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Supplementary Figure 1. Real-time neural signal preprocessing with the rtNSR system1. In the DAQ rig, ECoG signals are
sampled from the participant’s brain at ∼3052 Hz, quantized, notch filtered at 60, 120, and 180 Hz, and decimated (with
anti-aliasing) to ∼381 Hz. The resulting signals are streamed into the real-time computer and, within rtNSR, band-passed
using eight FIR filters with center frequencies in the high gamma band (filter responses shown in the bottom-left plot). The
analytic amplitude is then estimated for each of the eight band-passed signals for each channel at ∼95 Hz using an FIR filter
designed to approximate the Hilbert transform. The analytic amplitudes for the eight bands associated with each channel are
averaged to yield a high gamma analytic amplitude signal for each channel.
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Supplementary Figure 2. Speech event detection during real-time decoding. (a) Speech event probabilities are computed by
the detection model for each time point. The plotted curve depicts example event probabilities for one of the utterance types
(for either question or answer events). (b) Speech event probabilities are smoothed using a sliding window average. (c) These
smoothed probabilities are thresholded to be either 1 or 0. (d) These binary values are then thresholded in time. Sometimes
referred to as debouncing, this step prevents false switches between binary states due to noise and the particular threshold
chosen. A transition from 0 to 1 in the time-thresholded values signifies a speech onset, and a transition from 1 to 0 signifies a
speech offset. (e) The neural data are segmented by the detected speech onset and offset, including some padded time points
before and after the detected window (controlled by hyperparameters), and passed to the appropriate utterance classification
model.
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Participant 2

Participant 3

Supplementary Figure 3. Speech decoding and classification results for participants 2 and 3 (participant 1 shown in Fig. 2).
(a) Decoding accuracy rate, which measures the full performance of the system, is significantly above chance for questions
and answers (without and with context; * all p < 0.05, 4-way Holm-Bonferroni correction). Answer decoding accuracy rate is
significantly higher with context compared to without context. (b) Classification accuracy (the percent of correctly classified
speech events, using true event times) mirrors decoding accuracy rate. (c) Cross entropy for utterance classification demonstrates
similar patterns of better-than-chance performance and improvement with context (lower values indicate better performance).
In b–c, values were computed by bootstrapping across trials. Each boxplot depicts a line marking the median value, box heights
representing the interquartile range, and whiskers extending beyond the box edges by 1.5 times the interquartile range. (d)
Event detection scores demonstrate near-ceiling performance of the speech detection model for both questions and answers.
Black dots depict detection scores on individual test blocks. (e–g) MRI brain reconstructions with electrode locations and
discriminative power for each electrode used by e question, f answer, and g speech event discriminative models. Electrodes that
were not relevant are depicted as small black dots.
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Supplementary Figure 4. Performance evaluation using simulated low-resolution spatial coverage with participant 1. All values
are presented as percents of the corresponding high-resolution result value. Each dark dot (with black outline) depicts the
performance (mean ± s.e.m.) across the four low-resolution simulation results (shown as light dots with no outline). Except
for the answer detection score, performance is significantly worse with the low-resolution signals than with the high-resolution
signals (* p < 0.05, one-tailed one-sample t-test).
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Participant 1
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Supplementary Figure 5. Effects of amount of training data and hyperparameter optimization on speech classification for
participants 1 and 2 (participant 3 shown in Fig. 3). (a) Classification accuracy and cross entropy as a function of the amount
of training data (mean ± s.e.m.). (b) Variability in classification performance across hyperparameter optimization epochs for
one test block with each participant. Each boxplot depicts a line marking the median value, box heights representing the
interquartile range, and whiskers extending beyond the box edges by 1.5 times the interquartile range. Each blue and red dot
shows the performance on the test block using a single set of hyperparameters chosen for one epoch during optimization on a
separate validation set. Each green dot marks the performance on the test block using the hyperparameters that minimized
cross entropy on the validation set (the hyperparameter values used in the main results).
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Supplementary Figure 6. Effects of amount of training data on speech detection for each participant. Each plot shows question
and answer detection scores (mean ± s.e.m.) after fitting the speech detection models with various percents of the available
speech and silence data points (between 1% and 100%). The percents in these plots are relative to the total amounts of available
training data for each participant (shown in Supplementary Table 1). The error bars in this plot were typically too small to be
seen alongside the circular markers.
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Supplementary Figure 7. Spatiotemporal neural feature vectors and associated target labels during training of the speech
detection and utterance classification models. In this example, a participant produces the answer utterance “Hot” (with
phonetic transcription /h "A t/). Speech onset occurs at time index t− 1. The phone labels qt at each time point t are obtained
from phonetic transcriptions. The speech event labels ht, which are either silence, perception, or production at every time
point, are determined from these phonetic transcriptions. The feature vector at time t contains the high gamma z-score value
at every relevant electrode for every time point within some feature time window relative to t. The feature vector and target
label for each time index are used to train the speech event probability and phone likelihood models. During testing, the neural
feature vectors yt are constructed in a similar fashion and used within the speech detection model to compute the speech event
probabilities p (ht|yt) and within the utterance classification models to compute the phone likelihoods p (yt|qt).
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Supplementary Figure 8. Schematic example of Viterbi decoding in the utterance classification models. In this example, a
classification model computes the likelihoods of the utterances “Violin” (/v aI 2 l "I n/), “Cold” (/k "oU l d/), and “Eight”
(/"eI t/). Each utterance is represented as an HMM with phones (obtained from the phonetic transcriptions) as hidden states
and spatiotemporal neural feature vectors as observations. Each HMM is forced to have /sp/ as the first and last states. The
transition matrix of each HMM is defined such that a phone state can only transition to itself or, if it is not the last phone,
the next phone in the sequence. Given feature vectors for time indices t ∈ {0, 1, . . . , T}, Viterbi decoding is performed on each
HMM, updating the values in the Viterbi trellis for each HMM (shown here as tables of log likelihoods) at each time index.
The log likelihood of the most likely Viterbi path at the final state of each HMM (the value for the final /sp/ state at time T )
is used as the log likelihood of that utterance. The classifier then smooths and normalizes these log likelihood values to obtain
a final estimate for the utterance likelihoods.
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Supplementary Figure 9. Schematic depiction of the rtNSR system used during real-time decoding. The solid rectangles
represent real-time process classes and arrows represent the passing of information between the processes. The Real-time
interface card reader process reads neural data acquired from the DAQ rig and streamed through the real-time interface card
(PO8e, Tucker-Davis Technologies). The neural data are processed in a filter chain comprising three processes: the Multi-band
band-pass FIR filter process that band-passes the signals for each channel in eight different sub-bands in the high gamma
band range (between 70–150 Hz), the Analytic amplitude FIR filter process that extracts the analytic amplitude for each band
and each channel, and the Multi-band averager process that averages the analytic amplitude values across the bands for each
channel to obtain the desired measure of that channel’s high gamma activity. These high gamma signals are written to disk
in the Data storer process (along with metadata from other processes, not depicted here) and normalized and clipped in the
Data normalizer process. The normalized neural data are piped to the Event detector process, which analyzes the data at each
time point to predict the onsets and offsets of speech events. When an event is detected, the high gamma z-scores are stored
in a shared memory array that can be accessed by either the Question classifier or Answer classifier process to predict the
utterance likelihoods associated with that event. The Utterance predictor process uses these likelihoods to update the answer
priors and predict which question was heard or which answer was said by the participant. The Prediction GUI process displays
the decoded utterances on a screen. Throughout the task, the Participant stimulus GUI process presents the auditory and
visual stimuli to the participant.
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Supplementary tables

