Reviewers' comments:
Reviewer #1 (Remarks to the Author):

The authors developed driverMAPS (Model-based Analysis of Positive Selection), a comprehensive
model-based approach to driver gene identification. Simulation analysis showed that diverMAPS is
more powerful than existing software. More interestingly, the authors identified several novel
driver genes, including the mRNA methytransferases. Their results suggested that mRNA
modification is an important biological process in cancer.

Major comments:
1. Since driverMAPS is based on a much richer statistical model, could the author specify the
performance, such as speed, memory, and storage to run this algorithm?

2. The authors included several algorithms to compare the performance, such as MuSiC. The
authors may also include several other famous software for comparison, including CanDrA,
CHASM, MutationaAssessor, etc.

3. The reviewer appreciated the better performance for driverMAPS based on simulation data. It
may be more convincing to evaluate the performance based on real biological data, especially as
mentioned by the author, the “cancer dependency map”, as well as another study (Ng et al.,
Systematic Functional Annotation of Somatic Mutations in Cancer, Cancer Cell, 2018). Did
driverMAPs identify more driver genes overlapped with these two datasets than any other
algorithms? If using these two datasets as the true functional calls, what is the AUC/true
positive/false positives across different algorithms?

4. It is not convincing for figure 5b-c since it is not surprising to see the statistical significance
when comparing novel significant genes with random genes, especially these genes are expressed
at a higher level than non-driver genes. Did these significant genes show higher expression
level/CNV alterations than gene lists identified by other algorithms?

5. The algorithm mentioned the single-base level, while it seems unnecessary to identify driver
genes. Could the authors clarify? If this is really the functions of the algorithm, could the author
use this directly to predict which mutation on METTL3 is a driver?

Minor comments:
1. It is difficult to interpret the results for figure 6c/d without appropriate label. The color does not
match from legend to the figure.

2. Could the authors also include the paper for METTL14 in endometrial cancer (Chuan He, to
appear) in the revision for reference?

Reviewer #2 (Remarks to the Author):

Zhao et al present a novel method, driverMAPS, to nominate driver genes in exome SNV data. The
approach is based on a Bayesian hypothesis testing approach that classifies genes according to
being an oncogene or TSG driver or null. They benchmark the method against state of the art
approaches (dndscv, MutSigCV, oncodrive suite) to demonstrate increased power and adequate
false discovery control with driverMAPS. They validate one of the novel hits derived from their
method using functional experimentation.

Overall, the method is conceptually sound, clearly presented (though with numerous typos), and
assiduously benchmarked against state of the art approaches. Functional mutations in an RNA



methyltransferase (METTL3) previously not associated with cancer are validated in cell lines using
RNAI and transgene over-expression in combination with an RNA methylation readout.

DriverMAPS employs a base resolution modeling of background mutation rates and explicit
modeling of alternative hypotheses (oncogene, tumor suppressor) to derive a Bayes Factor of a
gene being a cancer driver. The background likelihood models context-specific mutation counts at
each position of the exome as an overdispersed Poisson whose log mean is a linear combination
(defined by "Beta_b" coefficients) of gene level log mutation rate and regional covariates (gene
expression, hi-c). The "selection model" likelihood adds additional "functional” terms to this log
mean parameter. These comprise "Beta_f" coefficients that specify linear combinations of
"functional features”, e.g. SIFT, PhyloP, as well as an HMM derived "hotspot term" theta.

Model fitting involves finding maximum likelihood assignments for these Beta coefficients and the
theta coefficients, among others, against real data of mutation counts. Background models are fit
genome-wide against synonymous counts only. The two separate selection models (oncogene and
tumor suppressor) are fit against non-synonymous counts using small curated sets of (<100)
oncogenes and tumor suppressor genes. The resulting models are then applied genome-wide to
yield Bayes factors for each genes, which are then combined using a Bayesian FDR procedure to
yield a list of driver genes for the given tumor type.

