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Abstract: Background

Metatranscriptomics has been used widely for investigation and quantification of
microbial communities’ activity in response to external stimuli. By assessing the genes
expressed, metatranscriptomics provide an understanding of the interactions between
different major functional guilds and the environment. Here, we present de-novo
assembly-based Comparative Metatranscriptomics Workflow (CoMW) implemented in
a modular, reproducible structure, significantly improving the annotation and
quantification of metatranscriptomes. Metatranscriptomics typically utilize short
sequence reads, which can either be directly aligned to external reference databases
(“assembly-free approach”) or first assembled into contigs before alignment
(“assembly-based approach”). We also compare CoMW (assembly-based
implementation) with assembly-free alternative workflow, using simulated and real-
world metatranscriptomes from Arctic and Temperate terrestrial environments. We
evaluate their accuracy in precision and recall using generic and specialized
hierarchical protein databases.

Results
CoMW provided significantly fewer false positives resulting in more precise
identification and quantification of functional genes in metatranscriptomes. Using the
comprehensive database M5nr, the assembly-based approach identified genes with
only 0.6% false positives at thresholds ranging from inclusive to stringent compared to
the assembly-free approach yielding up to 15% false positives. Using specialized
databases (Carbohydrate Active-enzyme and Nitrogen Cycle), the assembly-based
approach identified and quantified genes with 3-5x less false positives. We also
evaluated the impact of both approaches on real-world datasets.

Conclusions
We present an open source de-novo assembly-based Comparative
Metatranscriptomics Workflow (CoMW). Our benchmarking findings support the
argument of assembling short reads into contigs before alignment to a reference
database, since this provides higher precision and minimizes false positives.
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Response to Reviewers: We thank the journal for conducting a thorough review of our manuscript, and value the
thoughtful comments provided by the reviewers.  Our responses to specific reviewer
comments are below.  We have attempted to address all comments individually and
incorporated changes as needed. We have attached a response file to the file
inventory that might be of help.
Comment = C, Response R

Editor:

C1: Although it is of interest, we are unable to consider it for publication in its current
form. The reviewers have raised a number of points which we believe would improve
the manuscript and may allow a revised version to be published in GigaScience. As a
major concern the reviewers, in particular reviewer 2, highlight that many details,
especially regarding the methods, are missing.

R1: We thank the editor and reviewers for their valuable feedback and thoughtful
comments. We also acknowledge the missing details that were missing in manuscript
and thus have subsequently made all details explicitly available in the manuscript and
below in specific responses to reviewers with external links where appropriate. We also
believe that now we have addressed every comment by improving the manuscript and
supplementary information, please see specific answers to each comment below.

C2: They also recommend to package the tool with docker or conda, as they had some
problems installing the software.

R2: Installation has been made significantly easier and reproducible using a conda
environment as suggested. Now the user has to just create a conda environment with
provided configuration file that includes all framework tools, libraries, dependencies
and third-party tools along with optimized versions. A small bash script is also added
which will download the databases directly from the FTP server https://mzacomw.au.dk
hosted by Aarhus University.
> conda env create -f CoMW.yml
> source activate CoMW
> bash install.sh
A detailed answer is given to reviewers below. Also, an updated Readme and Manual
are made available at the Github repository. See
https://github.com/anwarMZ/CoMW

C3: Please improve the description of methods and parameters.

R3: We have now also made a configuration file available that is used for the
installation. This file also contains the versions of the libraries, channels, third party
tools and versions of framework tools (e.g. python, R). Please see
https://github.com/anwarMZ/CoMW/blob/master/CoMW.yml.Parameters used are also
now added in to the comments here or manuscript depending upon suitability.

C4: Please also share all supporting scripts and code (this can be done via GitHub, or
via our repository GigaDB).

R4: All scripts are shared in the Github repository– https://github.com/anwarMZ/CoMW
Script used for simulating short reads from mock communities used is also now
referenced in the text. The script used was made available by the Metatrans authors:
https://media.nature.com/original/nature-
assets/srep/2016/160523/srep26447/extref/srep26447-s1.doc Additional scripts for
removing a functional subsystem from the database and SARTools differential
expression analysis and parameters for running metatrans (assembly-free) approach
are now added to separate Github-repo as suggested by the 2nd reviewer -
https://github.com/anwarMZ/CoMW_supp
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C5: Submit code and data to code ocean as a “computational capsule”
(https://codeocean.com/). Code ocean assigns DOIs, which you can cite in your
GigaScience manuscript.

R5: As suggested, CoMW is now published as a peer-reviewed computational capsule
at codeocean [1] and can be accessed through
https://doi.org/10.24433/CO.1793842.v1

C6: Please also clarify the origin of the “real world datasets” and the papers referred to
as being “under review” – is there a preprint that can be cited in the paper, if these are
not yet published.

R6: We have now made both manuscripts available at BioRxiv. Authors MZA and CSJ
are co-authors on both studies, whereas AL is co-author on one study led by TBA.
Both the manuscripts contain experimental setup, details about the datasets and
implementation of CoMW for the analysis. 1. Schostag, Morten Dencker, Muhammad
Zohaib Anwar, Carsten Suhr Jacobsen, Catherine Larose, Timothy M. Vogel, Lorrie
Maccario, Samuel Jacquiod, Samuel Faucherre, and Anders Priemé. "Transcriptomic
responses to warming and cooling of an Arctic tundra soil microbiome." bioRxiv (2019):
599233. 2. Bang-Andreasen, Toke, Muhammad Zohaib Anwar, Anders Lanźen,
Rasmus Kjøller, Regin Rønn, Flemming Ekelund, and Carsten Suhr Jacobsen. "Total
RNA-sequencing reveals multi-level microbial community changes and functional
responses to wood ash application in agricultural and forest soil." bioRxiv (2019):
621557.

C7: Both reviewers also feel that the overall structure of the manuscript needs
improvement. Reviewer 1 got the impression that it reads almost as if being two
separate manuscripts, with two separate aims. I recommend that you should consider
this remark to improve the clarity of the paper and its message, how it all ties together.

R7: We appreciate the comments of both reviewers that remarked about this. In line
with both, but more specifically as suggested by Reviewer 2, we have restructured the
paper significantly to make it easier to read and to make the Methods section clearer.
We first describe the overall implementation of CoMW, described in detail in Results,
then the alternative approach, followed by the benchmarking and comparison between
the two, using several reference databases for functional annotation, for both a
simulated and a real-world dataset. We believe that now the manuscript with improved
structure and previously missing details sync well for readers of GigaScience.

C8: In addition, please register any new software application in the SciCrunch.org
database to receive a RRID (Research Resource Identification Initiative ID) number,
and include this in your manuscript. This will facilitate tracking, reproducibility and re-
use of your tool.

R8: CoMW is now registered at SciCrunch.org with RRID – SCR_017109. Also
updated in the manuscript as per appropriate.

Reviewer 1:

C1: The authors use a previously published simulated dataset as well as two real-world
metaT datasets from two environments. In recent years more and more microbiome
studies are coming out using metaT instead of metagenomics (metaG) to describe
active genes and species within microbial communities. Therefore, it is right time to
benchmark different methods and analysis pipelines for metaT studies.

R1: We appreciate the acknowledgment of our work and constructive feedback. We
have made improvements as suggested by the reviewer where necessary. Please see
below for more detailed response to each comment.

C2: The main problem that I have with the paper is that it’s actually two papers, one

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



paper on testing. Different strategies for metaT analysis and one paper on a new
analysis workflow for metaT analysis. For the second part, the CoMW pipeline, a more
detailed description would be good, especially since it contains steps that are not
necessary for the benchmark part before, e.g. the noncoding analysis. In general, I
would strongly recommend to focus only on one of both parts and restructure the paper
accordingly or have two separate papers.

R2: We appreciate the feedback and we have changed the overall structure of the
paper to first of all present CoMW, then benchmark it using different sensitivity settings,
and compare it to an assembly-free approach.