Supplementary Table 1. Amount of training and testing data collected with each participant.

Participant Data type Total data Question (perception) data1 Answer (production) data1

1 Training 3 task blocks; 941 seconds 90 trials; 189 seconds 240 trials; 134 seconds
Testing 2 task blocks; 421 seconds 52 trials; 104 seconds 52 trials; 26 seconds

2 Training 9 task blocks; 2776 seconds 270 trials; 565 seconds 720 trials; 525 seconds
Testing 4 task blocks; 1146 seconds 104 trials; 208 seconds 104 trials; 62 seconds

3 Training 6 task blocks; 1898 seconds 180 trials; 376 seconds 480 trials; 280 seconds
Testing 3 task blocks; 875 seconds 78 trials; 156 seconds 78 trials; 40 seconds

1 Each trial corresponds to one utterance, and the durations given here only consider time points that occurred during
speech (silence time points are excluded).
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Supplementary Table 2. Significance testing statistics for question and answer decoding and classification performance.

Number of
Metric Test Participant Prediction type p-value samples1

Decoding One-tailed 1 Question < 1× 10−50 54
accuracy bootstrap test, Answer without context < 1× 10−50 53
rate performance vs. Answer with context < 1× 10−50

chance 2 Question < 1× 10−50 119
Answer without context 2.3× 10−10 105
Answer with context < 1× 10−50

3 Question < 1× 10−50 81
Answer without context 2.1× 10−14 78
Answer with context < 1× 10−50

One-tailed 1 Answer (with vs. 1.9× 10−3 53
permutation without context)
test, with vs. 2 Answer (with vs. 7.9× 10−5 105
without context without context)

3 Answer (with vs. 0.029 78
without context)

Classification One-tailed 1 Question 1.7× 10−10 52
accuracy bootstrap test, Answer without context 5.9× 10−7

performance vs. Answer with context 5.9× 10−10

chance 2 Question < 1× 10−50 101
Answer without context 4.1× 10−7

Answer with context 9.7× 10−14

3 Question 4.0× 10−14 75
Answer without context 2.3× 10−8

Answer with context 2.7× 10−13

One-tailed 1 Answer (with vs. 0.033 52
exact McNemar’s without context)
test, with vs. 2 Answer (with vs. 1.9× 10−6 101
without context without context)

3 Answer (with vs. 9.2× 10−4 75
without context)

Cross One-tailed 1 Question 5.6× 10−16 52
entropy bootstrap test, Answer without context 3.3× 10−3

performance vs. Answer with context 1.3× 10−5

chance 2 Question < 1× 10−50 101
Answer without context 1.0× 10−5

Answer with context < 1× 10−50

3 Question < 1× 10−50 75
Answer without context 3.7× 10−11

Answer with context < 1× 10−50

One-tailed 1 Answer (with vs. 7.6× 10−6 52
Wilcoxon without context)
signed-rank test, 2 Answer (with vs. 2.6× 10−17 101
with vs. without context)
without context 3 Answer (with vs. 3.1× 10−11 75

without context)

1 The reported number of samples were the number of detected events for the decoding accuracy rate metric
and the number of actual trials for the other two metrics.
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Supplementary Table 3. Answer classification information transfer rates (ITR; given in bits per second) for each participant.

Context ITR using full task ITR using answer ITR using combined question
Participant integration block durations1 speech times1 and answer speech times1

1 Without context 0.13 0.90 -
With context 0.21 1.4 0.43

2 Without context 0.045 0.37 -
With context 0.11 0.94 0.30

3 Without context 0.085 0.77 -
With context 0.14 1.3 0.38

1 All speech times were determined from the acoustic transcriptions, and each task block duration was
computed as time interval between the transcribed speech onset time for the first question in the block
and the transcribed speech offset time for the final answer in that block.
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Supplementary Table 4. Context integration effects on answer classification accuracy for each participant.

Participant No context (%)1 Soft context (%)1 Hard context (%)1 True context (%)1

1 42.31 (−13.46) 55.77 (+0.00) 51.92 (−3.85) 67.31 (+11.54)
2 27.18 (−18.45) 45.63 (+0.00) 44.66 (−0.97) 45.63 (+0.00)
3 38.96 (−15.58) 54.55 (+0.00) 48.05 (−6.49) 59.74 (+5.19)

1 Each entry specifies the classification accuracy on the answer classification test trials followed by the difference
between this accuracy and the corresponding accuracy with soft contexts in parentheses.
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Supplementary Table 5. The description and optimization search space for each hyperparameter.

