55 

Using high-throughput sequencing techniques such as Illumina, metatranscriptomics offers a non 56 

PCR biased method for looking at transcriptional activity occurring within a complex and diverse 57 

microbial population at a specific point in time [3]. However, curation and annotation of this 58 

complex data has emerged as a major challenge. To date, several studies have used various 59 

analytic workflows. Typically, short sequence reads are utilized, which can either be individually 60 

aligned directly to external reference databases (hereafter “assembly-free”) or assembled into 61 

longer contiguous fragments (contigs) for alignment (hereafter “assembly-based”). Various 62 

studies have used either of these two general approaches. For example, Jung et al. [4] used an 63 

assembly-free approach (with BWA [5] to map reads to reference genomes of lactic acid bacterial 64 

strains associated with the kimchi microbial community) while Poulsen et al. [6] used an 65 

assembly-based approach (using SHE-RA [7] assembly before aligning to protein database). 66 

Similarly, an open source pipeline developed by Martinez et al. [8] to analyze 67 
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metatranscriptomics data-sets also aligns short reads directly to the M5nr database [9] and 68 

provides eggNOG annotation [10].  Most of the studies have used an assembly-free approach 69 

[11] due to less computational expense in addition to lack of thorough comparison available. 70 

Since no independent and direct comparison between these two alternative approaches has 71 

been performed presently, various metatranscriptomics analysis approaches may at times 72 

produce inconsistent observations, even if identical databases are used in the analysis. Thus, 73 

standardization of computational analysis is necessary to enable further propagation of 74 

metatranscriptomics approaches and their integration into microbial ecology research. 75 

Benchmarking provides a critical view of the efficiency and precision of different workflows and 76 

use of simulated communities for benchmarking enables the analysis to be independent of 77 

experimental variation and biases [12].  78 

Here, we compared the assembly-free vs. assembly-based approach using simulated datasets. 79 

We evaluated the accuracy of both approaches using precision, recall and False Discovery Rates 80 

(FDR) with three different databases ranging from a generic or inclusive to specialized database 81 

dedicated to structurally or functionally related functional families: 1) M5nr: an inclusive and 82 

comprehensive non-redundant protein database in combination with eggNOG hierarchical 83 

annotation 2) Carbohydrate-Active Enzymes (CAZymes) [13]: a database dedicated to describing 84 

the families of structurally-related catalytic and carbohydrate-binding modules of enzymes and 85 

3) Nitrogen Cycling Database (NCycDB) [14] a specialized and manually curated database 86 

covering only N cycle genes. In order to estimate the consistency and variance in the results 87 

caused by the choice of approach we then applied them to real world metatranscriptomes from 88 

microbial communities in 1) active-layer permafrost soil from Svalbard and 2) Ash impacted 89 
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Danish Forest soil. With the help of this comprehensive benchmarking and comparative analysis 90 

we then standardized and developed an open source Comparative Metatranscriptomic Workflow 91 

(CoMW). 92 

 93 

2. Findings 94 

2.1 Evaluation 95 

In order to compare the performance of the assembly-based and assembly-free approaches, and 96 

to standardize a workflow using either of these, we simulated community transcript data using 97 

4943 full length genes provided by Martinez et al. [8]. We analyzed both approaches separately 98 

and compared against direct annotation of full-length genes. The full-length genes were 99 

annotated using all three databases (M5nr, CAZy and NCycDB) independently to classify them 100 

into functional subsystems and gene families. Figure 1 shows detailed workflow of comparative 101 

analysis using both approaches.  102 

 103 

Figure 1: Flowchart illustrating the benchmarking scheme used for comparison of approaches. Red path indicates 104 
the full-length genes workflow, Green indicates the steps in assembly-based and Blue indicates the steps in the 105 

assembly-free approach. 106 

 107 

2.1.1 Functional assignment  108 

2.1.1.1 M5nr Alignment  109 

Full length genes of the simulated community dataset were aligned and identified into 671 110 

unique eggNOG orthologs, belonging to 19 distinct functional subsystems (level II). At the default 111 

confidence threshold (BTS score 50) of Diamond [15], assembly-free approach produced 112 

alignments to 820 orthologs with a precision of 85% (14.9% FPs), whereas the assembly-based 113 
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approach identified 665 orthologs with a precision of 99.3% (0.6% FPs) at the default SWORD 114 