C3: The benchmarking part has the weakness that it is not really a comparison of
existing tools or pipelines but of two strategies. The authors defined for each strategy
the workflow they considered as the best, but obviously each strategy could be
implemented with different tools and steps, and e.g. for the assembly-based strategy
different tools and preprocessing steps can have a major impact for the resulting
assemblies and therefore for all downstream analysis, but this is not really discussed
here. For each strategy specific tools and parameters have been used. It should be
clearer be stated why they have chosen, e.g. there are newer metaT assemblers than
trinity, e.g. rnaspades and megahit, for the proposed benchmark I would at least want
to see two or more implementations for each strategy.

R3: We agree with this comment, and thus we have restructured the manuscript
significantly, as described above It should now be clearer that the idea and scope of
this study is focused on elucidating the difference of using a typical assembly-free
approach, to a typical assembly-based approach, specifically our implementation of
CoMW, using the state-of-the-art tools for each strategy and evaluating them as
holistically as possible. Additionally, several benchmarking studies have already been
done for certain steps included in CoMW eg. Zhao et al. & Celaj et al. [2,3]. Thus, we
have used Trinity as our assembler based on these benchmarking results. Similarly, for
assembly-free approach we have used DIAMOND as short read mapper which has
been thoroughly compared to its similar tools such as BLASTX and RAPSearch2 [4].
Megahit is metagenomic assembler and we believe should not be used for
metatranscriptomics. However, one of the reasons to make CoMW modular was to
make the users able to use an alternative tool (if preferred due to any reason) at
certain step. For example, rnaspades can be used as an assembler and skip the step
of assembling through CoMW.

C4: In the introduction examples from human gut studies are missing.

R4: We agree with the comment and have subsequently added two example studies
from Gosalbes et al., and Abu-Ali et al. [5], [6] in the introduction of the manuscript
(please refer to L55)

C5:A critical review of prior benchmarks in metaG and/or metaT should be given, e.g.
CAMI should be mentioned (https://www.ncbi.nlm.nih.gov/pubmed/28967888) and the
authors should discuss if the results for metaG and metaT can be compared and what
are the specific problems of benchmarking metaT workflows.

R5: We now refer to CAMI [7] in the Discussion (L264 in manuscript). However, it is
mainly benchmarking tools for certain steps in metagenomics analyses.

C6Why those three databases have been chosen, why not others.

R6: The databases were selected in order to include a representative selection of three
different degrees of specialization, on a range from a more inclusive database with
wide coverage (universality) and low degree of expert curation, to a smaller, highly
curated database, with more narrow coverage. The three databases were also chosen
because they are among the most widely used representing these categories. This is
now also added to the introduction in manuscript. Please see L86-92.

C7:No discussion of other workflows available like anvi'o or IMP that could do similar
things
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R7: Both IMP and CoMW are modular can also be used together based on the
preferred choice of the user. We have now clarified this in the Discussion and cited
IMP. Please see L67 & from L266 in manuscript. Anvio is based on “maxBin” [8] which
is a binning method mainly used for recovering individual genomes from metagenomes
which is out of the scope of this study. IMP has some overlaps with our study, and
some significant differences, which is now mentioned in the manuscript as well.

C8: The two real world datasets are only referenced as 'under review', either they
should be submitted as preprint or added as supplement to the reviewers. Also, it is not
clear if the authors are part of those studies.

R8: We agree and have now made both the manuscripts available at BioRxiv and have
cited them in the revised manuscript. Please refer comment 6 to editor for more details.

C9: For the simulated dataset it is not totally clear how it was generated. Did the
authors use only full-length genes or did they also include the non-coding parts of fully
transcribed operon sequences as you would find expect them in real metaT datasets.
This will have a big impact on the assembly quality, mapping and expression analysis.

R9: We used the full-length genes provided by the Martinez et al. [9]. (only coding part
and not full operons). This is now explained in the manuscript (L368 onwards)

C10: How are the subsystems that were removed during the benchmarking procedure
were chosen?

R10: Subsystems removed from each category were chosen on random to keep it
unbiased removal. This is now updated in the manuscript along with reference to now
updated script for the method. (L153 in manuscript)

C11:How the optimal alignment and mapping, e.g. BTS parameters were chosen for
alignment and mapping?

R11: Both alignment and mapping were done on a range of parameters as described
in Methods and specified in detail in supplementary file 1 to evaluate the performance
for different (user selectable) sensitivity thresholds and avoid pre-selecting a certain
threshold value. Assembled contigs were mapped from e-value 1E-1 to 1E-15.
Similarly diamond alignment using short reads was tested on 15 BTS scores from BTS
10 to 150.

C12: The software is not straightforward to install, especially for non-bioinformaticians
a real reproducible version using docker or conda would be highly appreciated. Also
implementing the workflow as set of scripts should be transformed into a more formal
structure using a workflow description like snakemake

R12: The software has now made significantly easier by using it in conda env and can
be installed relatively easy in a separate conda container using the configuration file
https://github.com/anwarMZ/CoMW/blob/master/CoMW.yml as described in the
updated manuscript and attached CoMW manual. Now the user has to just create a
conda env with provided configuration file that includes all framework tools, libraries,
dependencies and third-party tools along with optimized versions and Run installation
file
> conda env create -f configuration.yml
> source activate CoMW
> bash install.sh
Moreover, the aim of the workflow is to be modular and possible to adapt to alternative
tools and databases. Though we appreciate the ease of use of Snakemake, especially
for a user without expertise in python, we do not feel that this would allow for sufficient
modularity. Instead CoMW is targeted to users with basic bioinformatics expertise
comfortable to work in the command line, or for more advanced users with python
expertise to allow changes in configuration, databases and programs used.

C13: Title is way too long and should be changed according the possible restructuring
of the manuscript
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R13: Suggestion well taken and since we have restructured the manuscript according
to feedback we have also restructured the title a bit.

C14:Line 193: wrong figure seems to be referenced. Figure 3 should be Figure 2.
R14: We have changed the manuscript accordingly
C15:In paragraph 2.1.3 the reference to Figure 3 (not 6) is missing. Figures 3 and 4:
colours not explained and unclear.
R15: We have corrected the reference to the figure and have improved the figure and
caption.
C16: Numbers zero to nine should be given as words.
R16: We have corrected this style error throughout the manuscript.
C17: 132: Assembly-based should be lower case
R17: Correction well taken and we have updated for consistency all throughout the
manuscript accordingly.
C18:Table 2: not clear when lower and upper case is used and why
R18: We apologize the unclear annotation and have changed incorrect uppercase
words
C19: 161: Nitrogen upper case
R19: We have updated for consistency all throughout the manuscript accordingly.
C20:SARTOOLs has a different reference
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4900645/
R20: Thank you for pointing out. During in-text citation, one of the citations is mis-cited.
Corrected now throughout
C21:Ref 21, reference style is wrong
R21: Correction well taken and references are consistent now
C22:Not clear how to handle references that are currently under review, should be put
on bioarxiv e.g. reference 17 and 18
R22: Please see comment no 8 and comment 6 to editor. We have now made both
manuscripts available on BioRxiv
C23: Description of required software versions is missing, e.g. which Java and Python
version
R23: The missing information of versions is now part of configuration file along with all
libraries and dependencies. See configuration file at
https://github.com/anwarMZ/CoMW/blob/master/CoMW.yml

Reviewer 2:

C1: My primary concern with the paper is that as it stands I am not sure that anyone
would be able to replicate these analyses. Broadly, I think that the methods section is
confusingly structured.  I found myself skipping back and forth to try to figure out what
you had done. The methods section should be restructured and organized to follow the
flow of the analysis presented in the results. I suggest starting with a section describing
how the mock data sets were created, then describe the use of the real-world meta-
transcriptomes (which aren't well covered in the materials and methods), and then
describe the two pipelines that were used including your novel CoMW.

R1: We appreciate the comments of the two reviewers that both remarked about this.
In line with both, but more specifically as suggested by Reviewer 2, we have
restructured the paper to make it easier to read and to make the Methods section
clearer. We first describe the overall implementation of COMW, described in detail in
Results, then the alternative approach, followed by the benchmarking and comparison
between the two, using several reference databases for functional annotation, for both
a simulated and a real-world dataset.