Major critiques:

- Justify / Clarify model fitting and necessity of curated "training sets" of oncogenes and tumor
suppressors

The selection model is fit to curated tumor suppressors and oncogenes - this reliance makes the
method seem a little flimsy and circular, since many of these "lists" have been derived from similar
analyses (eg MutSig) applied to TCGA

These genes are presumably chosen from a "pan-cancer” list but the models fit by tumor type,
where the majority of these genes are not relevant - e.g. the majority of EGFR mutations in
melanoma are passengers. This makes me wonder how essential this gene choice is for the model
fitting. Indeed the correlation of TSG with CNV loss frequency (Figure 4) is poor, so not clear how
much additional signal the TSG / OG training is picking up.

How well would a single "driver" model trained on all genes perform compared to this model?
Similarly, how well does this OG + TSG driver model perform as an OG / TSG "classifier" on cross
validation eg if you leave half of the genes out of the training? My guess it's not spectacular.

The background model / BNb parameters is fit using synonymous mutations only. Are these B™b
parameters used in the selection model or re-fitted in the selection model?

What happens when nonsynonymous mutations are used instead? Since the background model
lacks functional and hotspot features, it should still show a difference vs the selection model.

B parameters (SIFT, CONS, PhyloP) are reported in Figure 2c for the background model (B f_0)
- but the BMM definition does not include a selection term so not clear how these are fit. eg using
the "selection model" on synonymous data?

- Please describe and justify simulation approach used for power analysis

The simulations are core to the arguments that driverMAPS has increased power and adequate
FDR control, however they are not rigorously specified. "We simulated mutations under positive
selection” and "we simulate synonymous mutations at predefined background mutation rates™ are
quite vague. One guess is that the authors are using the inference model with some specified



parameters as a generative model from which to draw mutation count data. If so, then the
simulations seem somewhat "rigged" to favor driverMAPS. This is especially true if the generative
model has the exact same structure (eg same set of background and functional covariates) as the
inference. What would happen if you had 10 unknown functional covariates generating the
positively selected data, or only considered a subset of the generative functional / background
covariates in the driverMAPS inference. ie how does incomplete knowledge of these factors
influence the power and precision of the inference.

It would be ideal if the authors could use a more objective benchmark e.g. a "third party" cancer
mutation simulation software or analysis of subsampled "real" data. There is no third party
software that I'm aware of, and analysis of subsampled data vs a gold standard (eg COSMIC) may
provide a decent analysis of specificity but sensitivity is hard to quantify. However, the authors
should either pursue something in this direction or at the very least present a rigorous description
of the simulations used for benchmarking.

Minor critiques:
- Please clarify the HMM model and its inference, especially the theta term

I've read the main and supplementary methods. It's not clear what theta represents, since it
depends on p_m, which is not explicitly defined in the supplement via a formula but only described
as the "average increase of mutation rate in hotspots under model m". Conceptually theta should
be a variable whose value is >1 at hotspots and is 1 otherwise ... eg like a relative risk for the
binary variable of "is hotspot" vs "is not hotspot".

Please provide an explicit formula for theta and rho_m. There is also a parameter rho_0, and rho
mentioned in the HMM model fitting (page 7 supplement) that is not defined in the HMM spec
(page 6). My guess is that rho is some odds ratio of being a hotspot, but this is not clear.

The initial HMM parameters (p_0, p_1) btw are strangely defined - these params don't have a
subscript i but yet they are defined in terms of Z_i. Are these just supposed to be the probabilities
of P(Z_0"™m = 1).

- Spellcheck!

There are a bunch of typos in this manuscript and the supplement. The following is by no means

comprehensive: Figure 3 "false postive" . Supplement page 7: "The mission probability", "emission
prabablities”, Supplement page 5: "values of t are limit to the..."



Response to reviewer 1:

Major comments:

1. Since driverMAPS is based on a much richer statistical model, could the author specify
the performance, such as speed, memory, and storage to run this algorithm?

We have provided a website for detailed installation, usage and performance information.
Please see https://szhao06.bitbucket.io/driverMAPS-documentation/docs/index.html. The
software and output files need a total of 8G storage. We have dramatically improved
performance of the software since the previous version. Currently, driverMAPS v1.0.4 can
be run using a single CPU processor, with 12G memory. The single processor mode takes
around 10 hours to finish. To increase speed, we have provided a parallel computing option
and the run time can be reduced to 2-3 hours when using 6 cores and 18G memory in total.
We have added this information to Supplementary Notes.

