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Supplementary Figure 1. Cohort sizes and mutation rates for 20 tumor types analyzed in 
this study. 
Top panel, numbers of tumor samples in each of the 20 tumor cohorts. Bottom panel, mutation 
rates in each of the 20 tumor cohorts. Here, mutation rate in each cohort is calculated as the 
total number of mutations across all the samples in that cohort per Megabase (Mb).  
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Supplementary Figure 2. Estimated effect sizes for three background features. 
Each dot represents an estimate from one tumor type with error bars representing ± standard 
error. Expression: normalized RNA sequencing gene level RSEM values; replication timing, 
DNA replication time of this gene (measured in HeLa cells); HiC, measured from HiC 
experments in K562 cells. All three features are scaled to have mean of 0 and standard 
deviation of 1. 
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Supplementary Figure 3. Effects of adjustments of local variation 
4 representative tumor types LUAD, LUSC, HNSC and GBM are chosen to show the effect of 
adjustment of local variation. In each row, scatterplots of expected number of nonsynonymous 
mutation in each gene with (left) and without (right) local variation adjustment versus the 
observed number are displayed for one tumor type. The adjustment is calculated as the 
posterior mean of λ fitting synonymous mutation data.  Grey lines indicate upper and lower 
bounds of 99% confidence interval based on Poisson test given expected rate. The diagonal 
line has slope =1 and R2 was calculated using this as the regression line.  
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Supplementary Figure 4. Performance evaluation for “single driver” model of driverMAPS 
using simulations 
For the “single driver” model, we pooled all training genes into one set, without distinguishing 
OGs and TSGs, and estimated parameters for the selection model (including effect sizes for 
functional features and parameters for modeling spatial effect). We then use this selection 
model as the alternative model and calculate Bayes factors the same way as in driverMAPS. 
We used the same data here as used in Figure 3b-d and also the same evaluation procedures.  
(a) ROC curves comparing driverMAPS (TSG/OG separate modeling) with “single driver” model 
version of driverMAPS, at sample sizes 200 and 1000. (b) Number of true positive and false 
positive genes at FDR<0.1 for driverMAPS and its” single driver” model version. 
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Supplementary Figure 5. Effects of mutation rate on precision and recall rate for different 
methods.  
Values for precision, recall and mutation rate for each tumor type are shown in heatmaps. We 
calculated precision (proportion of known cancer genes among significant genes) and recall rate 
(proportion of known cancer genes found significant among all known cancer genes) for each 
tumor type with significance cutoff at FDR =0.1. We calculated mutation rates for each cancer 
type as number of mutations per Mb summing across all samples.   
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Supplementary Figure 6. METTL3 mutation affects its methylation activity in 
biochemistry assay.  
Purified FLAG-tagged METTL14 with wildtype or mutant METTL3 was assessed by SDS-PAGE. 
The methyltransferase activity of the METTL3-METTL14 complex containing either METTL3 
mutant or wild-type METTL3 was determined by measuring the ratio of d3-m6A to G by LC-
MS/MS after incubation of the methyltransferase complex with a RNA probe, n = 4 (2 biological 
replicates and 2 technical replicates).		 	
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Supplementary Figure 7. Functional validation of METTL3 mutation in T24 bladder cancer 
cells 
(a) Impaired m6A RNA methyltransferase activity of mutant METTL3 in bladder cancer cell line 
“T24”.  LC-MS/MS quantification of the m6A/A ratio in polyA-RNA in METTL3 or Control 
knockdown cells, rescued by overexpression of wildtype or mutant METTL3 is shown. (b) 
Mutant METTL3 decreased proliferation of “T24” cells. Proliferation of METTL3 or Control 
knockdown cells, rescued by overexpression of wildtype or mutant METTL3 in MTS assays is 
shown. Cell proliferation is calculated as the MTS signal at the tested time point normalized to 
the MTS signal ~ 24 hours after cell seeding. For all experiments in (a-b), number of biological 
replicates is 3 and error bars indicate mean ± s.e.m. *, p < 0.05; **, p < 0.01 by t-test. Legend is 
shared between (a) and (b). 
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Supplementary Figure 8. Impact of ASH for functional feature effect size estimation 
Effect sizes for five functional features and average increased mutation rate (the same as in 
Figure 2) before and after ASH. Each dot represents an estimate from one tumor type. Bars and 
error bars represent mean values and standard deviations across tumor types. (a) Estimation 
results for TSGs.  (b) Estimation results for OGs.  (c) Estimation results for the remaining genes. 
After ASH, values with large estimate standard errors were shrinked towards the mean. This 
avoided some extreme values as found in (b), estimates for LoF. 
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Tumor type 
Parameter estimate (standard error) 

β0, t=1 β0, t=2 β0, t=3 β0, t=4 β0, t=5 β0, t=6 β0, t=7 β0, t=8 β0, t=9 βexpr
 βrepl

 βhic
 α 

BLCA -7.18(0.06) -7.11(0.05) -5.06(0.02) -6.42(0.02) -7.35(0.03) -5.95(0.01) -8.63(0.05) -9.08(0.07) -7.89(0.03) -0.04(0.01) 0.03(0.01) -0.05(0.01) 6.52(0.42) 

BRCA -7.79(0.09) -8.09(0.09) -5.8(0.03) -7.99(0.04) -8.06(0.04) -7.34(0.02) -9.06(0.07) -9.08(0.07) -8.42(0.04) -0.09(0.02) 0.07(0.02) -0.05(0.02) 4.8(0.66) 