C2: Throughout the materials and methods, you should make sure that sufficient detail
on all programs/tools used are included - meaning that the version of all software
products should be included (e.g. DESeq2, Trinity, Diamond, etc.). Additionally, all
parameters used should be included.
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R2: We agree and have now made a configuration file available that is used for the
installation. This file also contains the versions of the libraries, channels, third party
tools and versions of framework tools (e.g. python, R). Please see this -
https://github.com/anwarMZ/CoMW/blob/master/CoMW.yml Parameters used are also
now added in manuscript depending upon suitability.

C3: Notably the description of the removal of "functional subsystems" was missing from
the methods. How was this done?

R3: Subsystems to remove from each category were chosen on random to keep it
unbiased removal.
 https://mzacomw.au.dk/eggNOG.md52id2ont.zip
A file provided with eggNOG annotations was used to filter all sequences using script
provided in supplementary repository,
https://github.com/anwarMZ/CoMW_supp/blob/master/remove_m5nr_subsystem.py
from database file by tracking the md5sum of Orthologous groups belonging to a
certain functional subsystem. The manuscript has been updated to describe this in
detail.

C4: I also do not think sufficient information was provided regarding how the mock
RNA libraries were generated.

R4: These libraries were generated by Martinez et al. [9] and are described in more
detail in the cited paper. Briefly, a subsample of 1000 genes from five different
microorganisms was selected randomly, injected into Polyester to simulate short reads
for two groups with different transcription levels, each containing 50 simulated
samples.

C5: Moreover, the authors should clarify how the differential expression analysis was
done-it appears to be absent from the paper.

R5: We used the template script provided by the SARTools for DESeq2 analysis.
https://github.com/PF2-pasteur-fr/SARTools/blob/master/template_script_DESeq2.r
now updated in the manuscript as well. L354 in manuscript

C6: Broadly speaking, I think it would be useful to have another github repo or a folder
on the current github that contains all the supplementary scripts that were used for this
publication (e.g. the Polyester scripts used, DE expression, etc.)

R6: All scripts are shared in the Github repository– https://github.com/anwarMZ/CoMW

One additional script used for simulating short reads from mock communities used is
already made available by the Metatrans authors:
https://media.nature.com/original/nature-
assets/srep/2016/160523/srep26447/extref/srep26447-s1.doc

C7: The pipeline is great as written-- but I do wonder why it is written in python and not
implemented in some sort of workflow language/system (e.g pydoit, snakemake, etc.).
If the goal is reproducibility, conda environments (or the like) should be included to
facilitate the use of the same software versions throughout the workflow. Additionally, it
would appear that the current scripts within CoMW are written to work with specific
versions of each of the software packages covered (e.g. Trinity). What version were
these scripts tested with? I tried running and ran into issues with Trinity that I think
were due to the version I was trying to use. I suggest making a conda environment file
(https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html
) that can be included in the Github repo to detail what version of each of the software
programs should be used for the pipeline.

R8: The software has now made significantly easier by using it in conda environment
and can be installed relatively easy in a separate conda container using the
configuration file
https://github.com/anwarMZ/CoMW/blob/master/CoMW.yml as described in the
updated manuscript and attached CoMW manual. Now the user has to just create a
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conda environment with provided configuration file that includes all framework tools,
libraries, dependencies and third-party tools along with optimized versions and Run
installation file
> conda env create -f CoMW.yml
> source activate CoMW
> bash install.sh

Moreover, the aim of the workflow is to be modular and possible to adapt to alternative
tools and databases. Though we appreciate the ease of use of Snakemake, especially
for a user without expertise in python, we do not feel that this would allow for sufficient
modularity. Instead CoMW is targeted to users with basic bioinformatics expertise
comfortable to work in the command line, or for more advanced users with python
expertise to allow changes in configuration, databases and programs used.

C8: I am perhaps missing it-- but it would appear that no quality trimming of the raw
short reads was used in this study. This is generally accepted as best practice. Please
explain its omission from both pipelines in the text. More broadly, I think it should be
added to the CoMW workflow.

R8: The real-world dataset was trimmed as described in the cited preprints [10,11] .
However, we would also like to mention in general that quality trimming is not always
desirable for alignment to a protein database when only doing so for the purpose of
annotation, since it can decrease sensitivity by removing informative, though erroneous
bases [12]. For assembly however, a gentle trimming based on the above paper is
already included in Trinity by default.

C9: The comparisons made in the paper focus primarily upon functional analysis (e.g.
the identification of functional gene sets), and the simulated data set that is used is not
well-suited to taxonomic data. The comparisons made in the paper are interesting and
valid-- but I think that the authors should make clear that they are only really testing
functional annotation and not the resolution of taxonomic annotation.

R9: We agree that the simulated datasets are not suitable for taxonomic annotation
and that taxonomic annotation is outside of the scope of this paper. We have now
clarified this in a paragraph regarding taxonomic annotation in the Discussion. L295 in
manuscript

C10:Looking at Table 1, I am inclined to say that eggNOG does pretty well in general
with or without assembly and that the other databases perform less well. Moreover,
that other databases seem to be more depend upon assembly vs. not. I am not sure
that this shows a clear-cut win for assembly. Additionally, how much variation might be
driven by mapping approach used (Diamond) as compared to some other short read
mapper/blasting.

R10: We have improved the caption of the Table 1. However, our interpretation of
these results differs from the reviewer’s; annotations using eggNOG are not completely
comparable or similar between both approaches, since the precision drops significantly
at medium and higher threshold of confidence by adding excessive false positives.
Whereas, for the assembly-based approach or CoMW the precision doesn’t drop at all
even at a very high threshold.  In Table 1 we have only added the best value for each
database based on the F-scores. Please see Supplementary table 1 to have a
complete view. The false positives remain less than 1% compared to 15% using
assembly-free approach. Also, if one considers another mapper’s than Diamond they
are less or equally sensitive as Diamond. Using more sensitive tools such as SWORD
without denovo assembly is not possible given the computational restrain especially for
large metaT datasets.

C11: One approach used frequently in the analysis of microbial communities
dominated by prokaryotes is to sequence both the metaG and metaT of the
community, assemble the metaG, and then map the metaT to the assembled metaG or
binned genomes from the metaG (e.g. https://www.nature.com/articles/s41396-017-
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0041-5).  It seems worthwhile to discuss how your approach differs from these
approaches.

R11: We agree that this is possible and might be good idea in many cases. However,
with CoMW, we aim to develop a workflow applicable to pure metatranscriptomics
studies, providing a resource for de novo assembly and functional analysis. This is
especially relevant for environments such as soil where the high diversity and amount
of metabolically active organisms means that the sequencing depth needed for metaG
assembly becomes economically unfeasible for many studies, especially when, as
here, microeukaryotes are also targeted.

C12: Line 69: Without a meta-analysis I am not sure that this can be stated-citation 11
only lists 5 studies that take that approach in a fairly limited subset of studies. I would
remove this statement unless you have solid numbers on how many studies use
assembly vs mapping approaches? Also, you should qualify your extrapolation that it is
"because of less computational expense." You don't know people's rationale for
choosing one pipeline over another.

R12: We agree with the reviewer’s comment and have removed the statement in
introduction.

C13:Line 70: Some discussion of the CAMI metagenomic comparisons
(https://data.cami-challenge.org/) seems justified here. They did extensive
comparisons of assembly approaches as well as direct taxonomic analysis of short
reads. The CAMI parallels your investigation of functional gene annotation nicely.
R13: We agree and now mention CAMI in manuscript L264, though as mentioned
above, CAMI has a different focus and its benchmarks are mostly out of the scope of
CoMW.

C14: Line 99: It would be helpful to the reader to directly state what the 'full-length
genes' are. I am assuming that they are from the genome data that were used to
generate the simulated data. The language should again be clarified in Line 110. One
line 110 I am not sure what "full length genes" are being referred to. Perhaps changing
the term used to "gold standard" or the like would help the reader follow the logical
progression better?

R14: We have now revised the language in the lines as suggested, but prefer to keep
the term “full length genes”. It is now better explained to improve clarity.