2. The authors included several algorithms to compare the performance, such as MuSiC. The
authors may also include several other famous software for comparison, including CanDrA,
CHASM, MutationAssessor, etc.

We did not compare driverMAPS with CanDrA, CHASM and MutationAssessor, because
these software packages all address a different problem to the one addressed by
driverMAPS (and the other software we did compare against). Specifically, CanDrA, CHASM
and MutationAssessor typically use a training set to learn whether an individual mutation is
likely a cancer driver mutation based on features of the mutation, e.g. conservation, impact
on protein structure. This type of method, alone, is not best suited for discovering cancer
driver genes. For example, a mutation in a conserved position at a kinase domain may be
statistically more likely to be a driver mutation than random mutations, but this will not
automatically make the gene containing this mutation a driver gene. One needs to integrate
information of the entire gene to assess its role - which is what driverMAPS does (as do the
methods we compare against). Because of these different goals, the softwares mentioned by
the reviewer complement, instead of competing with, our method. Indeed, we used scores
from MutationAssessor as a functional annotation in the driverMAPS model.

Since these software packages address a different problem we have not changed the
manuscript in light of this comment.

3. The reviewer appreciated the better performance for driverMAPS based on simulation
data. It may be more convincing to evaluate the performance based on real biological data,
especially as mentioned by the author, the “cancer dependency map”, as well as another
study (Ng et al., Systematic Functional Annotation of Somatic Mutations in Cancer, Cancer
Cell, 2018). Did driverMAPs identify more driver genes overlapped with these two datasets
than any other algorithms? If using these two datasets as the true functional calls, what is
the AUC/true positive/false positives across different algorithms?




We agree with the reviewer that there are limitations to our evaluation of methods,
although we emphasize that we tried to make our simulations as realistic as possible by
ensuring that they capture the main biological patterns exhibited by real cancer driver
genes (functional bias of mutations, spatial clustering, etc.). In response to comments made
by another reviewer we have further improved the simulations to allow for model
misspecification - specifically we allow the mutation effects to vary significantly from what
is expected based on functional annotations. Additionally, we used a more sophisticated
(and realistic) background mutation model in our new simulations. The new results show
that the superior performance of driverMAPS is robust to these changes. Please see our
updated simulation procedures in the Method section and results from these new
simulations in Figure 3 in the manuscript.

Regarding the real data, the difficulty is that there is no “true set” of driver genes for us to
perform evaluation. While the two datasets mentioned by the reviewer are definitely
relevant to our study, each of them has limitations that makes them difficult to use to
confirm our results. The genes provided by the cancer dependency map paper are not
necessarily cancer driver genes. In the paper [Tsherniak and Hahn, Cell, 2017], the authors
reported a total of 769 genes displaying strong “differential dependency” in about 500
cancer cell lines (the genes that are universally required are not interesting). The authors
partition these genes into several classes, with only class 1 (47 genes, less than 10%)
representing likely oncogenes. The rest are various genes that cancer cells’ growth depends
on. The second paper, Ng et al, Cancer Cell, 2018, performed experimental studies on
mutations in a very small set of well-known cancer driver genes (half of mutations tested
come from just 4 driver genes!). As such, the dataset has limited value in assessing methods
that aim to predict novel driver genes.

Our approach was to compile a relatively reliable and comprehensive set of currently
known driver genes. It is composed of COSMIC census gene list (manually curated with
experimental support, https://cancer.sanger.ac.uk/census), TCGA pan-cancer gene list
(driver genes discovered by TCGA project) and Vogelstein et al 2013 gene list (manually
curated with experimental support). Using this as the “true set”, we found driverMAPS
recovered the largest number of known driver genes compared to software with similar
fractions of known driver genes out of all significant gene (Figure 4 a, b ¢). We note that
even this list is not complete and this is exactly the reason why we are developing methods
for discovering novel driver genes.

4. It is not convincing for figure 5b-c since it is not surprising to see the statistical
significance when comparing novel significant genes with random genes, especially these
genes are expressed at a higher level than non-driver genes. Did these significant genes
show higher expression level/CNV alterations than gene lists identified by other

algorithms?