CESC -9.37(0.19) -8.86(0.12) -6.29(0.03) -8.14(0.05) -8.92(0.06) -7.63(0.02) -10.83(0.17) -11.02(0.19) -10.14(0.09) -0.04(0.02) 0.06(0.03) -0.03(0.02) 4.3(0.84) 

CHOL -12.07(0.71) -10.61(0.29) -8.98(0.13) -11.88(0.29) -10.12(0.11) -10.33(0.09) -12.62(0.41) -12.21(0.33) -11.13(0.14) 0(0.07) 0.1(0.08) -0.1(0.07) 8.91(NA) 

ESCA -8.88(0.14) -7.55(0.06) -5.95(0.03) -8.88(0.06) -7.68(0.03) -7.8(0.02) -9.41(0.08) -9.12(0.07) -8.56(0.04) -0.07(0.02) 0.17(0.02) -0.09(0.02) 3.5(0.42) 

GBM -9.68(0.2) -9.04(0.13) -5.68(0.03) -9.75(0.09) -9.34(0.07) -8.44(0.03) -10.02(0.1) -10.39(0.12) -9.01(0.05) -0.05(0.02) 0.2(0.03) -0.12(0.02) 1.26(0.1) 

LIHC -8.59(0.12) -7.55(0.06) -6.66(0.04) -8.91(0.06) -8.1(0.04) -7.77(0.02) -8.06(0.04) -8.94(0.06) -7.73(0.02) -0.07(0.02) 0.13(0.02) -0.06(0.02) 5.15(0.69) 

HNSC -7.41(0.07) -6.84(0.04) -5.07(0.02) -7.3(0.03) -7.32(0.03) -6.64(0.01) -8.27(0.04) -9.08(0.07) -7.92(0.03) -0.05(0.01) 0.19(0.01) -0.08(0.01) 4.5(0.29) 

KICH -12.22(0.71) -10.94(0.32) -7.96(0.07) -11.46(0.22) -10.51(0.13) -10.02(0.07) -11.36(0.21) -11.17(0.19) -9.62(0.07) 0(0.05) 0.16(0.06) -0.05(0.05) 0.44(0.07) 

KIRC -8.84(0.13) -8.32(0.09) -6.99(0.04) -9.14(0.07) -8.4(0.05) -8.14(0.03) -8.81(0.06) -9.28(0.07) -8.43(0.04) -0.01(0.02) 0.08(0.02) 0(0.02) 8.67(2.97) 

KIRP -8.88(0.14) -8.35(0.09) -7.53(0.06) -9.21(0.07) -8.82(0.06) -8.42(0.03) -9.02(0.07) -9.68(0.09) -8.55(0.04) -0.07(0.02) -0.04(0.03) -0.02(0.02) 5.65(1.57) 

LUAD -6.54(0.04) -5.21(0.02) -5.28(0.02) -6.88(0.02) -5.71(0.01) -6.3(0.01) -6.91(0.02) -8.31(0.04) -7.37(0.02) -0.1(0.01) 0.29(0.01) -0.11(0.01) 2.14(0.06) 

LUSC -7.59(0.07) -6.67(0.04) -6.27(0.03) -7.8(0.04) -7.04(0.02) -7.35(0.02) -8.16(0.04) -9.29(0.07) -8.19(0.03) -0.13(0.01) 0.25(0.02) -0.1(0.02) 3.13(0.22) 

PAAD -11.51(0.5) -10.18(0.22) -6.95(0.04) -11.12(0.19) -10.55(0.13) -9.66(0.06) -11.07(0.17) -10.85(0.16) -10.6(0.1) -0.09(0.04) 0.24(0.05) -0.07(0.04) 1.43(0.31) 

PRAD -9.38(0.17) -9(0.12) -6.17(0.03) -9.82(0.1) -9.25(0.07) -8.66(0.04) -9.83(0.09) -9.88(0.1) -9.26(0.05) -0.06(0.02) 0.22(0.03) -0.05(0.02) 2.37(0.34) 

SARC -10.07(0.26) -9.22(0.14) -7.18(0.05) -9.85(0.1) -9.26(0.07) -8.93(0.04) -10.35(0.13) -10.65(0.15) -9.89(0.07) -0.02(0.03) 0.19(0.04) -0.13(0.03) 2.23(0.54) 

SKCM -8.08(0.09) -7.9(0.07) -4.28(0.01) -9.07(0.07) -8.13(0.04) -4.88(0.01) -8.45(0.05) -8.6(0.05) -7.7(0.02) -0.05(0.01) 0.26(0.01) -0.1(0.01) 1.7(0.04) 

TGCT -10.11(0.24) -9.46(0.15) -8.25(0.08) -11.15(0.19) -9.79(0.09) -9.76(0.06) -11.23(0.2) -10.42(0.13) -10.4(0.1) 0.12(0.05) 0.08(0.06) -0.04(0.05) 0.35(0.05) 

UCEC -9.28(0.18) -8.11(0.08) -4.98(0.02) -9.54(0.09) -8.29(0.05) -7.53(0.02) -9.88(0.11) -9.74(0.1) -7.99(0.03) -0.11(0.02) 0.03(0.02) -0.05(0.02) 4.92(0.6) 

UCS -10.19(0.26) -10.01(0.2) -7.82(0.07) -11.08(0.18) -10.57(0.14) -10.23(0.08) -11.77(0.25) -11.45(0.21) -10.74(0.11) -0.04(0.05) 0.17(0.06) -0.13(0.05) 3.37(2.6) 

 

Supplementary Table 1. Parameter estimation results for background mutation model (BMM). 
For each tumor type, we obtained the maximum likelihood estimates for parameters and calculated standard errors derived from observed Fisher 