C15: Line 112: Define BTS score.
R15: BTS = “bit score”. This is now revised.

C16: Line 116: What numerical cutoffs were used for each of the Low, Medium, and
High thresholds? Are the parameters detailed somewhere? I looked at the
supplemental tables-but couldn't figure out which if any columns contained these
values. Apologies if I missed them.

R16: They are specified as one column in each supplementary table in supplementary
file 1. However, for more clarity, we have also mentioned here

Threshold Categoryassembly-basedassembly-free
Low – TL1E-1 – 1E-5BTS 10 – 50
Medium – TM 1E-6 – 1E-10BTS 60 – 100
High – TH1E-11 – 1E-15BTS 110 – 150

C17:Line 132: Watch capitalization of your two approaches throughout the paper
("Assembly-based and assembly-free approaches"). You change around quite a bit
whether or not you capitalize.
R17: We have updated for consistency all throughout the manuscript accordingly.

C18: Line 152: As with line 116, what were the parameters used in the 15 "various
confidence thresholds". I think it would be helpful to add a supplemental table that
specifies the confidence thresholds used.R18: The parameters for alignment were
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consistent throughout the 15 confidence thresholds except the confidence threshold
itself in both approaches. For the cut-off used or for the definition of the thresholds see
response to comment # 16 above.

C19: Line 178: It is unclear to me how "full length" gene alignments were used for
quantification? Was this based on mapping the simulated short reads against the
original full-length genes that were annotated with eggNOG? Clarify in the methods or
here.
R19: Yes exactly, simulated short reads were mapped back to the full-length genes
(annotated using all three databases) for quantification and comparing the
quantification using “assembly-based” (CoMW) and “assembly-free” methods. We
have also updated in the methods for clarity.

C20: Line 204: What approach was used by Schostag? Was it assembly free? What
was found by the assembly free approach?
R20: We have used assembly-based approach (CoMW) in Schostag et al. [10] as both
MZA and CSJ are co-authors on the study. However, to elucidate the impact of the
choice, we used “assembly-free” approach too and compared the results. Which is
shown in figure 3 in manuscript

C21:Line 209: There is no Figure 6.
R21: Updated accordingly

C22:Line 209: There is no Figure 7.
R22: Updated accordingly

C23:Line 243: What was the estimated chimeric sequence frequency from your
analysis of the mock datasets? What about false contigs? I would be surprised if they
were terribly high as the mock data set didn't contain any species that had high
average nucleotide identity.

R23: Simulated data didn’t have any chimeric sequences since Polyester does not
simulate chimeric reads but the real data might have chimeric sequences based upon
various things such as the de novo assembler used or environment under study or the
dominating species. However, these contigs can be identified and filtered based on
their abundance using the optional script provided filter_contigs_by_abundance.py
where the user can identify a minimum threshold as a contig to not be considered as
false contig based on its relative abundance to contigs pool.

C24: Line 282: Sure, I agree but do you have numbers to support this or a citation?
R24: We don’t have the exact numbers to support the argument however this review
[13] of metaG, metaT and metaP approaches for microbiome analysis had a similar
view. They mentioned that most of the metaT analysed studies have a custom/ad-hoc
built analysis pipeline which can be due to many reasons (Computational expense,
lack of computational experience, mRNA quality, databases of interest etc.). We have
accordingly added the citation to the argument.

C25:Line 283: What are "these pipelines"? Metatranscriptomic pipelines? Also, I am
not sure if you have the data to say that the majority of analyses use assembly-free
approaches.
R25: Agreed that we don’t have a numerical data to confirm if the majority is using
assembly-free approach so subsequently we have removed the statement.

C26: Line 324: Can you provide the parameters used in the various steps of the
Metatrans pipeline? Also, do you have the scripts used to run the Metatrans pipeline? If
so, they should be published somewhere (Supplemental text or GitHub repo for the
paper).

R26: Metatrans package was downloaded and used from http://www.metatrans.org/ .
We cited their manuscript [9] where they had mentioned the availability in abstract. The
parameters for each part of the workflow are now made available at
https://github.com/anwarMZ/CoMW_supp/blob/master/Metatrans_version_parameters.
yml
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C27: Line 336: Please provide the scripts used to generate the short reads.
R27: The script used was also available in supplementary material of Martinez et al. [9]
direct link -https://media.nature.com/original/nature-
assets/srep/2016/160523/srep26447/extref/srep26447-s1.doc
This script uses Polyester to simulate 100 samples in two groups (50 each) with
varying expression.

C28: Line 341: Please clarify what "resulted in a count table and short reads with 2395
genes to add the impact of sequencing coverage" means. It is unclear to me what was
produced and why only 2395 genes were recovered if 4943 were generated.
C28: Read simulator mimics the coverage bias and thus some genes were removed

C29:Lines 342: What does knocking out genes mean in the context of short reads?
How was this done? Please publish the scripts used-- I couldn't find them in the GitHub
repository.

R29:Knocking out is referring to the process of removing the abundance of randomly
selected 5% of genes from the simulated data. 5% genes in the table were randomly
set as 0 in 5 samples in the countable in order to mimic real data. Following that
BioPython was used to remove reads belonging to that genes similarly from the
simulated sequence files. We have now added this script to the supplementary
repository.  https://github.com/anwarMZ/CoMW_supp

C30:Line 353: Include the accession number for your simulated data set in the text as
well as at the end of the paper.

R30: The information was added to the manuscript in Availability of Supporting data
and Materials - Raw sequence data generated using simulation of full-length genes
were deposited in the NCBI Sequence Read Archive and are accessible through
BioProject accession number PRJNA509064. These reads are under the simulated
Mock Communities classification of SRA

C31: Figure 1: You have "custom python scripts added in CoMW" at the bottom-but I
can't see anything highlighted with that in the figure. It might be obscured because the
figure is low resolution.
R31: We have improved the resolution of image. However, we don’t think the “custom
python scripts added in CoMW” are needed after the restructuring of manuscript and
also now CoMW is easier to use for all steps after improving installation.

C32: Figure 2: Figure 2 is never referenced in the text. Also, I can't read this figure
well-the text is very small and the resolution is not good. Generally, instead of plotting
Log2Fold change I wonder if it would be more powerful to plot the difference relative to
the Full-length gene analysis.
R32: We have improved the figure resolution and structure. However, we believe that
since we want to compare both methods in relation to full-length genes and number of
reads in both methods are not directly comparable, we use Log2Fold change instead
of relative abundance of a transcript.

C33: Table 2: All tables should be able to stand alone with their caption without the text
of the paper. This table is lacking some key information. What is the percentage
column? What are the numbers (the number of orthologs retrieved with each method?)
Label the letters-- specify what they are/where they are from. Check consistency in
capitalization in titles. Specify that this is for eggNog? I also wonder if it would be better
to report Recall/Precision values for the two different approaches as you did in Table 1-
as it is a bit strange to recover more values in the assembly-based approach compared
to the full-length genes but then not penalize what should be false discover.

R33: We have improved the readability of caption and tables throughout. For table 2
specifically, yes, the numbers show the unique homologs retrieved in Full length-genes
and in both assembly-based and assembly-free methods. The letters were labelled in
the text before, however as you correctly pointed out we have also added the full name
of the letters in the table. We have also corrected the capitalization and caption.  As
suggested we have replaced the table 2 with Recall/Precision values in order to keep
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the consistency and better understanding. As pointed out rightly, the values were
misleading the fact that the False positives were not reported which is now corrected.

C34: Figures 3 and 4: The figure legends require more information: such as what is
being plotted-relative abundance calculated how? Relative to all transcripts or relative
to the study? It might also be interesting to add the relative abundance values that are
reported in the original papers. These figures are interesting as the dynamic range of
the data recovered is so different between the two different approaches. What do you
think is the origin of this difference? Lack of mapping in the assembly free? Or spurious
mapping of reads in the assembly free? It might be nice to add some more discussion
of this in the text.