The analysis performed in Figure 5b-c simply aims to assess the novel genes discovered by
driverMAPS using independent genomic data. If they are enriched with driver genes, we
should see elevated expression and higher chance of concurrence with CNV events.
Comparisons with other algorithm in terms of sensitivity, specific etc, are already
performed in a more accurate way as shown in Figures 3 and 4.



5. The algorithm mentioned the single-base level, while it seems unnecessary to identify
driver genes. Could the authors clarify? If this is really the functions of the algorithm, could
the author use this directly to predict which mutation on METTL3 is a driver?

To clarify, this is not the function of the algorithm. Although the model is at the single-base
level (i.e., every different possible mutation has its own rate depending on its unique set of
features) the function of our algorithm is to *combine information* across all mutations to
give gene level predictions, i.e. whether a gene is a driver or not. The reason the model is
performed at the single-base level is to model the heterogeneity of background mutation
rates and functional features across the gene and not to make predictions for each mutation.

However, the reviewer raised an interesting question, that is, besides giving gene-level
predictions, can we prioritize positions as likely driver mutations? Taking METTL3 as an
example, there are 17 different nonsynonymous mutations identified in the bladder cancer
cohort and was identified as a significant tumor suppressor gene (TSG). We rank these
mutations by their contributions to the evidence of the gene as TSG. Specifically, we
calculated a Bayes factor for each mutation, which compares the likelihood under the
selection model against the background model. We provide the results below, and we do
feel that they provide some helpful indications of which mutations are contributing the
most to drive the gene-level signal. We therefore added these results to the manuscript
(Supplementary Table S10).

Position Mutation log(Bayes Amino acid Loss of Conser-  Sift_  Phylop MA_ No.
(on Chr14) Factor) change function vation pred _pred pred mutations
21967254 C>T 2.95 E516K No Yes Yes Yes Yes 2
21971663 G>A 2.37 Q126X Yes Yes Yes Yes No 1
21971651 C>A 2.17 E130X Yes Yes No Yes No 1
21969218 T>A 1.48 N318I No Yes Yes Yes Yes 1
21967257 C>A 1.48 D515Y No Yes Yes Yes Yes 1
21967260 G>T 1.48 P514T No Yes Yes Yes Yes 1
21967206 C>G 1.47 E532Q No Yes Yes Yes Yes 1
21969223 G>C 1.47 F316L No Yes Yes Yes Yes 1
21967206 C>T 1.47 E532K No Yes Yes Yes Yes 1
21967452 C>T 1.47 E506K No Yes Yes Yes Yes 1
21967728 C>T 1.47 E454K No Yes Yes Yes Yes 1
21967676 C>T 1.45 R471H No Yes Yes Yes Yes 1
21967685 C>T 1.45 R468Q No Yes Yes Yes Yes 1
21971844 G>A 0.91 P94L No Yes Yes Yes No 1
21969985 C>T 0.69 E262K No Yes No Yes No 1
21967264 A>C 0.59 H512Q No Yes No No No 1
21972010 C>T 0.40 E39K No No No Yes No 1

Minor comments:
1. It is difficult to interpret the results for figure 6¢c/d without appropriate label. The color
does not match from legend to the figure.




We thank the reviewer for pointing out this error. We have now corrected the color labels
and they should now match with the figure.

2. Could the authors also include the paper for METTL14 in endometrial cancer (Chuan He,
to appear) in the revision for reference?

We thank the reviewer for this reminder. The paper has now been published and reference
has been updated in the manuscript.

Reference Liu, J. et al. m6A mRNA methylation regulates AKT activity to promote the
proliferation and tumorigenicity of endometrial cancer. Nat. Cell Biol. 20, 1074-1083
(2018).

Response to reviewer 2:

Major critiques:

- Justify / Clarify model fitting and necessity of curated "training sets" of oncogenes and
tumor suppressors

The selection model is fit to curated tumor suppressors and oncogenes - this reliance makes
the method seem a little flimsy and circular, since many of these "lists" have been derived
from similar analyses (eg MutSig) applied to TCGA

These genes are presumably chosen from a "pan-cancer” list but the models fit by tumor
type, where the majority of these genes are not relevant - e.g. the majority of EGFR
mutations in melanoma are passengers. This makes me wonder how essential this gene
choice is for the model fitting. Indeed the correlation of TSG with CNV loss frequency
(Figure 4) is poor, so not clear how much additional signal the TSG / OG training is picking

up.