Information matrix. β0t, baseline mutation rate for type t, where t={1,2,…,9} corresponds to 9 pre-defined mutation types (see Supplementary Notes 

for parameterization details).  βexpr 
, βrepl

 and βhic
 are effect sizes for background mutation features “expression”, “replication timing” and “HiC”, 

respectively. α is the hyperparameter for the gene specific mutation rate. 
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Tumor 
type c2 statistics p value 

BRCA 2308.4 0.00E+00 

SKCM 2451.8 0.00E+00 

UCEC 1669.6 0.00E+00 

BLCA 1377.4 5.42E-297 

HNSC 932.0 1.96E-200 

LUAD 671.6 4.80E-144 

LIHC 625.6 4.53E-134 

GBM 488.8 1.74E-104 

CESC 487.4 3.55E-104 

PRAD 356.3 7.53E-76 

UCS 271.2 1.78E-57 

LUSC 267.5 1.11E-56 

KIRP 174.7 1.05E-36 

ESCA 109.9 7.58E-23 

KIRC 57.8 8.34E-12 

SARC 11.2 2.41E-02 

CHOL 8.8 6.69E-02 

PAAD 8.6 7.10E-02 

KICH -2.5 1.00E+00 

TGCT -70.3 1.00E+00 

 
Supplementary Table 2. Model selection (with or without spatial effect) results for the OG 
model  

We performed c2 difference test for model selection, the test statistics is given by −2×
(%&'( )*+ ,- , ,/0- 1 , ,2 , ,/2 − %&'( Y45 ,- , ,/0- 1 , ,2 , ,/2 , 67 , 8/7 , 87/ , 9/ , 97 ) for OG data.  

The table is sorted by p values from low to high. See Supplementary Notes for details.  
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Tumor type Novel cancer genes 

BLCA 

ABHD15,ACTB,ADCY8,AGR3,AHR,ALDH16A1,C12orf43,C18orf8,C3orf70,C8orf76,CDKN1A,CLAS
P2,COX6A1,ELF3,EME1,EPS8,FOXQ1,FURIN,FZD7,GAR1,GNA13,HIST1H1E,HIST2H2BE,IKZF2,
KCNF1,KCNK2,KHDRBS1,KHDRBS2,KIAA1522,KIR3DL1,KLF5,MEOX2,METTL3,MICALL1,MIF4G
D,NAALADL1,NUP93,OGDH,PDSS2,PHF3,PHLDA3,PPCS,RAD51C,RALGPS1,RARS2,RERE,RFT
N2,RHOB,RXRA,SF1,SF3A3,SHANK1,TAS2R9,TFPI2,TMCO4,TRAF3IP2,TTYH1,UNC93B1,XYLT2
,ZBTB7B,ZFP36L1,ZNF750 

BRCA HSD3B2,MED23,MUC17,PCDHB7,RGS7,HIST1H2BC,DNASE1L3,WSCD2,SETDB1 

CESC ABCA12,C3orf70,HIST1H1B,HIST1H4K,MAPK1,MED1,SBNO1 

CHOL ATG16L1,DNAH5 

ESCA C10orf76,HDAC4,KPNB1,NAA16,PNLIPRP3,SLC39A12 

GBM IL18RAP,LZTR1,NUP210L,ODF4,SPINT1,TMEM147,TPTE2,UGT2A3,ZDHHC4 

LIHC CREB3L3,IRF2 

HNSC CSNK2A1,CUL3,FAT1,GPATCH8,HIST1H3C,MAPK1,NAA25,RASA1,SYT6,THSD7A,TP63,ZNF750 

KIRC COL11A1,CUL9,MOCOS 

KIRP CALCR,CUL3,FBXO47,KIAA0922,PARD6B,PCF11,SCRN2 

LUAD DZIP1L,LCE1F,MGA,PTPRU,SNRPD3,SOS1,ZFP36L1 

LUSC ADAMTS12,DPPA4,ELTD1 

PRAD CNTNAP1,COL11A1,CSMD3,CUL3,ETV3 

SKCM ARL16,DDX17,HTR3D,LCE1B,NPAS1,OXA1L,PCDHB8,PDE1A,REG4,RQCD1,SLC27A5,STK19,T
ACR3,TTC9 

UCEC COPB1,DEPDC1B,INPPL1,LYPLA2,LZTR1,METAP1,METTL14,MGA,MME,NAA30,OGDHL,RBM39,
RRAS2,SIN3A,SLC30A9,SOS1,ST5,TFDP1,TTC38,ZNF485 

UCS SAMD4B,ZBTB7B 

	
Supplementary Table 3. List of novel cancer genes identified in each tumor type by 
driverMAPS. 
Tumor types without any novel genes identified are not listed.  
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Position 
(on Chr14, 
hg19) 

Mutation log(Bayes 
Factor) 