R34: Relative abundance of the functional subsystems in Figure 3 and 4 were
calculated for each sample using both assembly-free and assembly-based methods.
We have also updated the captions as per the reviewer has rightly pointed.  Moreover,
now that both manuscripts are made available at BioRxiv along with detailed
supplementary methods we believe that the values can be seen for each dataset from
the manuscripts. We have not added more information in order to keep clarity.  We
believe that our findings support our arguments that the main reason for the difference
between the assembly-based and assembly-free approaches is the False positives
produced by the assembly-free method. We saw that with simulated datasets it
produced upto 15% False positives even with eggNOG databases which is inclusive
and generic.
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Abstract 20 

Background 21 

Metatranscriptomics has been used widely for investigation and quantification of microbial 22 

communities’ activity in response to external stimuli. By assessing the genes expressed, 23 

metatranscriptomics provide an understanding of the interactions between different major 24 

functional guilds and the environment. Here, we present de-novo assembly-based Comparative 25 

Metatranscriptomics Workflow (CoMW) implemented in a modular, reproducible structure, 26 

significantly improving the annotation and quantification of metatranscriptomes. 27 

Metatranscriptomics typically utilize short sequence reads, which can either be directly aligned 28 

to external reference databases (“assembly-free approach”) or first assembled into contigs 29 

before alignment (“assembly-based approach”). We also compare CoMW (assembly-based 30 

implementation) with assembly-free alternative workflow, using simulated and real-world 31 

metatranscriptomes from Arctic and Temperate terrestrial environments. We evaluate their 32 

accuracy in precision and recall using generic and specialized hierarchical protein databases. 33 

Results 34 

CoMW provided significantly fewer false positives resulting in more precise identification and 35 

quantification of functional genes in metatranscriptomes. Using the comprehensive database 36 

M5nr, the assembly-based approach identified genes with only 0.6% false positives at 37 

thresholds ranging from inclusive to stringent compared to the assembly-free approach yielding 38 

up to 15% false positives. Using specialized databases (Carbohydrate Active-enzyme and 39 

Nitrogen Cycle), the assembly-based approach identified and quantified genes with 3-5x less 40 

false positives. We also evaluated the impact of both approaches on real-world datasets.  41 
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Conclusions 42 

We present an open source de-novo assembly-based Comparative Metatranscriptomics 43 

Workflow (CoMW). Our benchmarking findings support the argument of assembling short reads 44 

into contigs before alignment to a reference database, since this provides higher precision and 45 

minimizes false positives.   46 
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Key Words 47 

Metatranscriptomics, Benchmarking, Assembly, Alignment, Precision, Recall, False positives 48 

1 Introduction 49 

Metatranscriptomics provides an unprecedented insight to complex functional dynamics of 50 

microbial communities in various environments. The method has been applied to study the 51 

microbial activity in thawing permafrost and the related biogeochemical mechanisms 52 

contributing to greenhouse gas emissions [1], and Gonzalez et al. [2] applied 53 

metatranscriptomics to evaluate root microbiome response to soil contamination. 54 

Metatranscriptomics has also been used to study the functional human gut microbiota  [3,4]. 55 

The method is typically used to identify, quantify and compare the functional response of 56 

microbial communities in natural habitats or in relation to environmental or physio-chemical 57 

impacts. 58 

Using high-throughput sequencing techniques such as Illumina, metatranscriptomics offers a 59 

non PCR biased method for looking at transcriptional activity occurring within a complex and 60 

diverse microbial population at a specific point in time [5]. However, curation and annotation of 61 

this complex data has emerged as a major challenge. To date, several studies have used various 62 

analytic workflows. Typically, short sequence reads are utilized, which can either be individually 63 

aligned directly to external reference databases (hereafter “assembly-free”) or assembled into 64 

longer contiguous fragments (contigs) for alignment (hereafter “assembly-based”). Various 65 

studies have used either of these two general approaches. For example, Poulsen et al. [6] used 66 

an assembly-based approach. An open-source pipeline, IMP [7] also uses this approach in 67 
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integrated metagenomic and metatranscriptomic analyses. The assembly-free Approach has 68 

instead been used by e.g. Jung et al. [8], aligning short reads to reference genomes of lactic acid 69 

bacterial strains associated with the kimchi microbial community. Similarly, an open source 70 

pipeline developed by Martinez et al. [9] to analyse metatranscriptomics data-sets also aligns 71 

short reads directly to a protein database before annotation.  The choice of either of these two 72 

alternatives for metatranscriptomics analyses may depend on lack of thorough comparisons. Since 73 

no independent and direct comparison between them has been performed presently, various 74 

metatranscriptomics analysis approaches may at times produce inconsistent observations, even 75 

if identical databases are used in the analysis. Thus, standardization of computational analysis is 76 

necessary to enable further propagation of metatranscriptomics approaches and their 77 

integration into microbial ecology research. Benchmarking provides a critical view of the 78 

efficiency and precision of different workflows and use of simulated communities for 79 

benchmarking enables the analysis to be independent of experimental variation and biases 80 

[10].  81 

Here, we present Comparative Metatranscriptomic Workflow (CoMW) implemented using the 82 

de-novo assembly-based approach, standardized and validated for functional annotation and 83 

quantitative expression analysis. We validated the suitability of CoMW for functional analysis by 84 

comparing it to a typical assembly-free approach using simulated datasets and evaluated the 85 

accuracy of both approaches using precision, recall and False Discovery Rates (FDR). Three 86 

different protein databases were selected for this benchmarking in order to include a 87 

representative selection of three different degrees of specialization, on a range from a more 88 

inclusive database with wide coverage (universality) and low degree of expert curation, to a 89 
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smaller, highly curated database, with more narrow coverage: 1) M5nr [11] :-- an inclusive and 90 

comprehensive non-redundant protein database in combination with eggNOG hierarchical 91 

annotation 2) Carbohydrate-Active Enzymes (CAZymes) [12] :-- a database dedicated to 92 

describing the families of structurally-related catalytic and carbohydrate-binding modules of 93 

enzymes and 3) Nitrogen Cycling Database (NCycDB) [13] :--  a specialized and manually curated 94 

database covering only N cycle genes. Finally, in order to estimate the consistency and variance 95 

in the results caused by the choice of approach we then applied them to real world 96 

metatranscriptomes from microbial communities in 1) active-layer permafrost soil from 97 

Svalbard [14] and 2) Ash impacted Danish Forest soil [15].  98 

2 Findings 99 

2.1 Comparative Metatranscriptomics Workflow (CoMW) 100 

We have standardized, implemented, and validated a metatranscriptomic workflow (CoMW) 101 

using de-novo assembly-based approach that can assist in analysing large metatranscriptomics 102 

data. It makes each step of the metatranscriptomic workflow straightforward and help to make 103 

these complex analyses more reproducible and the components re-useable in different 104 

contexts. The core processes such as ORF detection and alignment against the functional 105 

database are vital in any metatranscriptomic analyses and are, therefore, present uniformly in 106 

all workflows. However, since most of the tools performing these core processes are ever 107 

improving, the workflow is implemented in modular format in order to have the possibility of 108 

using alternative tools and databases if preferred or use a newer version of these tools. 109 

Modularity additionally also provides choice where optional steps can be skipped, changed or 110 
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even improved in a structural manner for example the scripts are designed to cater contigs 111 

from more than one assembler. In addition to core process CoMW has a couple of optional 112 

steps such as abundance based and non-coding RNA filtering which can be different in data sets 113 

from a different environment. CoMW is open source workflow written in python available at 114 

(https://github.com/anwarMZ/CoMW) and published as a computational capsule on codeocean 115 

[16]. An Anaconda cloud environment is created with the provided configuration file to install 116 

third-party tools and dependencies. Help regarding input, output and parameters is provided 117 

with each script and a comprehensive tutorial is presented in the GitHub repository. 118 

2.2 Evaluation of CoMW (assembly-based Approach) and comparison to an assembly-free 119 

method 120 

In order to compare the performance of the assembly-based workflow CoMW and assembly-121 

free approaches, we simulated community transcript data using 4943 full length genes provided 122 

by Martinez et al. [9]. We analysed both approaches separately and compared against direct 123 

annotation of full-length genes. The full-length genes were annotated using all three databases 124 