[16] confidence threshold of 1E-5. Repeating the alignments using a gradient of 15 varying 115 

confidence thresholds for each approach (Low - TL, Medium - TM and High – TH; 5 thresholds / 116 

category) resulted in dissimilar performance for both approaches. The precision and recall of 117 

assembly-based approach did not change from 99.3% and 98.5% respectively throughout all 118 

categories whereas the assembly-free approach had a maximum precision of 96.3% at TM and 119 

decreases to 85% at TL and TH. The assembly-based approach also produced fewer (only 0.6%) 120 

FPs consistently compared to assembly-free approach of FPs ranging from 14.9% to minimum 121 

3.6% at highest precision. Based on F-Score the most optimal alignment for each approach is 122 

given in Table 1, whereas detailed values for precision, recall, F-Score and FDR are listed in 123 

Supplementary Table S1. We then also evaluated both approaches by selectively removing 124 

sequences belonging to a certain functional subsystem from the M5nr database in a controlled 125 

manner (segmented cross validation) in order to replicate real world metatranscriptomes where 126 

a certain functional subsystem can be completely or partially absent from the reference 127 

database. We removed four (level II) subsystems (“[D] Cell cycle control, cell division, 128 

chromosome partitioning”; “[L] Replication, recombination and repair”; “[E] Amino acid 129 

transport and metabolism” and “[R] General function prediction only” and “[S] Function 130 

unknown”). The level II subsystems were removed one at a time realigning full-length genes and 131 

simulated reads using both Assembly-based and assembly-free approaches to the cropped 132 

database to compare identification consistency.  In each validation round, the number of unique 133 

(eggNOG) orthologs identified by the assembly-based approach were consistent to full length 134 
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gene alignment whereas from the assembly-free approach, the orthologs dropped significantly 135 

along with its ability to recall TPs. Table 2 provides details for each validation cycle. 136 

 137 

Table 1 : Mean of Precision, Recall and F Score for both approaches against all three databases. Bold emphasizes better 138 
precision, recall, F-Score and FDR in each category across approaches 139 

Databases Approach Threshold 
Threshold 
Category 

Recall Precision F-Score FDR (%) 

eggNOG 
Assembly-free BTS 120 Strict [TH] 0.9880 0.9540 0.9707 4.5977 

Assembly-based 1.00E-15 Strict [TH] 0.9851 0.9939 0.9895 0.6006 

CAZy 
Assembly-free BTS 110 Strict [TH] 0.3510 0.5325 0.4231 46.7433 

Assembly-based 1.00E-08 Medium [TM] 0.8131 0.7759 0.7940 22.4096 

NCycDB 
Assembly-free BTS150 Strict [TH] 0.1666 0.0581 0.0862 94.1860 

Assembly-based 1.00E-14 Strict [TH] 0.6666 0.8333 0.7407 16.6666 
 140 

Table 2 Selective removal of functional subsystems from eggnog database (segmented cross-validation) of approaches. Bold 141 
emphasizes better consistency across approaches 142 

 
Full Length Genes 
Unique Orthologs 

Unique orthologs from the 
assembly-free approach 

Unique Orthologs from the 
Assembly-based approach 

Complete Database 671 784 667 

[D] removed 628 93.59% 572 72.95% 624 93.55% 

[L] removed 640 95.38% 584 74.48% 636 95.35% 

[E] removed 640 95.38% 583 74.36% 636 95.35% 

[R], [S] removed 347 51.7% 334 42.60% 352 52.77% 

 143 

2.1.1.2 CAZY Alignment  144 

Out of a total 2395 full length genes, 500 sequences were aligned to 395 unique functional genes 145 