We used a small training set of 124 curated tumor suppressor genes and oncogenes from
Vogelstein et al 2013. Only 29% of these genes were uncovered by unbiased genome
sequencing studies using programs such as MutSig; the rest were discovered by more direct
investigations with strong experimental support. Furthermore, even those uncovered by
MutSig-type analyses have been carefully curated, and generally have strong additional
experimental support. Therefore, the parameters we learn from this training set should
primarily reflect properties of real cancer genes rather than just re-learning parameters
used by MutSig. Indeed, in support of this, the parameter estimates we obtained match
biological expectations, e.g. we see mutations enriched in conserved positions, even though
MutSig does not use conservation information. Further, our method does identify many
potential novel driver genes, and the list of novel driver genes we identify is not simply
recapitulating MutSig results, demonstrating that our method is not “circular”.

Regarding the “necessity” of training data, competing analysis methods -- whether or not
formally based on training data -- incorporate parameter values that reflect current
understanding of the characteristics of driver genes. For example, MutSig used a “null boost
score” of 3 for null mutations and score of 1 for other nonsynonymous mutations. Our
method, instead of heuristically assigning values to such parameters, learns them from data,
which we see as an advantage rather than a limitation.



The reviewer is correct that, due to cross-tumor differences the pan-cancer training set will
likely contain false driver genes for any given tumor type. Also, the labeling of TSG or OG
may not be accurate for all genes. Similarly the training set of “null” genes will inevitably
include some actual true (as yet undiscovered) driver genes. It is important to note that
although this “contamination” will reduce power to detect driver genes, it will not increase
false positive prediction rate. This is because including non-driver genes in the training set
will cause underestimation of the enrichment parameters for driver genes. Despite these
limitations, the current training set should be enriched with driver genes, enabling us to
capture positive selection signals. From results shown in the paper, its performance is
already better than other currently available methods.

We have added a paragraph addressing these points to the manuscript (see line 107 -118).

How well would a single "driver" model trained on all genes perform compared to this
model?

To assess the “single driver” model, we pooled all training genes into one set, without
distinguishing OGs and TSGs, and estimated parameters for the selection model. The
following table showed estimated parameter using simulated mutation data of 200 samples
(the same data as used in Figure 3b-d). We see the effect sizes for functional covariates in
the single driver model are a compromise between parameters estimated separately for
TSG and OG model. For parameters related to the HMM, as there are less frequent hotspots
when pooling TSG and OG together, we see smaller v01 (transition probability from non-
hotspot to hotspot) for single driver model. Thus, this single driver model is also able to
capture various positive selection signals.

BLOF Bcons BMA ﬁof

TSG model
1.387 | 0.247 | 0.664 | 0.873

groF | geons | gt Bo' Parameters related to HMM

OG model P1 P2 Vo1 Vo1 Vo1 Vo1 |109(P1/P0)

-0.189 | 0.548 | 0.337 | 0.194 | 0.999 |0.000591| 1.000 |0.000388| 0.656 | 0.344 8.654

Parameters related to HMM

LoF cons MA f
Single driver B B B Bo

model P1 P2 Vo1 Vo1 Vo1 Vo1 |109(P1/P0)

0.655 | 0.417 | 0.492 | 0.719 | 1.000 |0.000194| 1.000 |0.000127| 0.655 | 0.345 8.079

In fact, except for the g-°F parameter, most parameters are not affected much in the single

driver model vs. the separate models. Indeed, with 200 simulated samples, the difference of
performance between the TSG/OG model and a single model is minimal. With growing
sample sizes, TSG/OG model has only slightly higher more power. See results in the
following figure.
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Despite the fact that the single-driver model has similar performance, we prefer to model
TSG and OGs separately, because i) biologically it makes sense that patterns of selection
should be different in the two groups, and indeed our estimates of g correctly reflect this
biological expectation; ii) in the future (e.g. with richer training data) it is possible that the
gain over a single-driver model may be greater.