(M5nr, CAZy and NCycDB) independently to classify them into functional subsystems and gene 125 

families. Figure 1 shows detailed workflow of comparative analysis using both approaches.  126 

 127 

Figure 1: Flowchart illustrating the evaluation and benchmarking scheme used for the comparison of alternative 128 
approaches. Red path indicates the full-length genes workflow, Green indicates the steps in the assembly-based 129 

workflow CoMW and Blue indicates the steps in the assembly-free approach. 130 

https://github.com/anwarMZ/CoMW
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 131 

2.2.1 Functional assignment  132 

M5nr Alignment Full length genes of the simulated community dataset were aligned and 133 

identified into 671 unique eggNOG orthologs, belonging to 19 distinct functional subsystems 134 

(level II). At the default confidence threshold (bit score 50), the, assembly-free approach 135 

produced alignments to 820 orthologs with a precision of 85% (14.9% FPs), whereas CoMW 136 

identified 665 orthologs with a precision of 99.3% (0.6% FPs) at the default confidence threshold 137 

of 1E-5. Repeating the alignments using a gradient of 15 varying confidence thresholds for each 138 

approach (Low - TL, Medium - TM and High – TH; five thresholds / category) resulted in dissimilar 139 

performance for both approaches. The precision and recall of CoMW did not decrease below 140 

99.3% and 98.5% respectively throughout all categories whereas the assembly-free approach 141 

had a maximum precision of 96.3% at TM and decreases to 85% at TL and TH. CoMW also 142 

produced fewer (only 0.6%) FPs consistently compared to the assembly-free Approach of FPs 143 

ranging from 14.9% to minimum 3.6% at highest precision. Based on F-Score the most optimal 144 

alignment for each approach is given in Table 1, whereas detailed values for precision, recall, F-145 

Score and FDR are listed in Supplementary Table S1. We then also evaluated both approaches 146 

by selectively removing sequences belonging to a certain functional subsystem from the M5nr 147 

database in a controlled manner (segmented cross validation) in order to replicate real world 148 

metatranscriptomes where a certain functional subsystem can be completely or partially absent 149 

from the reference database. We removed four (level II) subsystems (“[D] Cell cycle control, cell 150 

division, chromosome partitioning”; “[L] Replication, recombination and repair”; “[E] Amino 151 

acid transport and metabolism” and “[R] General function prediction only” and “[S] Function 152 
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unknown”). The level II subsystems were randomly removed (see data availability for the script 153 

used for the removal) one at a time realigning full-length genes and simulated reads using both 154 

CoMW and assembly-free approaches to the cropped database to compare identification 155 

consistency. In each validation round, both precision and recall of CoMW were significantly 156 

higher than assembly-free approach. Recalling ability of assembly-free approach dropped 157 

significantly in this validation as compared to full database comparison. CoMW also produced 158 

less FPs as compared to assembly-free approach. Table 2 provides details for each validation 159 

cycle.  160 

CAZY Alignment From 2395 full length genes, 500 sequences were aligned to 395 unique 161 

functional genes in the CAZY database, which belonged to 130 gene families and were further 162 

classified as seven enzyme classes. Using default confidence thresholds (BTS 50, 1E-5), the 163 

assembly-free approach identified 765 functional genes belonging to 112 unique families and 164 

six enzyme classes with a precision of 28.5% (71.4% FPs).  CoMW identified 488 functional 165 

genes from CAZY database that were classified into 147 gene families from seven enzyme 166 

classes with a precision of 66% (FDR 33.9%) at the default confidence threshold. However, 167 

when we repeated the process with 15 various confidence thresholds, precision improved 168 

consistently and FPs decreased, whereas for the assembly-free approach, precision dropped 169 

significantly with increasing confidence threshold (see Table 1 and Supplementary Table S2).  170 

NCycDB Alignment 410 out of 2395 full-length genes were aligned to this database, identified 171 

as 29 unique Nitrogen cycle genes and further belonging to 15 functional gene families in five 172 

pathways. Using default confidence thresholds, the assembly-free approach identified 1541 173 

functional genes belonging to 25 functional gene families classified into six pathways with a 174 
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precision of 0.9% (99% FPs). CoMW identified 42 Nitrogen cycle genes classified into 25 gene 175 

families from six pathways with a precision of 59.5% (40.4% FPs) at a default confidence 176 

threshold of 1E-5. Like comparisons against M5nr and CAZY we repeated the process with 15 177 

different confidence thresholds for each approach. Precision improved significantly for CoMW 178 

at stringent thresholds whereas for the assembly-free approach, the best precision achieved 179 

was 5.8%. (Table 1, Supplementary Table S3).  180 

 181 

Table 1 Comparison of Precision, Recall, F Score and FDR for the assembly-free and the CoMW (assembly-based) approaches 182 
using all three databases based on best F-Score (Full table for both approaches and databases can be seen in Table S1, S2 and 183 

S3). Bold emphasizes better precision, recall, F-Score and FDR in each database between both approaches 184 

Databases Approach Threshold 
Threshold 
Category 

Recall Precision F-Score FDR (%) 

eggNOG 

assembly-
free 

BTS 120 Strict [TH] 0.9880 0.9540 0.9707 4.5977 

CoMW 1.00E-15 Strict [TH] 0.9851 0.9939 0.9895 0.6006 

CAZy 

assembly-
free 

BTS 110 Strict [TH] 0.3510 0.5325 0.4231 46.7433 

CoMW 1.00E-08 
Medium 

[TM] 
0.8131 0.7759 0.7940 22.4096 

NCycDB 

assembly-
free 

BTS150 Strict [TH] 0.1666 0.0581 0.0862 94.1860 

CoMW 1.00E-14 Strict [TH] 0.6666 0.8333 0.7407 16.6666 

 185 

Table 2 Comparison of Precision, Recall, F Score and FDR for the assembly-free and CoMW (assembly-based) approaches using 186 
the selective removal of functional subsystems from eggNOG database (segmented cross-validation) to evaluate the consistency 187 

of both approaches. Bold emphasizes better consistency compared to Full length genes 188 

Removed Subsystem Approach Recall Precision F-Score FDR (%) 

Cell wall/membrane/envelope 
biogenesis [M] 

assembly-
free 

0.8726 0.9580 0.9133 4.1958 

CoMW 0.9792 0.9855 0.9824 1.4423 

 Replication, recombination and repair 
[L] 

assembly-
free  

0.8734 0.9588 0.9141 4.1166 

CoMW 0.9796 0.9858 0.9827 1.415 

Amino acid transport and metabolism 
[E] 

assembly-
free  

0.8750 0.9589 0.9150 4.1095 
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CoMW 0.9812 0.9874 0.9843 1.2578 

General function prediction only and 
Function unknown [R], [S] 

assembly-
free  

0.8933 0.9281 0.9104 7.1856 

CoMW 0.9884 0.97443 0.9814 2.5568 

 189 

2.2.2 Expression Quantification  190 

We also compared the ability of both approaches to quantify the expression of identified 191 

transcripts by performing differential expression analysis of two groups in simulated 192 

communities and compared against the full-length gene expression simulated. We selected 193 

three best identification thresholds for both approaches based on highest F-Score and 194 

performed differential expression analysis. This analysis for both approaches was carried out 195 

against all three databases using the most specific level of hierarchy in the respective databases 196 

in order to capture their ability to quantify expression levels of specific genes.  197 

According to full-length gene alignments against eggNOG, 123 genes were significantly 198 

upregulated and 270 were significantly downregulated. According to the assembly-free 199 

Approach (with the best resulting F-Score), 73 genes were up-regulated (precision 94.5%, 5.4% 200 

FPs) and 380 (precision 65.7%, 34.2% FPs) were down regulated. whereas using the assembly-201 

based Approach CoMW, 99 genes were identified as up-regulated (precision 94.9%, 5% FPs) and 202 

249 down-regulated (precision 97.1%, 2.8% FPs). For the CAZy database full-length genes, 81 203 

and 189 genes were identified as significantly up- and down regulated, respectively. Using the 204 

assembly-free approach 31 up-regulated (precision 19.3%, 80.6% FPs) and 137 down-regulated 205 

genes (precision 52.5%, 47.4% FPs) where identified, whereas the CoMW identified 83 206 