Optimization Hyperparameter description Search space type Value range or choices

Speech Electrode relevance p-value threshold Logarithmically
[
10−50, 10−3

]
Detection uniform

Duration before t to include in the spatiotemporal Uniform [1, 300]
neural feature vector yt (in ms)
Duration after t to include in the spatiotemporal Uniform [1, 300]
neural feature vector yt (in ms)
Minimum amount of variance the principal components Uniform [0.01, 0.99]
should explain when fitting the PCA model
Question perception averaging window size (in samples) Uniform (integer) [80, 160]
Question perception probability threshold Uniform [0.4, 0.9]
Question perception time threshold (in samples) Uniform (integer) [5, 60]
Question perception onset index shift (in samples) Uniform (integer) [−100, 100]
Question perception offset index shift (in samples) Uniform (integer) [−100, 300]
Answer production averaging window size (in samples) Uniform (integer) [20, 80]
Answer production probability threshold Uniform [0.4, 0.9]
Answer production time threshold (in samples) Uniform (integer) [2, 10]
Answer production onset index shift (in samples) Uniform (integer) [−100, 0]
Answer production offset index shift (in samples) Uniform (integer) [−100, 50]

Utterance Electrode relevance p-value threshold Logarithmically
[
10−50, 10−3

]
classification uniform
(for questions Set of hidden states for the HMMs (S) Choice Phones or phonemes1

and answers) HMM self-transition probability (pself) Uniform [0.1, 0.9]
Shift relative to t specifying the first data point in Uniform [−200, 200]
the spatiotemporal neural feature vector yt (in ms)
Duration of each spatiotemporal neural feature vector Uniform [10, 400]
(in ms)
Minimum amount of variance the principal components Uniform [0.01, 0.99]
should explain when fitting the PCA model
Number of samples of each phone to include when Uniform (integer) [50, 3000]
training the phone likelihood models2

HMM emission probability scaling factor (we) Uniform [0.1, 5.0]
Log likelihood smoothing factor (ω) Uniform [0.0001, 1.0]

Context Context prior scaling factor (m) Logarithmically [0.1, 10]
integration uniform

1 Phoneme labels were simply the phone labels without stress markings. Across all test blocks and participants, phoneme
labels were only deemed optimal for one question classifier and one answer classifier.
2 This restriction on the number of available samples for each phone was primarily used to allow the optimizer to limit
the number of silence tokens included during training (there were much more silence data points than data points for any
other phone).
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Supplementary notes

Supplementary Note 1. Information transfer rate analysis.

The information transfer rate (ITR) metric quantifies the amount of information that a system
communicates per unit time and is commonly used to evaluate brain-computer interfaces2.
Based on ITR formulations described in existing literature2,3, we used the following formula
to compute ITRs in this work:

ITR =
1

T

[
log2N + P log2 P + (1− P ) log2

(
1− P
N − 1

)]
, (1)

where N is the number of answer responses in each test trial (which was always equal to
24), P is the prediction accuracy (which was the answer classification accuracy across all of
the test blocks for a participant, either with or without context integration), and T is the
average time duration for each trial. This formula makes the following assumptions: (1) on
average, all possible answer responses have the same prior probability of being the correct
answer choice in any trial; (2) the classification accuracy values used for P is stable over
time, which should be a valid assumption here given the number of test trials collected with
each participant; and (3) on average, each incorrect answer response has an equal probability
of being predicted. We used this formula to compute ITRs from the answer classification
results using three different methods of measuring trial duration (Supplementary Table 3).
We used the transcribed speech onset and offset times during all trial duration calculations.

First, we computed ITRs using full test durations for each participant. In this approach,
the value used for T was computed by combining the full test block durations (from the onset
of the first question to the offset of the final answer) across all test blocks and then dividing
by the total number of test trials. This approach provides a conservative estimate of the ITR
by assuming that the entire task duration was necessary for utterance predictions, which
results in an increased T and a decreased ITR.

Next, we computed ITRs using the mean utterance duration across the produced answer
responses during testing with each participant. In this approach, the value used for T was
computed by combining the duration of each answer utterance during testing and dividing
by the total number of test trials. This approach provides a liberal estimate of the ITR by
assuming that only the time spent by the participant physically producing the utterances
were relevant to the ITR calculation, resulting in the highest ITR values observed in this
work.

Finally, we computed ITRs using the mean question and answer duration across the
test trials for each participant. In this approach, the value used for T was computed by
combining the duration of each question utterance and each answer utterance during testing
and dividing by the total number of test trials. This approach provides a more moderate
estimate of the ITR than the estimate described in the previous paragraph by also including
the time required for the participant to listen to the questions. Because the questions were
only relevant to answer classification when integrating context, this approach was only used
for the answer with context classifications.

In general, the observed decoding accuracy rates are approaching the range that would be
useful to patients relying on this technology to communicate. Importantly, these rates reflect
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decoding of produced utterances that participants chose to say voluntarily (as opposed to
specific cued utterances that were read or repeated on each trial). Although our information
transfer rates (ITRs) were not as high as those observed in previous ECoG-based speech
classification efforts3 and intracortical communication prosthetic applications4, our speech
targets consisted of a small set of words or phrases as opposed to letter and syllable targets
used in those works. A common criticism of the ITR metric is that it does not consider
how easy or natural the behavioral paradigm is5,6, which currently presents an inherent
tradeoff in decoding systems. Unnatural interfaces could lead to increased rates of participant
fatigue compared to natural ones, and ITR also does not take into account the time it takes
for participants to learn to use the system. Here, we placed a greater emphasis on task
naturalness than on maximization of ITR. However, generalizability and accuracy of this
more natural decoding approach can be improved in future applications.
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Supplementary Note 2. Context integration effects.