in the CAZY database, which belonged to 130 gene families and were further classified as 7 146 

enzyme classes. Using default confidence thresholds (BTS 50 & 1E-5), the assembly-free approach 147 

identified 765 functional genes belonging to 112 unique families and 6 enzyme classes with a 148 

precision of 28.5% (71.4% FPs).  The assembly-based approach identified 488 functional genes 149 

from CAZY database that were classified into 147 gene families from 7 enzyme classes with a 150 

precision of 66% (FDR 33.9%) at the default confidence threshold. However, when we repeated 151 
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the process with 15 various confidence thresholds, precision improved consistently for the 152 

assembly-based approach and FPs decreased, whereas for assembly-free approach, precision 153 

dropped significantly with increasing confidence threshold (see Table 1 and Supplementary Table 154 

S2).  155 

2.1.1.3 NCycDB Alignment  156 

410 of 2395 full length genes aligned to this database, identified as 29 unique Nitrogen cycle 157 

genes and further belonging to 15 functional gene families in 5 pathways. Using default 158 

confidence thresholds, the assembly-free approach identified 1541 functional genes belonging 159 

to 25 functional gene families classified into 6 pathways with a precision of 0.9% (99% FPs). The 160 

assembly-based approach identified 42 Nitrogen cycle genes classified into 25 gene families from 161 

6 pathways with a precision of 59.5% (40.4% FPs) at a default confidence threshold of 1E-5. Like 162 

comparisons against M5nr and CAZY we repeated the process with 15 different confidence 163 

thresholds for each approach. Precision improved significantly for the assembly-based approach 164 

at stringent thresholds whereas for the assembly-free approach, the best precision achieved was 165 

5.8%. (Table 1, Supplementary Table S3).  166 

2.1.2 Expression Quantification  167 

We also compared the ability of both approaches to quantify the expression of identified 168 

transcripts by performing differential expression analysis of two groups in simulated 169 

communities and compared against the full-length gene expression simulated. We selected three 170 

best identification thresholds for both approaches based on highest F-Score and performed 171 

differential expression analysis using DESeq2 [16] algorithm in SARTools [17]. This analysis for 172 

both approaches was carried out against all three databases using the most specific level of 173 
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hierarchy in the respective databases in order to capture their ability to quantify expression levels 174 

of specific genes. According to full-length gene alignments against eggNOG, 123 genes were 175 

significantly upregulated and 270 were significantly downregulated. Using assembly-free 176 

approach with best F-Score 73 genes were up-regulated (precision 94.5%, 5.4% FPs) and 380 177 

(precision 65.7%, 34.2% FPs) were down regulated. whereas in the assembly-based approach 99 178 

(precision 94.9%, 5% FPs) genes were up-regulated and 249 (precision 97.1%, 2.8% FPs) down 179 

regulated. For CAZy database full-length genes 81 and 189 genes were significantly up and down 180 

regulated respectively. Using assembly-free approach 31 (precision 19.3%, 80.6% FPs) genes 181 

significantly up regulated and 137 genes (precision 52.5%, 47.4% FPs) whereas the assembly-182 

based approach 83 (precision 71%, 28.9% FPs) genes were up-regulated and 191 (precision 183 

73.8%, 26.1% FPs) genes were down regulated. In the NCyc database expression analysis, 3 and 184 

14 genes were significantly up and down-regulated respectively.  Using assembly-free approach 185 

26 (precision 0%, 100% FPs) and 107 (precision 4.6%, 95.3% FPs) genes up and down regulated 186 

respectively, whereas using assembly-based approach 3 (precision 33.3%, 66.6% FPs) genes up 187 

regulated and 18 (precision 55.5%, 44% FPs) were down regulated. Precision, Recall and FDR for 188 

both approaches against all three databases are available in Supplementary Table S4. 189 