(precision 71%, 28.9% FPs) and 191 (precision 73.8%, 26.1% Fps), respectively- In the NCyc 207 

database expression analysis, three and 14 genes were seen as significantly up and down-208 
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regulated respectively using full-length genes.  According to the assembly-free approach, 26 209 

(precision 0%, 100% FPs) and 107 (precision 4.6%, 95.3% FPs) genes were up and down 210 

regulated respectively, whereas according to CoMW, three (precision 33.3%, 66.6% FPs) genes 211 

were up-regulated and 18 (precision 55.5%, 44% FPs) were down-regulated. Precision, Recall 212 

and FDR for both approaches against all three databases are available in Supplementary Table 213 

S4. Additionally, we collapsed the functional genes into functional subsystems and gene 214 

families to remove FPs produced due to identification of homologous proteins or proteins with 215 

multiple inheritance. Fold change (log2 transformed) was then calculated for each 216 

subsystem/gene family. (see Figure 2)  217 

 218 

Figure 2: Differential Expression comparison of the assembly-free and the CoMW assembly-based approaches using 219 
A) M5nr database, B) NCycDB and C) CAZy database. 220 

 221 

2.2.3 Real-World metatranscriptomes 222 

To evaluate the effect of the two approaches on real world data, two metatranscriptomes from 223 

microbial communities were studied. In the first study we investigated the transcriptional 224 

response during warming from -10 °C to 2 °C and subsequent cooling of 2 °C to -10 °C of an 225 

Arctic tundra active layer soil from Svalbard, Norway . The aim of the study was to understand 226 

taxonomic and functional shifts in microbial communities caused by climate change in the 227 

Arctic. A pronounced shift during the incubation period was noticed by Schostag et al. [14] 228 

which was not replicated by the assembly-free approach. However, using CoMW, we identified 229 

an increase of genes in the subsystem “[P] Inorganic ion transport and metabolism”. During 230 

cooling, CoMW also captured the upregulation and downregulation of genes related to “[J] 231 
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Translation, ribosomal structure and biogenesis” and “[C] Energy production and conversion” 232 

respectively (Figure 3) unlike the assembly-free approach. These findings may have implications 233 

for our understanding of carbon dioxide emission, Nitrogen cycling and plant nutrient 234 

availability in Arctic soils.  235 

 236 

Figure 3: Relative abundance of eggNOG functional subsystems in Arctic permafrost soil identified and quantified 237 
using both CoMW and the assembly-free approach compares the differences in observed functional dynamics. Blue 238 

dotted line represents trends using CoMW (assembly-based) whereas Red Solid line represents assembly-free 239 
approach  240 

 241 

In the second study, we investigated the effects of wood ash amendment on Danish forest soils [15]. 242 

Ash was added in three different quantities (0/control, 3, 12 and 90 tonnes ash per hectare (t 243 

ha-1)) and the effect over time was analysed in soil communities at 0, 3, 30 and 100 days after 244 

ash addition. This resulted in strong effects on functional expression as seen in Figure 4.  Both 245 

approaches once again displayed varying results such as changes in genes related to eggNOG 246 

functional subsystem “[W] Extracellular structures”. assembly-free approach also identified 247 

75% of genes as “[S] Function unknown” consistently unlike assembly-based.  248 

 249 

Figure 4:  Relative abundance of eggNOG functional subsystems in Ash deposited Danish forest soil with time 250 
identified using both the CoMW and an assembly-free approach. Blue dotted line represents trends using CoMW 251 

(assembly-based) whereas Red Solid line represents assembly-free approach  252 

 253 

3 Discussion 254 

The application of metatranscriptomics is less common than other DNA-based genomics 255 

techniques and thus most analysis pipelines are built ad hoc [17]. An assembly-free approach is 256 
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used in a few pipelines/workflows such as COMAN [18], Metatrans [9], and SAMSA2 [19] , while 257 

an assembly-based approach is used in a few such as IMP [7]. The lack of thorough 258 

benchmarking studies and standardized workflows in metatranscriptomics has made it a more 259 

challenging task to analyse the typically big datasets produced. Previous studies e.g. Zhao et al. 260 

& Celaj et al. [20,21] have compared de-novo sequence assemblers including Trinity 261 

[22], MetaVelvet [23], Oases [24], AbySS [25] and SOAPden-ovo [26]. Similarly, for assembly-262 

free approach direct short read mappers have been compared thoroughly such as DIAMOND 263 

[27], BLASTX [28] and RAPSearch2 [29] but an independent comparison of the two different 264 

approaches based on including assembly or directly aligning reads (here “assembly-free”) has 265 

been lacking. Critical Assessment of Metagenomic Interpreter (CAMI) [30] is so far the most 266 

comprehensive benchmarking effort, however it lacks any similar metatranscriptomics 267 

benchmarking. IMP [7] uses an integrated approach of metagenomics and metatranscriptomics 268 

and has some overlapping areas to CoMW and can be used together due to modular approach 269 

of CoMW.   270 

Using simulated samples comprised of genes collected from abundant genomes provided by 271 

Martinez et al., we show that both approaches provide similarly high recall rates against the 272 

general comprehensive database M5nr. However, CoMW provided a significantly better 273 

precision and a lower false discovery rate for identification and quantification. For relatively 274 

compact and specialized databases, recall and precision drop for both approaches (especially 275 

for the most compact database NCyc). Whereas, CoMW still appeared to be more precise, 276 

meaning that fewer genes were mis-assigned against these database and significantly lower FPs 277 

were produced.  278 
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We have attempted to assist this decision-making for processing metatranscriptomic analysis 279 

by independently assessing the performance of the two most common approaches and provide 280 

a road map for functional annotation and expression quantification against databases ranging 281 

from inclusive to specialized. The significantly higher precision in identification and 282 

quantification for gene families and functional subsystems in simulated samples, against all 283 

three databases, confirmed that while an assembly step is challenging computationally, it holds 284 

the potential to reveal information regarding the gene expressions that is not attainable 285 

without it. Selecting a single best workflow or pipeline for all types of metatranscriptomics 286 

studies is not a straightforward affair, and we believe that choice of approach changes the 287 

outcome of study significantly as observed with real-world datasets from active-layer 288 

permafrost soil from Svalbard and Ash impacted Danish Forest soil.  In addition to choosing the 289 

right workflow, combining that with the appropriate reference database is equally important to 290 

ensure the best annotation performance. With databases specialized for one or more specific 291 

environments or functional categories, the assembly-free Approach under-performs due to its 292 

inability to identify alignments to homologs in the reference database. We also show that the 293 

assembly-free Approach can increase the FDR in annotation when a database is dominant in 294 

specific functional subsystem, which can also lead to wrong estimation of fold change in 295 

expression 296 

While taxonomic annotation is beyond the scope of CoMW and thus our benchmarking 297 

analyses, it is important to consider the limited value of most functional genes for and thus 298 

functional metatranscriptomics alone for structural profiling of environmental communities, 299 

due to the high rate of horizontal gene transfer (HGT) [31]. Approaches for this purpose include 300 
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the identification of a limited set of “phylogenetic marker genes” (eg.[32]) or “total RNA” 301 

metatranscriptomics whereby the rRNA content is retained and utilized for taxonomic analysis 302 

[33]. Though not shown here, we expect that the former approach would also benefit in 303 

accuracy from assembling mRNA to full length transcripts before classification, based on our 304 

results regarding functional diversity. The total RNA approach also benefits from custom rRNA 305 

targeted assembly [15], which may be incorporated into CoMW thanks to its modularity. 306 

In summary, we present the assembly-based workflow CoMW and show that this approach 307 

results in consistently better accuracy for functional analysis of metatranscriptomics data. Our 308 

benchmarking results show that the choice of approach (assembly-free v assembly-based) and 309 

database significantly affects the quality of the identification, annotation and expression 310 

results. Given the impact of each of these variables, it is inevitable that it significantly affects 311 

the results of an individual study and comparison of across studies. We believe that the work 312 

presented here will both provide a useful tool for and assist the microbial ecology research 313 

community to make more informed decisions about the most appropriate methodological 314 

approach to analyze large metatranscriptomic datasets with improved precision. 315 