Amino acid 
change 

Loss of 
function 

Conser-
vation 

Sift_
pred 

Phylop_
pred 

MA_
pred 

No. 
mutations 

21967254 C>T 2.95 E516K No Yes Yes Yes Yes 2 

21971663 G>A 2.37 Q126X Yes Yes Yes Yes No 1 

21971651 C>A 2.17 E130X Yes Yes No Yes No 1 

21969218 T>A 1.48 N318I No Yes Yes Yes Yes 1 

21967257 C>A 1.48 D515Y No Yes Yes Yes Yes 1 

21967260 G>T 1.48 P514T No Yes Yes Yes Yes 1 

21967206 C>G 1.47 E532Q No Yes Yes Yes Yes 1 

21969223 G>C 1.47 F316L No Yes Yes Yes Yes 1 

21967206 C>T 1.47 E532K No Yes Yes Yes Yes 1 

21967452 C>T 1.47 E506K No Yes Yes Yes Yes 1 

21967728 C>T 1.47 E454K No Yes Yes Yes Yes 1 

21967676 C>T 1.45 R471H No Yes Yes Yes Yes 1 

21967685 C>T 1.45 R468Q No Yes Yes Yes Yes 1 

21971844 G>A 0.91 P94L No Yes Yes Yes No 1 

21969985 C>T 0.69 E262K No Yes No Yes No 1 

21967264 A>C 0.59 H512Q No Yes No No No 1 

21972010 C>T 0.40 E39K No No No Yes No 1 

 
Supplementary Table 4. Nonsysnonymous mutations in METTL3 in BLCA cohort. 
For each mutation, we calculated a Bayes factor only using data at the mutated position, which 
is the likelihood of HTSG versus H0 (since METTL3 was identified as a TSG in BLCA cohort) at 
the mutated position. Mutations in this table were ordered based on log(Bayes factor) from high 
to low, prioritizing mutations contributing more towards the gene being a TSG. But one thing to 
note is that the gene-level log Bayes factor calculated by driverMAPS is not merely an add up of 
log Bayes factor for all individual positions in the gene, this is because the positions are not 
independent and share gene-level random effect. 
 



Supplementary Note 1: Data preparation

Lists of somatic mutations from cancer sequencing studies

TCGA GDAC Firehose (https://gdac.broadinstitute.org/) (version: analyses__2016_01_28). We obtained
the MAF (Mutation Annotation Format, .maf) files using firehose_get (version 0.4.6) (https://confluence.
broadinstitute.org/display/GDAC/Download). When several versions of the MAF file were obtained for
one tumor type (which can occur when the original MAF file has been filtered against several mutation
blacklist files) then we took the intersection among MAF files (i.e., we only used mutations that were retained
in all MAF files.) We only used MAF files that were originally aligned to genome build hg19 (GRCh37
Genome Reference Consortium Human Reference 37 (GCA_000001405.1)). This left us with 27 tumor
types. We excluded THYM (Thymoma) and PCPG (Pheochromocytoma and Paraganglioma) as there were
insu�cient mutations (< 2000). We ran driverMAPS on the remaining 25 tumor types, extracting position
and nucleotide change information for all single-nucleotide somatic mutations from the MAF files. After
inspecting the results, we excluded results from five tumor types – ACC (Adrenocortical carcinoma), LGG
(Brain Lower Grade Glioma), THCA (Thyroid carcinoma), and DLBC (Lymphoid Neoplasm Di�use Large
B-cell Lymphoma), and STAD (Stomach adenocarcinoma) – before doing comparisons with other software
and other downstream analyses. The first four of these tumor types all had 10 or more novel driver genes
identified, and the vast majority (>90%) of these were caused by recurrent mutations that appeared to be
false positives based on visual inspection of read alignment plots. STAD has 111 significant genes identified
and contained >1000 mutations within these genes, making it burdensome to visually evaluate whether the
mutations are false positives. The 20 remaining tumor types, and their abbreviations, used in the paper are
as follows:

• Breast invasive carcinoma, BRCA
• Cervical squamous cell carcinoma and endocervical adenocarcinoma, CESC
• Cholangiocarcinoma, CHOL
• Esophageal carcinoma, ESCA
• Glioblastoma multiforme, GBM
• Head and neck squamous cell carcinoma, HNSC
• Kidney chromophobe, KICH
• Kidney renal clear cell carcinoma, KIRC
• Kidney renal papillary cell carcinoma, KIRP
• Liver hepatocellular carcinoma, LIHC
• Lung adenocarcinoma, LUAD
• Lung squamous cell carcinoma, LUSC
• Pancreatic adenocarcinoma, PAAD
• Prostate adenocarcinoma, PRAD
• Sarcoma, SARC
• Skin cutaneous melanoma, SKCM
• Testicular germ cell tumors, TGCT
• Uterine carcinosarcoma, UCS
• Uterine corpus endometrial carcinoma, UCEC

Filtering of mutations

The lists of somatic mutations obtained above have a substantial number of false positive mutations. Because
our method is designed to be very sensitive to capture mutation patterns that deviate from the background
mutation process it is important to perform QC-filtering to attempt to remove false positives.

1. We filtered out mutations with less than 4 reads supporting the alternate allele or with less than 5%
alternate allele frequency.
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2. We filtered out mutations that are directly adjacent to one another and identified from the same
tumor-normal pair. Such mutations are mostly di-nucleotide or multi-nucleotide mutations instead of
consecutive single nucleotide mutations.

3. We filtered out mutations commonly seen as single-nucleotide polymorphisms (SNPs), defined as having
minor allele frequency exceeding 5% in any ancestry group of the ExAc, 1000G and ESP6500 databases
(see ANNOVAR1 documentation, database made date: 20150413).

4. We excluded hyper-mutated tumor samples, following the procedure of2. Specifically we excluded
samples with more than (Q3 + IQR*4.5) mutations, where Q3 denotes the third quartile of mutation
counts across the corresponding tumor type, and IQR denotes the interquartile range.

5. When multiple tumor specimens were sequenced with the same matching normal tissue we picked one
of the tumor specimens at random and only include somatic mutations from this tumor specimen. We
removed the small number of samples that had multiple samples from normal tissue.

6. We used the additional pre-processing procedures provided by the MutSig software suite to filter out
known sequencing artifacts.

The filtered lists of mutations for all 20 tumor types are available at https://szhao06.bitbucket.io/
driverMAPS-documentation/docs/download.html.