We have added these results and related discussion in the manuscript from line 190 to 197,
and added the figure in the supplement (supplementary figure S4).

Similarly, how well does this OG + TSG driver model perform as an OG / TSG "classifier" on
cross validation eg if you leave half of the genes out of the training? My guess it's not

spectacular.

To assess the performance of our model as a TSG/OG classifier, we performed the cross
validation analysis suggested by the reviewer. We performed five-fold cross-validation, in
which 80% of the original training set is used for training, and the remaining 20% of genes
are used for evaluating TSG/0G labels (validation set). We used TCGA data for 20 tumor
types, and predict the TSG/OG labels for genes in the validation set in each tumor type
where the genes are identified as significant (FDR <0.1). The result below show most
predictions are consistent with the gene’s original label in the training set (91%
consistency). Looking into the genes, we found several classical TSGs or OGs could be
reliably labeled. For example, PTEN is highly enriched with LoF mutations and has been
correctly identified as TSG in all 13 tumor types it appeared significant; PIK3CA and KRAS
mutations have strong spatial clustering pattern and were correctly predicted as OG in 24
out of 25 cases.

However, we feel these results may overstate the ability of our method as a TSG/0G
classifier in practice. Specifically, we believe the results may be biased towards the rules
used by Vogelstein 2013, which defined TSGs largely based on enrichment of LoF mutations
and OGs based on spatial clustering. It is unclear how general these rules are applicable to
other, less common driver genes; as a result, we did not include these results in the
manuscript or emphasize our model as a TSG/0OG classifier. We thank the reviewer for
pointing out the weakness of using it as TSG/0G classifier, we think this is an important
issue and have added clarifications and discussions about this in the manuscript from line
183 to 189.
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The background model / BAb parameters is fit using synonymous mutations only. Are these
B”b parameters used in the selection model or re-fitted in the selection model?

They are used in the selection model. We now clarify this in line 492-493 in method section
of the manuscript and figure 1 legend (line 752).

What happens when nonsynonymous mutations are used instead? Since the background
model lacks functional and hotspot features, it should still show a difference vs the selection

model.

In Figure 2c bottom panel, we trained the SMM using all genes not included in the training
sets of “known” cancer genes. Specifically, we first used synonymous mutations to estimate
background model parameters, then fit the selection model using nonsynonymous
mutations outside the training gene set (with the background model parameters plugged
in). The Figure shows that the effect size parameters are all close to 0, which demonstrates
that nonsynonymous mutations in non-cancer genes are explained well with the
background model estimated from synonymous mutations. This implies that using
nonsynonymous mutations to estimate background rates would yield results similar to



those we obtained using synonymous mutations. We have added clarifications in line 162-
167 of the manuscript and legend of Figure 2 (line 766-768).

B~ f parameters (SIFT, CONS, PhyloP) are reported in Figure 2c for the background model
(B~f 0) - but the BMM definition does not include a selection term so not clear how these
are fit. eg using the "selection model"” on synonymous data?

As clarified above, Figure 2c bottom panel is not background model and thus not fitted
using synonymous mutation data. Instead, it is the selection model (without HMM part)
fitted to nonsynonymous mutations outside the training genes. We have made this clearer
in Figure 2c legend.

- Please describe and justify simulation approach used for power analysis

The simulations are core to the arguments that driverMAPS has increased power and
adequate FDR control, however they are not rigorously specified. "We simulated mutations
under positive selection” and "we simulate s mutations at predefined background mutation
rates" are quite vague. One guess is that the authors are using the inference model with
some specified parameters as a generative model from which to draw mutation count data.
If so, then the simulations seem somewhat "rigged" to favor driverMAPS. This is especially
true if the generative model has the exact same structure (eg same set of background and
functional covariates) as the inference. What would happen if you had 10 unknown
functional covariates generating the positively selected data, or only considered a subset of
the generative functional / background covariates in the driverMAPS inference. ie how does
incomplete knowledge of these factors influence the power and precision of the inference.