We assessed how manipulations to the context integration approach affected answer
classification performance. In Section 2.2, we showed that context integration improves
decoder performance for each participant. This context integration approach involves using
soft context priors, which refers to the fact that soft classification is performed for each
question utterance to obtain a probability distribution over the possible questions, which
are then used to compute the answer priors. An alternative approach is to use hard context
priors, which force the decoded answer in any trial to be the most likely answer utterance
within the same question/answer set as the predicted question. To assess the efficacy of using
hard priors during context integration, we repeated the context integration step using hard
priors for each participant and measured the resulting classification accuracies. We found that
answer classification accuracy was always lower when using hard priors instead of soft priors,
although this effect was not significant in any participant (participant 1: p = 0.25, participant
2: p = 0.50, participant 3: p = 0.063, one-tailed exact McNemar’s test; Supplementary
Table 4). These findings suggest that the decoding system would not benefit from greater
constraints on which answer utterances are allowed in each trial based on the predicted
questions.

We also evaluated how using true priors, determined from the actual presented questions,
affected performance. In this approach, the decoded answer is the most likely answer utterance
within the same question/answer set as the actual question. To obtain an upper bound on
the performance of the context integration models, we repeated the context integration step
using true priors for each participant. We found that answer classification accuracy was
significantly higher for participant 1, identical for participant 2, and slightly higher (but
not significant) for participant 3 when using true priors instead of soft priors (participant
1: p = 0.016, participant 2: p = 1.0, participant 3: p = 0.063, one-tailed exact McNemar’s
test; Supplementary Table 4). This finding is supported by the relatively high question
classification accuracy for participant 2 compared to the other participants, suggesting that
the context integration model was performing at its upper bound only for participant 2 and
not for the other participants.
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Supplementary Note 3. Effect of spatial resolution on decoding performance.

We assessed the impact that the high spatial resolution of the ECoG arrays used with our
participants had on performance. To simulate a low-resolution ECoG array, we sub-divided
the electrodes for participant 1 into four distinct sets: one set containing the electrodes
spatially located in the odd-numbered rows and odd-numbered columns of the ECoG grid,
another set containing the electrodes located in the odd-numbered rows and even-numbered
columns, and two more sets determined similarly except with even-numbered rows (refer
to Fig. 2 for the electrode locations for this participant). For each of these four sets, we
evaluated the performance of the system while restricting models to only have access to the
electrodes in the current set during training and testing (hyperparameter values from the
high resolution models were used here). We found that performance was significantly worse
for the low-resolution models compared to the high-resolution ones for each prediction type
and performance metric (p < 0.05, one-tailed one-sample t-test; Supplementary Figure 4)
except for the answer detection score (p = 0.12, one-tailed one-sample t-test). These findings
emphasize the importance of high spatial resolution when using cortical features to decode
speech.

The high spatial resolution of the ECoG arrays used in this work played a major role in
our ability to reliably decode speech from cortical activity. Although our findings suggest that
low-resolution neural signals could be used to successfully detect speech production events,
future neural-based speech decoding efforts should prioritize the use of signal acquisition
paradigms with high spatial resolutions to maximize performance.
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Supplementary Note 4. Likelihood normalization and the emission probability
scaling factor we.

In theory, the HMMs used in the utterance classification models require the likelihood values
p (yt|qt). In practice, however, we obtained phone posteriors p (qt|yt) from the LDA models
and used these in place of the likelihoods. Because we used flat (uniform) priors over the
phone classes in these models, these posteriors were simply equal to the likelihoods after
being scaled by an unknown normalization constant. This can be shown via Bayes’ rule:

p (qt|yt) =
p (yt|qt) p (qt)

p (yt)
= Zp (yt|qt) , (2)

where p (qt) is a constant because flat priors were used and Z is the unknown constant caused
by the presence of the p (yt) term and the p (qt) constant.

This discrepancy is addressed by the emission probability scaling factor we. By including
this hyperparameter, the contribution of the emission probabilities during each iteration of
Viterbi decoding (in Eq. 1 in the main text) becomes weZp (yt|qt). Because the value of we is
set through hyperparameter optimization, the impact that this constant Z has on decoding
is mitigated. This assumes that the optimizer is capable of finding a satisfactory value of this
hyperparameter within its pre-defined range of possible values, which we have observed in
practice.
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Supplementary Note 5. Mathematical formulation of the context integration
model.

During testing, the utterance classification models receive (from the speech detection model)
time windows of high gamma features associated with detected question (γQ) and detected
answer (γA) events. A primary goal of these classifiers and the context integration model is
to predict the most likely answer utterance ûa+ given the neural features γQ and γA. This
goal can be expressed as:

ûa+ = argmax
ua∈UA

p (ua | γQ, γA) , (3)

where ua is one of the answer utterances and UA is the set of all answer utterances.
This conditional probability p (ua | γQ, γA) represents the posterior probability of ua

given the question-related and answer-related neural features. We can refactor this posterior
probability using the following steps (a description of each step is provided after the equations):

p (ua | γQ, γA) =
∑
uq∈UQ

p (ua, uq | γA, γQ) (4)

=
∑
uq∈UQ

p (ua |uq, γA, γQ) p (uq | γA, γQ) (5)

=
∑
uq∈UQ

p (ua |uq, γA) p (uq | γA, γQ) (6)

=
∑
uq∈UQ

p (γA |ua, uq) p (ua |uq)
p (γA |uq)

p (uq | γQ, γA) (7)

=
∑
uq∈UQ

p (γA |ua) p (ua |uq)
p (γA |uq)

p (uq | γQ, γA) (8)

=
∑
uq∈UQ

p (γA |ua) p (ua |uq)
p (γA |uq)

p (γA, γQ |uq) p (uq)

p (γA, γQ)
(9)

=
∑
uq∈UQ

p (γA |ua) p (ua |uq)
p (γA |uq)

p (γA |uq) p (γQ |uq) p (uq)

p (γA, γQ)
(10)