Generating mutation count files

For each of the 20 tumor types, we generated a mutation count file. This file lists all possible mutations that
could occur at each sequenced position.

To obtain the sequenced positions for each tumor cohort, we extracted the exonic DNA capture kit infor-
mation for all samples in each cohort from Genomic Data Commons (GDC, https://portal.gdc.cancer.gov/
legacy-archive/search/f). The regions targeted by each kit (30Mb to ~60Mb depending on the capture array)
were obtained from the manufacturer’s website, and regions that were targeted in all samples of a cohort
were retained. We then excluded mapping blacklisted regions using two blacklist files,

• wgEncodeDacMapabilityConsensusExcludable.bed.gz and
• wgEncodeDukeMapabilityRegionsExcludable.bed.gz

obtained from http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeMapability/.

From these sequenced positions we generated a list of possible mutations. Each sequenced position has three
nucleotides that it could possibly mutate to, so the total number of possible mutations is three times the
number of sequenced positions. For each possible mutation we counted how many were observed in the MAF
file, aggregating across all individuals. Depending on the mutation rate and cohort size, we observed ~200 to
~4500 mutations per Mb, so the mutation counts for the vast majority of possible mutations were 0.

Supplementary Note 2: Genomic annotation

We used ANNOVAR1 to add annotations to all possible mutations (including those with 0 count) in the
mutation count file described above.

Gene and mutation type information

We added gene information based on the GENCODE database (https://www.gencodegenes.org/, version
19, Feb 2014). We annotated each mutation as being in one of the following categories (order indicates
precedence): splicing (+/- exon-intron boundary), exonic-stopgain, exonic-stoploss, exonic-nonsynonymous
SNV, exonic-synonymous SNV, ncRNA, upstream, UTR3, UTR5, intronic, downstream.

3

https://szhao06.bitbucket.io/driverMAPS-documentation/docs/download.html
https://szhao06.bitbucket.io/driverMAPS-documentation/docs/download.html
https://portal.gdc.cancer.gov/legacy-archive/search/f
https://portal.gdc.cancer.gov/legacy-archive/search/f
http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeMapability/
https://www.gencodegenes.org/


Background features

Our background mutation model includes several annotations that may a�ect background mutation rates.

To account for the di�erent mutation rates that may occur in di�erent sequence contexts we annotated each
possible mutation as being one of 9 possible types:

1. C:G to G:C mutations at CpG dinucleotides
2. C:G to A:T mutations at CpG dinucleotides
3. C:G to T:A mutations at CpG dinucleotides
4. C:G to G:C mutations not in CpG dinucleotides
5. C:G to A:T mutations not in CpG dinucleotides
6. C:G to T:A mutations not in CpG dinucleotides
7. A:T to T:A mutations
8. A:T to C:G mutations
9. A:T to G:C mutations

We also annotated each mutation using three gene-level features: gene expression, replication timing and
chromatin conformation measured by HiC sequencing. These same features are used in running MutsigCV.
Data for these three features were downloaded from http://archive.broadinstitute.org/cancer/cga/mutsig.

Functional annotations

We considered several mutation-level functional annotations. Including more features will improve fit of the
model but also at the risk of overfitting. As many scores are highly correlated, we eventually selected 5
annotations that assess mutation functional impact in complementary ways:

• The “Loss of function (LoF)” annotation indicates if the mutation is either a nonsense or splice site
mutation.

• The “Conservation” feature is an indicator based on multiple alignment of amino acid sequence
(http://hgdownload.soe.ucsc.edu/goldenPath/hg19/multiz100way/). We annotated the position as
“conserved” if it encodes an amino acid that is highly conserved in 100-way multiple alignment (less
than 3 species showed distinct amino acid at this position).

• The remaining three features are phyloP3, SiFT4 and MutationAssessor5 predictions, all obtained from
ANNOVAR.

Supplementary Note 3: Statistical model description

Note: this section is partially redundant with Methods, but adds additional details.

Since we model each tumor type cohort separately we describe the model for a single cohort. Let Yit denote
the total number of mutations (across all samples in the cohort) of type t at sequence position i, where
t œ 1, .., 9 refers to the 9 nucleotide change types described earlier. Let NS denote the set of pairs (i, t) such
that a mutation of type t at sequence position i would be non-synonymous. Similarly, let S denote the set of
pairs (i, t) representing synonymous mutations.

In practice, we treated synonymous mutations with high splicing impact score (dbscSNV version 1.1 for splice
site prediction by AdaBoost and Random Forest6 and spidex7) as nonsynonymous mutations since they are
likely to be functional; i.e. they were included in NS instead of S. We refer to mutations in S as S mutations
and mutations in NS as NS mutations.

We let Sg denotes the subset of all S mutations in gene g, and Y Sg denote the corresponding observed counts.

Y Sg = {Yit : (i, t) œ Sg}. (1)

We use analogous notation, NSg, Y NSg for NS mutations.
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Background Mutation Model (BMM)

For S mutations we assume the following “background mutation model”:

Yit|Hm ≥ Poisson(µit⁄g(i))[for(i, t) œ S] (2)

where µit represents a background mutation rate (BMR) for mutation type t at position i, and ⁄g(i) represents
a gene-specific e�ect for the gene g(i) that contains sequence position i. Note that the parameters of this
BMM do not depend on the model m, so P (Y Sg |Hm) is the same for all m.

Because at a position i only certain mutation types are possible, in equation (2), values of t are limited to
mutation types (t) that are possible at i. This could be expressed more formally by defining an indicator, ”it,
which takes the value 1 if mutation of type t is possible at i and 0 otherwise, and writing equation (2) as
Yit ≥ ”itPoisson(µit⁄g(i)). For simplicity, we make this indicator implicit, and so equations below apply only
to t such that ”it = 1.