It would be ideal if the authors could use a more objective benchmark e.g. a "third party"”
cancer mutation simulation software or analysis of subsampled "real" data. There is no
third party software that I'm aware of, and analysis of subsampled data vs a gold standard
(eg COSMIC) may provide a decent analysis of specificity but sensitivity is hard to quantify.
However, the authors should either pursue something in this direction or at the very least
present a rigorous description of the simulations used for benchmarking.

We thank the reviewer for pointing out the potential bias towards driverMAPS in our
previous simulation procedures. We agree a “third party” mutation simulation would be
ideal to test the performance, but as the reviewer also pointed out, no such software is
available. Thus, to provide a fairer comparison, we made several changes to our simulation
scheme, allowing the simulated data to deviate from our inference model.

First, we changed our background mutation simulation procedures. Instead of using our
own background mutation model, we used the background mutation model of dNdScv
(Martincorena, I. et al.2017). In dNdScv, 192 mutation types (based on tri-nucleotide
context) were used; in comparison, 9 types were used in our model. We simulated data
using parameters estimated by dNdScv for the LUSC cohort from TCGA (see simulation
procedures in manuscript for details). Second, in our original model, the effect of a mutation
(log-relative risk) is a linear function of the covariates. We now add a noise term to the
linear model in the simulation (this can be thought of as random effects), so that the effect
of a mutation in all simulated TSG or OG genes may deviate from the linear model. We use
Normal(0, 0.22) for the random effect term. Third, we simulate with 5 functional covariates



(LoF, conservation, SiFT, PhyloP, MutationAssessor) but only used three of them (LoF,
conservation, MutationAssessor) when running driverMAPS.

With these changes, we have re-written the simulation part in the main text (line 199 to
239). We also have re-written the simulation procedure, with more details, in the Method
section (line 537 to 570). Below are the new simulation results and we have replaced Figure
3 with these new results. Our method remains as the best performing software.
Interestingly, we note that MutSigCV now has significantly inflated type I error rate,

suggesting that it may be sensitive to misspecification of background mutation rate model.
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Minor critiques:
- Please clarify the HMM model and its inference, especially the theta term

I've read the main and supplementary methods. It's not clear what theta represents, since it
depends on p_m, which is not explicitly defined in the supplement via a formula but only
described as the "average increase of mutation rate in hotspots under model m".
Conceptually theta should be a variable whose value is >1 at hotspots and is 1 otherwise ...
eg like a relative risk for the binary variable of "is hotspot" vs "is not hotspot".

Please provide an explicit formula for theta and rho_m. There is also a parameter rho_0, and
rho mentioned in the HMM model fitting (page 7 supplement) that is not defined in the
HMM spec (page 6). My guess is that rho is some odds ratio of being a hotspot, but this is not
clear.

We have modified the supplement to clarify the HMM model specification. Essentially theta
can take one of two values -- rho_1>1 inside hotspots, and rho_0<1 outside hotspots. (In
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each case theta is multiplying the overall average rate, so theta is not exactly 1 outside
hotspots, because the average includes both hotspots and non-hotspots.)

The initial HMM parameters (p_0, p_1) btw are strangely defined - these params don't have
a subscript i but yet they are defined in terms of Z_i. Are these just supposed to be the
probabilities of P(Z_0"m = 1).

Yes, they are just initial probabilities and should not depend on i. We have corrected this in
the supplement.

- Spellcheck!

There are a bunch of typos in this manuscript and the supplement. The following is by no
means comprehensive: Figure 3 "false postive" . Supplement page 7: "The mission

probability”, "emission prabablities"”, Supplement page 5: "values of t are limit to the..."

We thank the reviewer for pointing out these errors. We have corrected them and
performed a thorough spellcheck. We have also made minor wording improvement
throughout the manuscript and supplementary notes. Also, notations for all equations have
been checked, with some minor changes.



REVIEWERS' COMMENTS:
Reviewer #1 (Remarks to the Author):

The authors addressed all of my concerns.

Reviewer #2 (Remarks to the Author):

The reviewers have adequately addressed all my concerns.
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--- We thank the reviewer for providing us the reviews.

Reviewer #2 (Remarks to the Author):
The reviewers have adequately addressed all my concerns.

--- We thank the reviewer for providing us the reviews.