=
∑
uq∈UQ

p (γA |ua) p (ua |uq)
p (γQ |uq) p (uq)

p (γA, γQ)
(11)

=
1

p (γA, γQ)

∑
uq∈UQ

p (γA |ua) p (ua |uq) p (γQ |uq) p (uq) (12)

=
1

p (γA, γQ) |UQ|
∑
uq∈UQ

p (γA |ua) p (ua |uq) p (γQ |uq) (13)

=
p (γA |ua)

p (γA, γQ) |UQ|
∑
uq∈UQ

p (ua |uq) p (γQ |uq) (14)

∝ p (γA |ua)
∑
uq∈UQ

p (ua |uq) p (γQ |uq) (15)
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Each step in the above formulation is described below:

• 4: The posterior probability can be expressed as the sum of the joint probability of the
answer utterance ua and question utterance uq for each question utterance in the set of
all question utterances UQ (while still conditioned on the neural responses).

• 5: The probability can be refactored using the chain rule of probability.

• 6: ua is independent of γQ given uq.

• 7: The first probability term is refactored using Bayes’ theorem.

• 8: γA is independent of uq given ua.

• 9: The second probability term is refactored using Bayes’ theorem.

• 10: One of the terms is refactored into two terms using the fact that γA and γQ are
conditionally independent given uq.

• 11: A term in the numerator of one fraction cancels the identical term in the denominator
of the other fraction.

• 12: The term in the denominator of the remaining fraction can be moved outside of the
sum because it does not depend on uq.

• 13: Because we assume a uniform prior over the question utterances, the p (uq) term is a
constant value equal to 1 divided by the total number of question utterances and can
be moved outside of the sum because it does not depend on uq.

• 14: The first term in the sum is moved outside of the sum since it does not depend on uq.

• 15: The denominator of the fraction outside of the sum does not depend on ua, so the
posterior probability can be expressed as being proportional to the remaining terms.

The terms in Supplementary Equation 15 are defined below:

• p (γA |ua) represents the answer likelihoods obtained from the answer classifier.

• p (γQ |uq) represents the question likelihoods obtained from the question classifier.

• p (ua |uq) represents the pre-defined context priors.

•
∑

uq∈UQ
p (ua |uq) p (γQ |uq) represents the answer priors.

In practice, we performed the calculations using log probabilities, and we used a context
prior scaling factor m to control the weight of the answer priors relative to the answer
likelihoods when computing the answer posteriors. With these modifications, the following
formulas can be used to define the unnormalized answer log posterior probabilities:

p (ua | γQ, γA) ∝ p (γA |ua)

 ∑
uq∈UQ

p (ua |uq) p (γQ |uq)

m , (16)
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φua := log p (ua | γA, γQ) (17)

= log p (γA |ua) +m log

 ∑
uq∈UQ

exp [log p (ua |uq) + log p (γQ |uq)]

+ κ (18)

= `∗ua +m log

 ∑
uq∈UQ

exp
[
log p (ua |uq) + `∗uq

]+ κ, (19)

Each of these additional formula are described below:

• 16: In practice, the formula representing the answer posteriors includes the context prior
scaling factor m.

• 17: φua is defined as the unnormalized log posterior probability of answer utterance ua
given the neural data γQ and γA.

• 18: When re-factoring a proportionality equation to an equality using log, a constant scalar
value κ is introduced.

• 19: Using notation introduced in the main text (in Eq. 2), we use `∗ua to denote the log
likelihood of utterance ua obtained from the answer classifier and `∗uq to denote the log
likelihood of utterance uq obtained from the question classifier.

In practice, we do not compute the value of κ. We can define a variable to represent the
unnormalized log posterior values without κ:

φ′ua = φua − κ = `∗ua +m log

 ∑
uq∈UQ

exp
[
log p (ua |uq) + `∗uq

] (20)

We can then predict the most likely answer utterance ûa+ directly from these φ′ua values:

ûa+ = argmax
ua∈UA

φ′ua . (21)

Here, κ does not need to be included because it will not affect which answer utterance was
most likely.

Although we did not need to normalize the answer log posteriors to predict the most
likely answer utterance, we still require normalized log posteriors (normalized to sum to 1
across all answer utterances) when calculating the cross entropy of the answer with context
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predictions. We compute normalized answer log posteriors using the following formulation:

φ∗ua :=φua − log

[∑
j∈UA

exp (φj)

]
(22)

= φ′ua + κ− log

[∑
j∈UA

exp
(
φ′j + κ

)]
(23)

= φ′ua + κ− log

[
exp (κ)

∑
j∈UA

exp
(
φ′j
)]

(24)

= φ′ua + κ− log [exp (κ)]− log

[∑
j∈UA

exp
(
φ′j
)]

(25)

= φ′ua − log

[∑
j∈UA

exp
(
φ′j
)]

(26)

Each of these steps is described below:

• 22: φ∗ua is defined as the normalized log posterior probability of answer utterance ua given
the neural data γQ and γA (the term on the right represents the LogSumExp function
used to normalize log probabilities).

• 23: We can replace the φua terms using our definition of φ′ua .

• 24: Because of the associativity of multiplication, we can express exp
(
φ′j + κ

)
as the

product of exp (κ) and exp (φj) and then move exp (κ) out of the sum because it does
not depend on j.

• 25: From the logarithmic identity for the logarithm of a product, we can separate the terms
in the log function into the sum of the logarithms of the individual terms.

• 26: The − log [exp (κ)] term simplifies to −κ, which cancels out the κ term.
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Supplementary methods

Supplementary Method 1. Utterance decoding sensitivity analysis procedure.