We allow the BMRs to depend on background features (e.g. the expression level of the gene) using a log-linear
model:

log µit = —b
0t +

ÿ

j

xb
ij—b

j , (3)

where xb
ij denotes the j-th background feature of position i (not dependent on mutation type), —b

0t controls
the baseline mutation rate of type t, and —b

j is the coe�cient of the j-th feature. The values xb
ij are observed,

and the parameters —b are to be estimated. To indicate the dependence of µit on parameters —b we write
µit(—b).

We assume that the gene-specific e�ects ⁄g have a gamma distribution across genes:

⁄g ≥ Gamma(–, –), (4)

where – is a hyperparameter to be estimated.

Selection Mutation Model (SMM)

For non-synonymous mutations we introduce additional model-specific parameter: “m
it , which represent a

selection e�ect (SE) for mutation type t at position i under model m; and ◊m
i , which represents a spatial

e�ect for position i under model m:

Yit|Hm ≥ Poisson(µit⁄g(i)“
m
it ◊m

i ) [for (i, t) œ NS]. (5)

For all models, we allow the selection e�ect, “m
it , to depend on functional features (e.g. the assessed

deleteriousness of the mutation), using a log-linear model:

log “m
it = —f,m

0 +
ÿ

j

xf
ijt—

f,m
j , (6)

where xf
ijt denotes the j-th functional feature of position i (this depends on mutation type; e.g. at the same

position, some mutations may be more deleterious than others), —f,m
j is the coe�cient of the j-th functional

feature and the intercept —f,m
0 captures the overall change of mutation rate at NS sites regardless of functional

impact. To indicate the dependence of “m
it on parameters —f,m we write “it(—f,m).

The “spatial e�ect” ◊m
i , accounts for spatial clustering of mutations (including recurrent mutations at the

same position in di�erent samples). We assume that at each position i, either ◊m
i = flm

1 Ø 1 (if position i is
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in a mutation hotspot) or ◊m
i = flm

0 Æ 1 (if position i is not in a mutation hotspot). Thus the ratio flm
1 /flm

0
represents the average increase of mutation rate in hotspots vs outside hotspots under model m. We use a
Hidden Markov Model(HMM) to model hotspot status. Specifically, we let Zm

i be an indicator of whether
position i is in a hotspot (Zm

i = 1) or not (Zm
i = 0), and assume Zm

i follows a Markov chain with:

• Initial state probabilities: pm
0 = P (Zm

1 = 0), pm
1 = P (Zm

1 = 1), where pm
0 + pm

1 = 1

• Transition matrix:
Zm

i+1 = 0 Zm
i+1 = 1

Zm
i = 0 vm

00 vm
01

Zm
i = 1 vm

10 vm
11

We use �m to denote the set of all parameters related to this HMM for model m: �m =
{pm

0 , pm
1 , vm

00, vm
01, vm

10, vm
11, flm

0 , flm
1 }.

Supplementary Note 4: Parameter estimation

Note: this “parameter estimation” section is partially redundant with Methods, but adds additional details.

Estimating parameters in BMM

We first infer parameters related to the background mutational model: —b (the vector of coe�cients and the
intercepts) and –. We use only S mutations in this step. Recall that Sg denotes the subset of S mutations in
gene g, and Y Sg denotes the corresponding observed counts. The likelihood for gene g is then given by:

P (Y Sg |—b, –) =
⁄ Ÿ

i,tœSg

P (Yit|µit(—b), ⁄g)p(⁄g|–)d⁄g

=
⁄ Ÿ

i,tœSg

µityit

yit!
�(– + y

Sg

+ )
�(–)

––

(– + µSg )–+y
Sg
+

, (7)

where y
Sg

+ denotes the observed number of S mutations in gene g, and µSg denotes the expected number of S
mutations in gene g . (Note that the product here is over all i, t that are S mutations, including those that
have observed count 0 (Yit = 0), because these form part of the data and so contribute to the likelihood.)

We assume independence across genes to obtain a likelihood for synonymous mutations:

LS(—b, –) :=
Ÿ

g

P (Y Sg |—b, –). (8)

We use numerical methods (the BFGS algorithm implemented in the R function optim) to maximize this
likelihood and obtain maximum likelihood estimates —̂b, –̂,

Estimating parameters in SMM

We next estimate the model-specific parameters —f,m for all models. During this step we ignore the HMM
model (i.e. we set ◊m

i = 1), motivated by the fact that spatially-clustered mutations are relatively rare and so
should not significantly impact the estimates of —f,m

For m = OG, TSG we estimate —f,m using the NS mutation data from two di�erent curated lists: GOG

containing 53 OGs (used for m = OG) and GT SG containing 71 TSGs (used for m = TSG). For the null
model, we used the remaining genes excluding these 53 OGs and 71 TSGs as the training set, as the vast
majority of the remaining genes should not be driver genes (our parameter estimation results showed in
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Figure 2c, last panel shows all —f for m = H0 are close to 0 are consistent with this claim). Let Gm denote
these sets of training genes.

Assuming independence across genes, the likelihood for —f,m is:

L(—f,m) =
Ÿ

gœGm

P (Y NSg , Y Sg |—f,m) Ã
Ÿ

gœGm

P (Y NSg |—f,m, Y Sg ). (9)

The term in this likelihood for gene g is given by:

P (Y NSg |—f,m, Y Sg ) =
⁄ Ÿ

i,tœNSg

P (Yit|µit(—̂b), “it(—f,m), ⁄g)P (⁄g|Y Sg , –̂)d⁄g.