Additionally, we then collapsed the functional genes into functional subsystems and gene 190 

families to remove FPs produced due to identification of homologous proteins or proteins with 191 

multiple inheritance. Fold change (log2 transformed) was then calculated for each 192 

subsystem/gene family. (see Figure 3)  193 

 194 

Figure 2: Differential Expression comparison of Assembly-free and Assembly-based approaches using A) M5nr 195 
database, B) NCycDB and C) CAZy database. 196 
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 197 

2.1.3 Real-World metatranscriptomes 198 

To evaluate the effect of the two approaches on real world data, two metatranscriptomes from 199 

microbial communities were studied. The first study investigated the transcriptional response 200 

during warming from -10 °C to 2 °C and subsequent cooling of 2 °C to -10 °C of an Arctic tundra 201 

active layer soil from Svalbard, Norway . The aim of the study was to understand taxonomic and 202 

functional shifts in microbial communities caused by climate change in the Arctic. A pronounced 203 

shift during the incubation period was noticed by Schostag et al. [17] (under review Molecular 204 

Ecology, SRA Bio-Project: PRJNA417839) which was not replicated by the assembly-free 205 

approach. However, the assembly-based approach identified an increase of genes in “[P] 206 

Inorganic ion transport and metabolism”. For cooling, the assembly-based approach also 207 

captured the upregulation and downregulation of genes related to “[J] Translation, ribosomal 208 

structure and biogenesis” and “[C] Energy production and conversion” respectively (Figure 6) 209 

unlike assembly-free approach. These findings may have implications for our understanding of 210 

carbon dioxide emission, nitrogen cycling and plant nutrient availability in Arctic soils.  211 

 212 

Figure 3: Functional expression dynamics in Arctic permafrost soil identified against eggNOG functional subsystems 213 
using Assembly-based and Assembly-free approach 214 

 215 

In the second study, Bang-Andreasen et al. [18] (under review ISME, SRA Bio-Project: 216 

PRJNA512608) investigated the effects of wood ash amendment on Danish forest soils. Ash was 217 

added in 3 different quantities (0/control, 3, 12 and 90 tonnes ash per hectare (t ha-1)). In addition 218 

to ash concentration, the effect over time was analysed in soil communities at 0, 3, 30 and 100 219 
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days after ash addition. This resulted in strong effects on functional expression as seen in Figure 220 

7.  Both approaches once again displayed varying results such as changes in genes related to 221 

eggNOG functional subsystem “[W] Extracellular structures”. Assembly-free approach also 222 

identified 75% of genes as “[S] Function unknown” consistently unlike assembly-based.  223 

 224 

Figure 4:  Functional expression dynamics in Danish forest soil due to Ash amendment and time elapsed, identified 225 
against eggNOG functional subsystems using Assembly-based and Assembly-free approach  226 

 227 

2.2 Standardized Workflow (CoMW) 228 

By the virtue of thorough benchmarking we standardized, implemented, and validated a 229 

metatranscriptomic workflow (CoMW) using Assembly-based approach. The workflow was 230 

implemented by keeping in mind the databases and tools for each step are ever improving thus 231 

optional steps can be skipped, changed or even improved in a structural manner. CoMW is open 232 

source workflow written in python available at (https://github.com/anwarMZ/CoMW). It is based 233 

on four major steps: 1) Assembly and Mapping short reads to assembled contigs; 2) Filtering of 234 

contigs; 3) Gene Prediction and Alignment and 4) Annotation. These scripts make each step of 235 

the workflow straightforward and help to make these complex analyses more reproducible and 236 

the components re-useable in different contexts. Help regarding input, output and parameters is 237 

provided with each script and an overall tutorial is presented in the data repository at GitHub. 238 

We here wanted to build an open source work flow for metatranscriptomics analysis that can 239 

assist in analyzing large metatranscriptomics data. Processes like ORF detection, alignment 240 

against the database and calculations of the gene expression are vital in any metatranscriptomic 241 

analyses and are, therefore, present uniformly in all workflows. However, since we use the 242 
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assembly-based workflow where we assemble the reads into longer contigs we also propose a 2-243 

step filtering of the contigs to remove any chimeric or false contig made as a result of assembly 244 

or sequencing error by removing contigs that have an expression level less than a specific 245 

threshold and to remove any potential non-coding RNA contigs assembled.  246 

Assembly and Mapping of short reads back to assembled contigs is done using Trinity [19] and 247 