To assess how the amount of available training data affected classification performance,
we evaluated classifiers that were trained on varying amounts of data (Fig. 3a). For each
participant and utterance type, we first randomly selected n = 1 samples of each utterance
from the available training data. For each utterance selected this way, we obtained the neural
feature vectors and phone labels that occurred between 150 ms before the speech onset and
150 ms after the speech offset. The onset and offset times were determined from the phonetic
transcriptions, and the time points before and after each utterance were included so that the
classifiers would have sufficient samples of the silence phone /sp/. Utterance classification
models were trained using these features and labels associated with the selected utterances
(separate models were trained for each test block using the optimized hyperparameter values
for that block). We then evaluated the classifiers (and the context integration models)
across all of the test blocks using the classification accuracy and cross entropy metrics. We
repeated this process 15 times, each time drawing a new random selection of n samples of
each utterance to use during training. Afterwards, we then performed all of these steps
for every integer value of n in the closed interval [2, Nmax], where Nmax denotes the total
number of samples of each utterance available across the training blocks for the participant
(Nmax = 10, 30, 20 for participants 1–3). All random selections of the utterances to use during
training were sampled without replacement. We plotted the mean and standard error of the
mean of the classification accuracy and cross entropy values across the 15 repeats for each
value of n to visualize how classification was affected by the amount of training data.

Similarly, to assess how the amount of available training data affected detection
performance, we evaluated speech detectors that were trained on varying amounts of data
(Supplementary Figure 6). For each participant, we divided all of the available training
data into three subsets containing only the data points occurring during either perception,
production, or silence. We then randomly selected 1% of the data points from each of these
three subsets (rounding down) and used the random selection to fit detection models for each
test block (using the corresponding optimized hyperparameters for each block). Question and
answer detection scores were computed for each test block using these models. We repeated
this process 10 times, each time drawing a new random 1% selection to use during training.
Afterwards, we then performed all of these steps for each of the following percents: 5%,
10%, 25%, 50%, 75%, and 100%. All random data point selections were sampled without
replacement. We plotted the mean and standard error of the mean of the detection scores
across the 10 repeats for each percent to visualize how detection was affected by the amount
of training data.

To better understand the effect that hyperparameter selection had on classifier performance,
we evaluated classifiers with many different hyperparameter configurations (Fig. 3b). For each
participant, we arbitrarily selected one of the test blocks for that participant and obtained
each of the 250 hyperparameter sets that were evaluated (on a separate validation set) during
optimization of the question and answer classifiers for that test block. For each of these
hyperparameter sets, we trained the utterance classifiers with the configuration using all of the
training data available for that participant, and we then evaluated the classifier performance
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on the chosen test block using the classification accuracy and cross entropy metrics. We
plotted the resulting accuracies and cross entropies for each of these hyperparameter sets
(including the configuration that was deemed optimal).
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Supplementary Method 2. Hyperparameter optimization procedure.

For each participant, we first performed optimization for the speech detection models. During
each optimization epoch, the speech event probability model was trained using all of the
available training data and tested on each block in the validation set. As described in Section
4.8.1, we used a custom speech detection score to evaluate the performance of the speech
detector (a higher speech detection score signified better performance). The loss function
used during speech detection optimization was defined as:

Ldetection :=
∑

β∈B,ψ∈{question,answer}

(
1− s2

detection,β,ψ

)
, (27)

where Ldetection is the detection loss, β signifies one of the blocks in the validation set B, ψ
signifies one of the utterance types (either question or answer), and sdetection,β,ψ is the speech
detection score associated with validation block β and utterance type ψ. Thus, the optimal
hyperparameters for the speech detection model associated with each test block were the
hyperparameters that best detected the question and answer events in the validation blocks.

Next, we performed optimization for the utterance classification models. Separate
optimizations were performed for the question and answer classifiers. During each optimization
epoch, the phone likelihood models were trained using all of the available training data.
Afterwards, the utterance classifiers predicted the utterance labels of the speech events that
were detected by the optimized speech detection models in each validation block. We used
cross entropy on the validation set as the loss function during optimization. Although the true
speech event times were used during cross entropy calculations in other analyses, we chose to
optimize the classifiers using the detected times to increase the robustness of the classifiers to
imperfect speech event detection. To compute cross entropy on the decoded utterances from
the detected events, we had to first convert the decoded sequence to classification trials. We
performed this conversion by iterating through the actual utterances in chronological order
and pairing each actual utterance label with the detected utterance label that had the closest
detected speech offset time to the actual speech offset time (pairing a detected utterance
label with more than one actual label was prevented). The optimal hyperparameters for each
utterance classification model associated with each test block were the hyperparameters that
resulted in the lowest cross entropy on the detected speech events in the validation blocks.

Finally, we optimized the context integration models. The only goal of this optimization
process was to choose a value for the context prior scaling factor m. For each test block, we
decoded utterance sequences in the validation blocks using the optimized speech detection
and utterance classification models. During each optimization epoch, the answer with context
predictions were computed using the decoded question and answer (without context) sequences
and the current value of the hyperparameter m. Similar to the utterance classifier optimization,
we used cross entropy on the validation set as the loss function during optimization. The
decoded answer with context sequences were converted to classification trials so that the
cross entropy could be computed. The optimal value of m for the context integration model
associated with each test block was the value that resulted in the lowest cross entropy of the
answer with context predictions using the detected speech events in the validation blocks.
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Supplementary Method 3. Utterance classifier phonetic characterization proce-
dure.

To visualize the process by which the classifiers used Viterbi decoding to update the predicted
likelihood of each utterance as it received additional neural data, we examined how the
utterance likelihoods changed over time during a correctly predicted answer utterance for one
of the participants (Fig. 4a). Using the time window of neural activity associated with that
utterance and the trained phone likelihood model for the test block containing the selected
trial, we performed Viterbi decoding on the HMM for each answer utterance. At each time
index t during the Viterbi decoding with each HMM, we stored the log likelihood of the most
likely Viterbi path through the HMM at that time index given the neural feature vectors
{y0, y1, . . . , yt} (where y0 is the first feature vector in the time window). Afterwards, the path
likelihoods at each time point were smoothed (using ω, the smoothing hyperparameter from
the classifier) and normalized (to sum to 1) across all utterances. The resulting values were
plotted as the probability of each utterance at each time point during Viterbi decoding.