=
Ÿ

i,tœNSg

(µit(—̂b)“it(—f,m))yit

yit!
(–̂ + µSg (—̂b))–̂+y

Sg
+

�(–̂ + y
Sg

+ )
�(–̂ + y

Sg

+ + y
NSg

+ )

(–̂ + µSg (—̂b) + µNSg )–̂+y
Sg
+ +y

NSg
+

,

(10)

where y
NSg

+ denotes the total number of observed number of NS mutations in gene g and µNSg denotes the
expected number of NS mutations in gene g, which is a function of —f,m. This expression comes from the
fact that

⁄g|Y Sg , –̂ ≥ Gamma(–̂ + y
Sg

+ , –̂ + µSg (—̂b)), (11)

where µSg (—̂b) and y
Sg

+ are, respectively, the expected (considering only mutational features) and observed

number of synonymous mutations in gene g. (Note that the conditional mean of this distribution is –̂+y
Sg
+

–̂+µSg (—̂b)
,

so if y
Sg

+ > µSg (—̂b), then E(⁄g|Y Sg , –̂) > 1. )

We used numerical methods (the BFGS algorithm implemented in the R package optim) to maximize the
likelihood (equation (10)) and obtain maximum likelihood estimates —f,m. We also computed the standard
errors of our estimates using the standard asymptotic distribution of the MLE. In tumor types with low
mutation rates, or with low sample sizes, the standard errors of the selection parameters can be relatively
large, so we borrowed information from other tumor types to “stabilize” these estimates. We implemented this
using Adaptive Shrinkage (ASH)8. The intuition is that, we can estimate a population mean of —f,m across
all tumor types, and “shrink” the estimated value of —f,m towards the population mean. This shrinkage e�ect
is larger for tumor types with larger standard errors. We take the mean of the shrunken parameter estimates
as the final estimates for —f,m, —f,m

0 , so all tumor types share the same parameter values in modeling “it.

HMM parameters

After estimating —f,m, we fix their values and estimate the HMM parameters �m by maximum likelihood.
We used the maximum likelihood estimation routines for HMMs implemented in the R package depmixS49,
after editing the code to account for our emission probabilities which incorporate the gene-specific random
e�ects. Specifically the emission probabilities are given by:

P (Yi|Zi) =
Ÿ

t:(i,t)œNSg

P (Yit|Zi) (12)

Yit|Zi ≥ Poisson(µit(—̂b)⁄̂g(i)“it( ˆ—f,m)flm
Zi

) [for(i, t) œ NSg, where g œ Gm] (13)

Here, ⁄̂g(i) denotes the posterior mean of ⁄g(i)(–̂).

We estimated the HMM parameters for each tumor type separately. Because some tumor types have relatively
few mutations and few mutation hotspots, we performed model selection to evaluate whether to use the HMM
model for spatial e�ect. Specifically we computed the likelihood ratio for the model with vs without spatial
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e�ect and performed a Chi-squared test. For m = TSG and the null model, we found little evidence for
clustering and so we ignored the HMM part (i.e. equivalently to setting flT SG

0 = flT SG
1 = 1 and fl0

0 = fl0
1 = 1).

For m = OG we found 5 tumor types with p > 0.001 and we ignored the HMM in the same way. The
remaining 15 tumor types showed strong spatial e�ect (p < 10≠11).

In reality, hotpots in TSGs and non-cancer genes may be rare but still exist. Given more data in the future
one could possibly capture such e�ects.

Supplementary Note 5: Gene classification

Having estimated the model parameters as above, for each gene g, we compute its Bayes Factor(BF) for
being a driver gene as:

BFg := 0.5P (Y NSg , Y Sg |HOG) + 0.5P (Y NSg , Y Sg |HT SG)
P (Y NSg , Y Sg |H0) . (14)

The equal weights in the numerator of this BF assume that OGs and TSGs are equally common.

This BF simplifies to

BFg = 0.5P (Y NSg |Y Sg , HOG) + 0.5P (Y NSg |Y Sg , HT SG)
P (Y NSg |Y Sg , H0) . (15)

because P (Y Sg |Hm) is the same for every m. Computing the terms P (Y NSg |Y Sg , Hm) is performed using
equation (10) above, substituting the estimated model parameters for each model m. After obtaining the
BFs, we can compute the posterior probability of being a driver gene (m = TSG, OG) for every gene.

Let fi = 1 ≠ P (H0). Parameter fi is the prior of a gene being a driver gene (either as TSG or OG) or the
proportion of driver genes. The posterior of gene g being a driver gene:

P (Hm, m ”= 0|Yg) = P (Hm, m ”= 0)P (Yg|Hm, m ”= 0)/P (Yg) = fiBFg

fiBFg + 1 ≠ fi
. (16)

The likelihood given fi is:

P (Y |fi) =
Ÿ

g

[fiP (Yg|Hm, m ”= 0) + (1 ≠ fi)P (Yg|H0)] Ã
Ÿ

g

(fiBFg + 1 ≠ fi). (17)

We obtained the MLE for fi using an EM algorithm. Let ÷g be the indicator of gene g being a cancer driver.
The joint probability of Yg, ÷g is given by:

P (Yg, ÷g|fi) Ã fi÷g (1 ≠ fi)1≠÷g BF ÷g
g . (18)

The Q function (expected complete data log-likelikhood) in the EM algorithm is given by:

Q(fi|fi(t)) =
ÿ

g

E÷g|Yg,fi(t) log(P (Yg, ÷g|fi)). (19)

Let hg denote the probability for gene g being a driver gene. At the E step, we calculate hg as:

h(t)
g = fi(t)BFg

fi(t)BFg + 1 ≠ fi(t) . (20)
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Now the Q function can be expressed as

Q(fi|fi(t)) =
ÿ

g

ÿ

÷g

P (÷g|fi(t), Yg)logP (Yg, ÷g|fi) (21)

=
ÿ

g

[h(t)
g (log fi + log(BFg)) + (1 ≠ h(t)

g )log(1 ≠ fi)]. (22)

So at M step, we update fi as

fit+1 =
q

g h(t)
g

N
, (23)

where N is the number of genes.