BWA [5] respectively. Various tools have been developed for metatranscriptome reconstruction 248 

that usually rely on graph-theory. Trinity however generates the most optimal assemblies for 249 

coding RNA reads [11,20,21]. However, the user can generate contigs by any assembler preferred 250 

but it can reduce the quality of the following steps such as alignment of contigs. 251 

 Filtering of Contigs is done to remove variance in sequences/samples. We can filter contig 252 

abundance data by removing all contigs with relative expression lower than a specific cutoff, e.g. 253 

1% (selected based on dataset variance) of the number of sequences in the dataset with least 254 

number of sequences. This threshold is also flexible for different datasets and in some cases not 255 

required at all so CoMW allows user to bypass this step or change the threshold up and down 256 

based on data variation. The filtered contigs are subject to potential non-coding RNA filtration by 257 

aligning them against the RFam database [22] using infernal [23] which is a secondary-structure-aware 258 

aligner that predicts the secondary structure of RNA sequences and similarities based on the consensus 259 

structure models. Once again, the ncRNA filtering is an optional step in CoMW, though highly 260 

recommended in order to reduce FPs.  261 

Gene Prediction and Alignment Transeq from EMBOSS [24] is used to predict probable open 262 

reading frames (ORFs) of the contigs (customizable, by default 6 per contig). We used SWORD 263 

[16] as alignment tool against reference databases. SWORD can be used in parallel based on 264 
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computational resources available and the aligned results are parsed and cut-off at a specific 265 

confidence threshold of combination of e-value and alignment length (usually 1e-5, can be 266 

changed given the assembly distribution in datasets).  267 

Annotation of aligned transcripts from the previous step can be done using the databases such 268 

as eggNOG which is a hierarchically structured annotation using a graph-based unsupervised 269 

clustering available algorithm to produce genome wide orthology inferences. Aligned proteins 270 

are then placed into functional subsystems based on their best hits.), CAZy which is a knowledge-271 

based resource specialized in the Glycogenomics, and NCycDB; a Nitrogen cycle database. This results 272 

in a count table with a contig and eggNOG ortholog or CAZy gene or NCyc gene having a certain 273 

count from each sample depending upon database used. This count table can be then used for 274 

differential expression using state-of-the-art expression analysis. 275 

CoMW is based on the results and findings from comparison of approaches. However, it has 276 

multiple optional steps such as abundance based and non-coding RNA filtering which can be 277 

different in data sets from a different environment. Similarly, the scripts are designed to cater 278 

more than one assembler output to enable diverse range of environments to be studied. 279 

 280 

3 Discussion 281 

The application of metatranscriptomics is less common than other DNA-based genomics 282 

techniques and thus most analysis pipelines are built ad hoc. The majority of these pipelines 283 

follow the assembly-free approach [11] such as COMAN [25], Metatrans [8], and SAMSA2 [26]. 284 

The lack of thorough benchmarking studies and standardized workflows in metatranscriptomics 285 

has made it a more challenging task to analyze the typically big datasets produced. Previous 286 
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studies have compared de novo sequence assemblers including Trinity, MetaVelvet [27], 287 

Oases[28], AbySS [29] and SOAPden-ovo [30] but an independent comparison of the two  288 

different approaches based on including assembly or directly aligning reads (here “assembly-289 

free”) has been lacking. We have attempted to assist this decision-making for processing 290 

metatranscriptomic analysis by independently assessing the performance of the two for 291 

functional annotation and expression quantification against three databases ranging from 292 

inclusive to specialized.  293 

With simulated samples comprised of genes collected from abundant genomes provided by 294 