We also used these path probabilities to measure the amount of time points required before
each classifier finalized its prediction of which utterance was most likely during each trial (Fig.
4b). Across all test blocks and participants, we computed the Viterbi path probabilities at
each time point during classification of each answer trial. For each trial, we used these path
probabilities to find the earliest time index at which the predicted utterance (the utterance
with the highest path probability at the final time index) became and remained more likely
than all of the other utterances (denoted tfinalization). We computed the decision finalization
time for a trial using the following formula:

τ =
tfinalization − tonset

toffset − tonset

, (28)

where τ is the decision finalization time and tonset and toffset are the speech onset and offset
time indices of the utterance, respectively (obtained from the phonetic transcriptions). To
assess how well the decision finalization times could be explained by the phonetic content
and pronunciation of the stimuli, we also computed these values using phone likelihoods
constructed directly from the phonetic transcriptions (without using neural data to infer
the phone likelihoods). For each trial, we provided as input to the Viterbi decoder for each
HMM a time series of phone likelihoods in which, at each time point, the probability of
the phone that was actually occurring (according to the phonetic transcriptions) was equal
to 0.9 and the remaining 0.1 probability mass was divided evenly among the other phones.
During Viterbi decoding, all of the non-zero phone transition probabilities p (qt+1|qt) for
each HMM were set equal to 0.5. To compare the finalization times between the neural-
based and transcription-based analyses, we only considered trials in which the neural-based
classifier correctly predicted the utterance identity (we did not find a significant difference in
finalization times between the correct and incorrect trials, p = 0.37, two-tailed Welch’s t-test).
In the decision finalization time plot, trials in which the finalization time was negative for the
neural-based model were excluded (5 trials were excluded from and 89 trials were included in
the figure).

To assess how well the answer phone likelihood models were able to discriminate between
the phonetic classes, we computed phone confusions across all of the test blocks and
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participants (Fig. 4c). For each test block, we used the phone likelihood model within
the associated answer classification model to predict the phone label at each time point. We
compared the actual and predicted phone labels at each time point across all test blocks to
compute the plotted phone confusion matrix. We excluded one test block for participant 2
from this analysis because the answer classification model associated with that test block
used phonemic labels (labels without stress markers) instead of the phonetic labels used in all
of the other test blocks (see Supplementary Table 5). Using these actual and predicted phone
labels, we also assessed whether or not the phone confusions were at least partially organized
by place of articulation. We collapsed the phone labels into category labels using the place of
articulation categorization depicted in Fig. 4c (9 phonetic categories). Time points that did
not occur during speech production were excluded, although silence could still appear in the
predicted labels for misclassified time points (these were assigned a special category label
different from the other 9). We then computed the mutual information between the actual
and predicted category label sequences7. This approach was also used to compute the mutual
information values with randomized phonetic categorizations during statistical significance
testing.
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Supplementary Method 4. Statistical testing.

When comparing the decoding accuracy rates to chance (Fig. 2a, Supplementary Figure
3a), we used a one-tailed bootstrap test. First, for each participant and prediction type
(questions, answers without context, and answers with context), we concatenated the actual
and predicted utterances across all of the test blocks to obtain overall actual and predicted
utterance sequences. We then created a sequence with length equal to the number of utterance
tokens in the overall actual sequence and with elements randomly sampled from the set of
possible utterance labels for the current prediction type (sampling was done with replacement
and with a uniform probability distribution across the possible labels). Next, we computed
the decoding accuracy rate by comparing this random sequence with the actual sequence.
We performed this process of creating a random sequence and computing its accuracy rate
one million times. Afterwards, we created a normal distribution parameterized by the mean
and standard deviation of the accuracy rates observed during this process. We determined
the value of the cumulative distribution function (CDF) of this distribution at the value
equal to the decoding accuracy rate associated with the current test block and prediction
type. The one-tailed p-value for the null hypothesis that the decoded accuracy rate was
not above chance was equal to 1 minus this CDF value. Our method of measuring chance
performance was arguably an overestimate of the true chance performance because it uses the
same sequence length as the actual utterance sequence within a test block (this is equivalent
to assuming that the speech detector always detected the correct number of events).

When comparing the answer with context and answer without context decoding accuracy
rates (Fig. 2a, Supplementary Figure 3a), we used a one-tailed permutation test. First, for
each participant, we obtained the overall actual answer sequence and the overall predicted
answer without context and answer with context sequences by concatenating across test
blocks (as previously described). The two predicted answer sequences were always the same
length (each of these types of predictions were made every time an answer event was detected
during testing). We then created a mixture predicted sequence of the same length as these
two sequences in which the value at any index i was randomly selected as either the utterance
label at index i in the without context decoded sequence or the label at index i in the with
context decoded sequence (with an equal probability of choosing from either). Next, we
computed the decoding accuracy rate for this mixture sequence. We performed this process
of randomly creating a mixture sequence and computing its accuracy rate one million times.
Afterwards, we created a normal distribution parameterized by the mean and standard
deviation of the accuracy rates observed during this process. We determined the value of the
CDF of this distribution at the value equal to the decoding accuracy rate associated with the
answer with context predictions in the current test block. The one-tailed p-value for the null
hypothesis that the accuracy rate of the answer predictions with context was not above the
predictions without context was equal to 1 minus this CDF value.