 316 

4 Methods 317 

4.1 CoMW Implementation 318 

CoMW (assembly-based) is based on four major steps: 1) De-novo Assembly and Mapping; 2) 319 

Filtering; 3) Gene Prediction and Alignment 4) Annotation.  320 

De-novo Assembly and Mapping of short reads back to assembled contigs is done using Trinity 321 

[22] and BWA [34] respectively. Various tools have been developed for de-novo 322 
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metatranscriptome reconstruction that usually rely on graph-theory. Trinity however generates 323 

the most optimal assemblies for coding RNA reads [17,21,35]. Nevertheless, in CoMW, user can 324 

assemble short reads into contigs by any assembler preferred but it can reduce the quality of 325 

the following steps such as alignment of contigs. 326 

Filtering of Contigs is done to remove variance in sequences/samples. Since CoMW is assembly-327 

based, after we assemble the reads into longer contigs we also propose a 2-step filtering of the 328 

contigs to remove any chimeric or false contig made as a result of assembly or sequencing error 329 

by removing contigs that have an expression level less than a specific threshold and to remove 330 

any potential non-coding RNA contigs assembled. We can filter contig abundance data by 331 

removing all contigs with relative expression lower than a specific cut-off, e.g. 1% (selected 332 

based on dataset variance) of the number of sequences in the dataset with least number of 333 

sequences. This threshold is also flexible for different datasets and in some cases not required 334 

at all so CoMW allows user to bypass this step or change the threshold up and down based on 335 

data variation. The filtered contigs are subject to potential non-coding RNA filtration by aligning 336 

them against the RFam database [36] using infernal [37] which is a secondary-structure-aware 337 

aligner that predicts the secondary structure of RNA sequences and similarities based on the 338 

consensus structure models. Once again, the ncRNA filtering is an optional step in CoMW, 339 

though highly recommended in order to reduce FPs. 340 

Gene Prediction and Alignment is done using Transeq from EMBOSS [38] to predict probable 341 

open reading frames (ORFs) of the contigs (customizable, by default six per contig). We used 342 

SWORD [39] as alignment tool against reference databases. SWORD can be used in parallel 343 

based on computational resources available and the aligned results are parsed and cut-off at a 344 
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specific confidence threshold of combination of e-value and alignment length (usually 1e-5, can 345 

be changed given the assembly distribution in datasets).  346 

Annotation of aligned transcripts from the previous step can be done using the databases such 347 

as eggNOG which is a hierarchically structured annotation using a graph-based unsupervised 348 

clustering available algorithm to produce genome wide orthology inferences. Aligned proteins 349 

are then placed into functional subsystems based on their best hits.), CAZy which is a 350 

knowledge-based resource specialized in the Glycogenomics, and NCycDB; a Nitrogen cycle 351 

database. This results in a count table with a contig and eggNOG ortholog or CAZy gene or NCyc 352 

gene having a certain count from each sample depending upon database used. This count table 353 

can be then used for differential expression using state-of-the-art expression analysis suit such 354 

as DESeq2 [40] or its wrapper SARTools [41]. For evaluation of CoMW we used the template 355 

script provided by the SARTools for DeSeq2 analysis where we specified first group of samples 356 

as the reference samples and second group as condition with a parametric mean-variance and 357 

Benjamini & Hochberg method for P adjustment [42].  358 

4.2 Assembly-free Workflow 359 

For the assembly-free approach we used the Metatrans pipeline [9], which uses FragGeneScan 360 

[43] for ORF predictions in short reads, CD-Hit [44] for gene clustering and Diamond [27] for 361 

alignment against the M5nr, CAZy and NCyc [11–13] database. We then used the same 362 

annotation script which Is included in CoMW. For expression analysis gene counts were 363 

normalized between samples using the DESeq2 [40] algorithm. Significantly differentially 364 

expressed genes were analysed in SARTools [41] using parametric relationship and p-value 0.05 365 

as significance threshold. The Benjamini and Hochberg correction procedure [42] was used to 366 
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adjust p-value. For parameters and versions of tools used in Metatrans see supplementary 367 

GitHub repository in data availability  368 

4.3 Composition of Simulated Communities 369 

In this study we utilised a set of simulated communities from Martinez et al. [9] where they 370 

collected 4943 genes (coding regions) from five abundant microbial genomes: Bacteroides 371 

vulgatus ATCC 8482, Ruminococcus torques L2-14, Faecalibacterium prausnitzii SL3/3, 372 

Bacteroides thetaiotaomicron VPI-5482 and Parabacteroides distasonis ATCC 8503. We 373 

simulated short reads into 100 samples using Polyester [45] embedded in a script provided by 374 

Martinez et al. [9] at coverage of 20x which resulted in a count table and short reads with 2395 375 

genes to add the impact of sequencing coverage that the simulator mimics. The process of 376 

regulation of abundance was done by first dividing the 100 samples into two groups (“A” and 377 

“B”) and then abundance of randomly selected 10% genes was regulated up- and down up to 4-378 

folds, in addition to this we also knocked out (0 abundance) 5% genes completely from both 379 

simulated reads and count tables. The process of selection of samples and genes was random 380 

but tracked. To include quality and coverage bias, we used the ART simulator [46] that mimics 381 

the coverage bias and thus some genes were removed to produce an equal number of reads in 382 

FASTQ format to those produced by Polyester. ART was initially trained with Hi-Seq 2500 383 

Illumina quality error model from dataset discussed above to have a consistent error bias. After 384 

simulating FASTQ files we then extracted the quality data and bound it to the FASTA files 385 

generating new FASTQ files. With the coverage bias and quality training included we had a total 386 

of 62,035,912 reads (310,179 ± 3,454 reads/sample). 387 
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4.4 Evaluation Measures 388 

We used the standard measures of precision (also named positive predictive value, PPV), 389 

accounting for how many annotations and identifications of significantly differentially 390 

expressed gene families and subsystems are correct and defined as 
𝑇𝑃

𝑇𝑃+𝐹𝑃
 and recall (also 391 

named sensitivity or true positive rate, TPR), accounting for how many correct annotations are 392 

selected, defined as 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 where TP indicates the number of orthologs that have been correctly 393 

annotated, FN indicates the number of orthologs/genes/functional subsystem which are in the 394 

simulated communities but were not found by a certain approach and FP indicates the number 395 

of orthologs/genes/functional subsystem that have been wrongly annotated (because they do 396 

not appear in the simulated communities). The F-score is the harmonic mean of precision and 397 

recall, defined as 
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
.  398 
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Availability of source code and requirements 399 

 Project name: Comparative Metatranscriptomics Workflow (CoMW) 400 

 Project home page:  https://github.com/anwarMZ/CoMW 401 

 Operating system(s): Platform independent 402 

 Programming language: Python, R, and bash 403 

 Other requirements: Requirements mentioned in detailed manual at GitHub 404 

 License: GNU General Public License v3.0 405 

Availability of supporting data and materials 406 

 Raw sequence data generated using simulation of full-length genes were deposited in 407 

the NCBI Sequence Read Archive and are accessible through BioProject accession 408 

number PRJNA509064 409 

 Project supplementary scripts: https://github.com/anwarMZ/CoMW_supp 410 

 Supplementary File 1 – Precision Recall Analysis of both approaches 411 

 Supplementary File 2 – Differential Expression Analysis of all approaches using eggNOG 412 

database 413 

 Supplementary File 3 – Differential Expression Analysis of all approaches using CAZy 414 

database 415 

 Supplementary File 4 – Differential Expression Analysis of all approaches using NCyc 416 

database 417 

Tracking and Reproducibility 418 

 CoMW is published as computational capsule on codeocean and can be accessed 419 

through https://doi.org/10.24433/CO.1793842.v1 420 

https://github.com/anwarMZ/CoMW
https://github.com/anwarMZ/CoMW_supp
https://doi.org/10.24433/CO.1793842.v1
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 CoMW is registered at SciCrunch.org with RRID – SCR_017109. 421 
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