Martinez et al. [8] we show that both approaches provide high recall rates against the general 295 

comprehensive database M5nr. However, the assembly-based approach provided a significantly 296 

better precision for identification and quantification. For relatively compact and specialized 297 

databases, recall and precision drop for both approaches (especially for the most compact 298 

database NCyc). However, the assembly-based approach still appeared to be more precise, 299 

meaning that fewer genes were mis-assigned against these database and significantly lower FPs 300 

were produced. The precision in identification and expressional fold change comparison of gene 301 

families and functional subsystems for simulated samples against all three databases confirmed 302 

that while an assembly step is challenging computationally it holds the potential to reveal 303 

information regarding the gene expressions that is not attainable without it. 304 

Selecting a single best workflow or pipeline for all types of metatranscriptomics studies is not a 305 

straightforward affair, and we believe that choice of approach changes the outcome of study 306 

significantly as observed with real-world datasets from active-layer permafrost soil from Svalbard 307 

and Ash impacted Danish Forest soil.  In addition to choosing the right workflow, combining that 308 
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with the appropriate reference database is equally important to ensure the best annotation 309 

performance. With databases specialized for one or more specific environments or functional 310 

categories assembly-free approach underperforms due to its inability to identify conserved 311 

sequences in reference database. We also show that assembly-free approach can increase the 312 

rate of FPs in annotation when a database is dominant in specific functional subsystem or does 313 

not possess certain category which can also lead to wrong estimation of fold change in expression 314 

In summary, we show that the choice of approach (assembly-free or assembly-based) and 315 

database significantly affects the quality of the identification, annotation and expression results. 316 

Given the impact of each of these variables, it is inevitable that it significantly affects the results 317 

of an individual study and comparison of across studies. By standardizing and developing CoMW 318 

we believe our work presented here further assists the microbial ecology research community to 319 

make more informed decisions about the most appropriate methodological approach to analyze 320 

large metatranscriptomic datasets with improved precision. 321 

 322 

4 Methods 323 

For the assembly-free approach we used the Metatrans pipeline [8], which uses FragGeneScan 324 

[31] for ORF predictions in short reads, CD-Hit [32] for gene clustering and Diamond [15] for 325 

alignment to the M5nr database. For assembly-based approach we assembled the simulated 326 

short reads using Trinity [19] which has been studied to outperform other de novo RNA-seq 327 

assemblers  and aligned the resulting contigs using SWORD (an efficient protein database search 328 

implementation especially optimized for large databases) [16] against the M5nr [9], CAZy [13] 329 

and NCyc [14] database. We then wrote an annotation script which Is included in CoMW. For 330 
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expression analysis gene counts were normalized between samples using the DESeq2 [33] 331 

algorithm. Significantly differentially expressed genes were analyzed in SARTools [34] using 332 

parametric relationship and p-value 0.05 as significance threshold. The Benjamini and Hochberg 333 

correction procedure [35] was used to adjust p-value. 334 

4.1 Composition of Simulated Communities 335 

In this study we utilised a set of simulated communities from Martinez et al. [8] where they 336 

collected 4943 genes from five abundant microbial genomes: Bacteroides vulgatus ATCC 8482, 337 

Ruminococcus torques L2-14, Faecalibacterium prausnitzii SL3/3, Bacteroides thetaiotaomicron 338 

VPI-5482 and Parabacteroides distasonis ATCC 8503. We simulated short reads into  100 samples 339 

using Polyester [36]  embedded in a script provided by Martinez et al. [8] at coverage of 20x 340 

which resulted in a count table and short reads with 2395 genes to add the impact of sequencing 341 

coverage. Their abundance was then regulated up and down and by knocking out few genes in a 342 

controlled manner in order to make the composition similar to real world metatranscriptomes. 343 

The process of regulation of abundance was done by first dividing the 100 samples into 2 groups 344 

(“A” and “B”) and then increasing the abundance of 10% genes up to 4-fold, decreasing the 345 

abundance of another 10% of the genes 4-fold and completely removing another 5% of the genes 346 

from both simulated reads and count tables. The process of selection of samples and genes was 347 

random but tracked. To include quality bias, we used the ART simulator [37] to produce an equal 348 

number of reads in FASTQ format to those produced by Polyester. ART was initially trained with 349 