When comparing the classification accuracies to chance (Fig. 2b, Supplementary Figure
3b), we used a one-tailed bootstrap test. First, for each participant and prediction type, we
created a sequence with length equal to the number of trials across all test blocks and with a
randomly sampled utterance (from the set of possible utterances for the current prediction
type) as each element. We then computed a chance classification accuracy value by comparing
these randomly selected utterance labels to the actual utterance labels. We performed this
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process of creating a random predicted sequence and computing the classification accuracy
one million times. Next, using the classification predictions observed during testing, we
computed a correctness indicator array that contained 1 for each classification trial (across
all test blocks) in which the actual and predicted labels were equal and 0 for the remaining
trials. We then created a sequence with length equal to the number of trials across all test
blocks and with elements randomly sampled from this correctness array (sampling was done
with replacement). Next, we computed the classification accuracy as the mean of this random
resample of the correctness array. We performed this process of randomly resampling the
correctness array and computing the classification accuracy one million times. Afterwards,
we created a normal distribution parameterized by the mean and standard deviation of the
classification accuracies observed during this process (the accuracies computed from the
resamples of the correctness array). We determined the value of the CDF of this distribution
at the value equal to the mean chance classification accuracy (the mean of the accuracies
computed from the randomly sampled utterance sequences). This CDF value was used as
the one-tailed p-value for the null hypothesis that the predicted classification accuracies were
not higher than chance.

When comparing the answer with context and answer without context classification
accuracies (Fig. 2b, Supplementary Figure 3b), we used a one-tailed exact McNemar’s test.
First, for each participant, we obtained the correctness indicator arrays described earlier for
the with context and without context answer predictions. We then used a one-tailed exact
McNemar’s test to compare these two arrays8. McNemar’s test is suited for comparing two
paired binary sequences. In this application of McNemar’s test, the number of trials that
were correctly predicted when using context but incorrect without context are compared to
the number of trials that were correctly predicted without using context but incorrect with
context. The resulting p-value from this test was the probability of the null hypothesis that
the classification accuracy was not higher for answer predictions with context than those
without context.

When comparing cross entropies to chance (Fig. 2c, Supplementary Figure 3c), we used a
one-tailed bootstrap test. First, for each participant and prediction type, we computed the
negative predicted log probability values associated with the actual utterance label within
each classification trial (across all test blocks). These negative log probability values are
referred to as surprisals. Then, we created a new array with length equal to the number
of trials across all test blocks. Each element in this array was randomly sampled from the
array of surprisal values associated with the predictions (sampling was done with replacement
and with a uniform probability distribution across all of the surprisals). We then computed
the predicted cross entropy by taking the mean of these randomly sampled surprisals. We
performed this process of randomly sampling the surprisals and computing the cross entropy
one million times. Afterwards, we created a normal distribution parameterized by the mean
and standard deviation of these predicted cross entropy values. We determined the value
of the CDF of this distribution at the value equal to the chance cross entropy value, which
was computed as the negative log of the reciprocal of the number of possible labels for the
current prediction type. The one-tailed p-value for the null hypothesis that the predicted
cross entropy was not lower than chance was equal to 1 minus this CDF value (lower cross
entropy indicates better performance).

When comparing the answer with context and answer without context cross entropies
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(Fig. 2c, Supplementary Figure 3c), we used a one-tailed Wilcoxon signed-rank test. First, for
each participant, we obtained the surprisal arrays described earlier for the with context and
without context answer predictions. We then used a one-tailed Wilcoxon signed-rank test to
compare these paired samples. The resulting p-value from this test was the probability of
the null hypothesis that the cross entropy was not lower for answer predictions with context
than those without context.

When comparing the low-resolution performance results (computed with sub-sampled
electrode sets) to the regular high-resolution performance results for participant 1, we used
a one-tailed one-sample t-test. First, for each evaluation metric and prediction type, we
computed the performance using models trained and tested with each of the four sub-
sampled electrode sets. We then used a one-sample t-test to compare the four low-resolution
performance value samples to the high-resolution performance value. The resulting one-tailed
p-value from this test was the probability of the null hypothesis that the low-resolution
performance was not worse than the high-resolution performance.

When comparing the decision finalization times for the answer classifiers to the speech
offset time (Fig. 4b), we used a one-tailed single-sample Wilcoxon signed-rank test. This test
was performed on an array created by subtracting each decision finalization time (scaled such
that 0 was the speech onset time and 1 was the speech offset time) from the speech offset
time (which was 1 due to this scaling). We then performed a one-tailed Wilcoxon signed-rank
test to compare the values in this array to zero. The resulting p-value from this test was the
probability of the null hypothesis that the decision finalization times for the answer classifiers
did not occur before the speech offset.

When comparing the neural-based and transcription-based decision finalization times (Fig.
4b), we used a two-tailed Wilcoxon signed-rank test. This test was performed using the paired
decision finalization time samples (a neural-based and transcription-based finalization time
was available for each trial used in this test). The resulting p-value from this test was the
probability of the null hypothesis that the neural-based and transcription-based finalization
times were both sampled from the same underlying distribution.

When comparing the confusions categorized by place of articulation to random
categorizations (Fig. 4c), we used a one-tailed bootstrap test. After collapsing the actual
and predicted answer phone labels (computed for each time point that occurred during
speech production across all participants and test blocks) into the 9 disjoint phonetic
categories, we computed the mutual information between the actual and predicted labels7.
Next, we randomized the phonetic categorization by shuffling which phones appeared in
which categories (the total number of phones in each category remained the same) and
recomputed the mutual information between the actual and predicted sequences using this
new random categorization. We performed this process of computing the mutual information
with randomized phonetic categorizations one million times. Afterwards, we created a normal
distribution parameterized by the mean and standard deviation of the randomized mutual
information values observed during this process. We determined the value of the CDF of this
distribution at the value equal to the original mutual information (with the categorization
based on place of articulation). The one-tailed p-value for the null hypothesis that the mutual
information for the categorization based on place of articulation was not higher than random
categorizations was equal to 1 minus this CDF value.

When comparing classification performance using hard or true context priors instead of
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soft context priors (Supplementary Note 2), we used one-tailed exact McNemar’s tests. For
these tests, we used the same approach that was used to compare the answer with context
and answer without context classification accuracies (described earlier in this section). When
evaluating the hard priors, the classifications made with hard priors replaced the answer
without context predictions, and then the remainder of the statistical testing was carried
out as previously described. When evaluating the true priors, the classifications made with
true priors replaced the answer with context predictions and the classifications made with
soft priors replaced the answer without context predictions, and then the remainder of the
statistical testing was carried out as previously described.
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