After estimating fi we compute the posterior probability for each gene being a driver gene. We perform
multiple testing correction to control FDR by a direct posterior probability approach10. We used FDR < 0.1
for calling significant driver genes.

Supplementary Note 6: Comparison with other software

Running other software

The same set of mutation list files (https://szhao06.bitbucket.io/driverMAPS-documentation/docs/download.
html) used for driverMAPS were processed into input files, which were used to run each method in-house.
MutSigCV11 identifies driver genes as those with an excess number of mutations from the background
mutational process. MutSigCV (v1.4) was run in MATLAB with the default parameters.

OncodriveFM12identifies driver genes as those possessing a bias towards accumulating variants with high
functional impact. Silent mutations were assigned the least-damaging scores for each metric (0, 1, and
-5.545, respectively), while inactivating mutations (primarily nonsense and splice site) were assigned the
most-damaging scores (1, 0, and 5.975, respectively). OncodriveFM version 1.0.3 was run in Python 3 with
the default parameters.

OncodriveFML13 assesses the functional impact of tumor somatic mutations by running a simulation
of relevant mutational processes, allowing it to directly compute FM bias and thus identify driver genes.
OncodriveFML version 2.0.2 was run in Python 3 with the default parameters for testing coding regions,
using the default precomputed CADD scores downloaded via the tool and the coding DNA sequence (CDS)
regions file downloaded from the website.

OncodriveCLUST14 identifies driver genes as those with a bias towards spatial clusters of mutations,
comparing nonsynonymous mutations against a baseline model constructed from silent mutations. Onco-
driveCLUST version 1.0.0 was run in Python 3 using the gene transcripts file downloaded from the website
and default parameters, except the minimum mutations threshold was lowered to 1 (default is 5).

dNdScv15 was run as a R package (version: dndscv_0.0.0.9). For substitution models, we chose the option
‘192r_3w’. All other parameters were under default settings.

CBaSE16 CBaSE v1.1 standalone version was run as suggested by the software website.

Comparison of precision

We defined a set of known cancer genes as the union of COSMIC cancer census genes (version 76)17, gene list
from2 and18. These ended up with 713 “known” genes. We defined precision as the percentage of “known”
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genes out of all significant genes. For all methods tested, we used FDR=0.1 as cut o� for significant genes.
For all unknown genes with FDR <0.1 from each methods (except for oncodriveFM and oncodriveCLUST,
which called hundreds or thousands of unknown significant genes), we examined reads alignment (bam files
were obtained from Genomic Data Commons) at called mutated positions by visual inspection to ensure the
mutations are real. Genes with >20% false mutations were filtered and we provide the blacklist file used in
this filtering step on the software website. As driverMAPS used a subset of known cancer genes (n=124) as
the training set to get model parameters, to avoid the bias towards this subset of genes when calculating
precision for driverMAPS, we implemented a leave-one-out strategy. Specifically, in each run, when we train
the model, we leave one TSG/OG out. So data from this TSG/OG was never used at the training step. Then
we get significant genes using the model trained in this run. We repeated this for every TSG/OG. Then,
when calculating precision for driverMAPS, a TSG/OG is only considered significant if it is significant in the
run without using it in the training step. All data related to driverMAPS (basic, +feature and full version)
we presented in Figure 4 was obtained in this way. We found the model parameters are stable in each run
and the overall result is very similar to the run not using this “leave-one-out” strategy. We reasoned that this
benefits from the fact that driverMAPS estimates parameters from 20 tumor types and used ASH to shrink
parameters towards the mean to avoid large deviations.

Comparison of power

We used the number of significant genes at FDR<0.1 for power comparison. Similarly, we again used the
leave-one-out strategy and the TSG/OG used in the training set is only considered significant if it is significant
in the run without using it in the training step.

Supplementary Note 7: Additional information for the paper

Primers

METTL3E532KFor ggcactcgcaagattAagttatttggacgacca

METTL3E532KRev tggtcgtccaaataactTaatcttgcgagtgcc

METTL3E532QFor ggcactcgcaagattCagttatttggacgacca

METTL3E532QRev tggtcgtccaaataactGaatcttgcgagtgcc

METTL3E516KFor agtcataaaccagatAaaatctatggcatgatt

METTL3E516KRer aatcatgccatagatttTatctggtttatgact

METTL3D515YFor accagtcataaaccaTatgaaatctatggcatg

METTL3D515YRev catgccatagatttcatAtggtttatgactggt

METTL3P514TFor tccaccagtcataaaAcagatgaaatctatggc

METTL3P514Trev gccatagatttcatctgTtttatgactggtgga

METTL3H512QFor gttcgttccaccagtcaGaaaccagatgaaatc

METTL3H512QRev gatttcatctggtttCtgactggtggaacgaac

METTL3E506KFor gatgtgatcgtagctAaggttcgttccaccagt

METTL3E506KRev actggtggaacgaacctTagctacgatcacatc

METTL3E454KFor tatgaacgggtagatAaaattatttgggtgaag

METTL3E454KRev cttcacccaaataatttTatctacccgttcata
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