Hi-Seq 2500 Illumina quality error model from dataset discussed above to have a consistent error 350 

bias. After simulating FASTQ files we then extracted the quality data and bound it to the FASTA 351 
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files generating new FASTQ files. With the coverage bias and quality training included we had a 352 

total of 62,035,912 reads (310,179 ± 3,454 reads/sample). 353 

4.2 Evaluation Measures 354 

We used the standard measures of precision (also named positive predictive value, PPV), 355 

accounting for how many annotations and identifications of significantly differentially expressed 356 

gene families and subsystems are correct and defined as 
𝑇𝑃

𝑇𝑃+𝐹𝑃
 and recall (also named sensitivity 357 

or true positive rate, TPR), accounting for how many correct annotations are selected, defined as 358 

𝑇𝑃

𝑇𝑃+𝐹𝑁
 where TP indicates the number of orthologs that have been correctly annotated, FN 359 

indicates the number of orthologs/genes/functional subsystem which are in the simulated 360 

communities but were not found by a certain approach and FP indicates the number of 361 

orthologs/genes/functional subsystem that have been wrongly annotated (because they do not 362 

appear in the simulated communities). The F-score is the harmonic mean of precision and recall, 363 

defined as 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  364 
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Availability of source code and requirements 365 

 Project name: Comparative Metatranscriptomics Workflow [CoMW] 366 

 Project home page:  https://github.com/anwarMZ/CoMW 367 

 Operating system(s): Platform independent 368 

 Programming language: Python, R, and bash 369 

 Other requirements: Requirements mentioned in detailed manual at GitHub 370 

 License: GNU General Public License v3.0 371 

Availability of supporting data and materials 372 

Raw sequence data generated using simulation of full-length genes were deposited in the NCBI 373 

Sequence Read Archive and are accessible through BioProject accession number PRJNA509064 374 

All databases can be accessed in one place at http://tiny.cc/CoMW_DBs 375 

Supplementary File 1 – Precision Recall Analysis of both approaches 376 

Supplementary File 2 – Differential Expression Analysis of all approaches using eggNOG 377 

database 378 

Supplementary File 3 – Differential Expression Analysis of all approaches using CAZy database 379 

Supplementary File 4 – Differential Expression Analysis of all approaches using NCyc database 380 

Declarations 381 

-- 382 

List of abbreviations 383 

FDR: False Discovery Rate, FP: False Positives, TP: True Positives, FN: False Negatives, mRNA: 384 

messenger RNA 385 
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Metatranscriptomics has recently gained popularity, thanks to its ability to uncover the 

active functional profiles of microbial communities. Being a relatively recent approach, 

there are still several analytical obstacles that limit its large-scale application. Se-

quence reference databases are also limited in their coverage and thus the use of dif-

ferent workflows and databases can lead to different outcomes, rendering it difficult 

to compare results between independent studies. 

 

We have conducted a comprehensive comparison of workflows representing the two 

main alternatives for metatranscriptome analysis, namely assembly-based or assem-

bly-free. This comparison was done using both simulated datasets and real world 

metatranscriptomes using three different hierarchical databases. To the best of our 

knowledge this is first independent comparison of these alternatives that will assist 

decision making and analysis of metatranscriptomics. Subsequently we also present a 

validated workflow using assembly-based analysis, which provided the best results ac-

cording to simulated datasets. 

 

We believe that GigaScience would be an outstanding forum for this manuscript, due 

to its intention of featuring interdisciplinary research; it would be of interest both to 

microbial ecologists, clinical microbiologists and bioinformaticians.  To maintain open 

data and transparency in our benchmarking we have made all code, test data, results 

and supporting documents for CoMW available at different links provided within man-

uscript as per GigaScience policies. This manuscript presents material that has not pre-

viously been published and is not under consideration for publication elsewhere and 

all authors have seen and approved the final version submitted.  

 

Thank you again for considering our manuscript. 
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