Supplementary Information

Profiling Host ANP32A Splicing Landscapes to Predict Influenza A Virus Polymerase Adaptation

Domingues *et al*.

Corresponding author: Benjamin G. Hale Email: <u>hale.ben@virology.uzh.ch</u>

This PDF file includes:

Supplementary Figures 1-3 Supplementary Tables 1-4

Supplementary Figure 1. ANP32A variants differentially impact avian-signature IAV replication and selection. (a) Viral growth kinetics of rWSN-based viruses expressing PB2-627E or PB2-627K in A549-ANP32A_{KO} cells (MOI = 0.001 PFU/cell). Mean values from three independent experiments are plotted, with the individual data points shown. (b-e) Competition assays between rWSN-based viruses expressing PB2-627E or PB2-627K (99:1 input ratio) in the indicated cell-lines. P0 represents input. Percentage of PB2-627K/E was determined by NGS. Mean values from two independent experiments are plotted, with the individual data points shown. *Note, for panel d, levels of the compensatory PB2-630R mutation were also determined and included together with PB2-627K. (f) Western blot analysis of lysates from human 293T cells transfected with the indicated vPol constructs. (g) Polymerase reconstitution assay assessing the ability of PB2-630R to compensate for PB2-627E vPol activity in human 293T cells. Bars represent mean values from three independent experiments, with the individual data points shown. Source data for all panels are provided in the Source Data file.

Supplementary Figure 2. Modeling the impact of species' ANP32A splice variant ratios on selection of mammalian- or avian-like IAV adaptations. (a-b) Model predictions of mammalian-like vPol substitution selection in the indicated species, taking into account their ANP32A splice variant ratios as shown in Figure 3a. Each input mammalian-like vPol percentage assessed is indicated by a separate color. The solid lines indicate the model prediction with the best estimates of virus production rates, and the lighter areas show the 95% bootstrap confidence intervals.

Supplementary Figure 3. Sensitivity analyses of the model to predict the impact of ANP32A splice variant ratio on selection of mammalian-like IAV adaptations. (a-c) Violin plots of the estimated relative risk scores for each indicated species to select for avian- or mammalian-signature vPol adaptations: (a) varying conditions for estimating virus production rates; (b) varying infection rate (β), rate of infected cell death (δ), and rate of viral clearance (c) [same for both variants]; (c) varying infection rate (β), rate of infected cell death (δ), and rate of viral clearance (c) [same for both variants].

Summary of ANP32A transcript analyses from cells of different species

Species (cell-line)	aa sequence	ANP32A transcript (% ± SD)
Human (A549 cultured at 33° or 37°C; BEPC; NEPC; SAEPC or HTEpC)	GYDRDDKEAPDSDAEGYVEGLDDEEEDEDEEEYDEDAQVVEDEEDED	X3-like (100%)
$Pig (PK-15)^{1}$	GYDRDDKEASDSDAEGYVEGLDDDEEDEDEEEYDEDAQVVEDEEDEE	X3-like (100%)
Pig (NSK)	GYDRDDKEASDSDAEGYVEGLDDDEEDEDEEEYDEDAQVVEDEEDEE	X3-like (100%)
Dog (MDCK) ²	GYDRDDKEAPDSDAEGYVEGLDDDEEDEDEEEYDEDAQVVEDEEDEE	X3-like (100%)
Mouse (MEFs)	GYDRDNKEAPDSDVEGYVEDDDEEDEDEEEYDEYAQLVEDEEEEDEE	X3-like (100%)
Bat (PaKi)	GYDRDDKEAPDSDAEGYVEGLDDDEEDEDEEEYDEDAQVVEDEEDEEEE	X3-like (100%)
Horse (NBL6)	GYDRDDKEAPDSDAEGYVEGLDDDEEDEDEEEYDEDAQVVEDEEDEE	X3-like (90 ± 2.3%)
Horse (NBL6)	GYDRDDKEAPDSDAEGYVEGLDDDEEDVSGEEEEDEEGYNDGEVDRS	$Other (10 \pm 2.3\%)$
Chicken (DF-1)	GYDRDDKEAPDSDAEGYVEGLDDEEEDEDVLSLVKDRDDKEAPDSDAEG	X1-like (66.0 ± 0.3 %)
Chicken (DF-1)	GYDRDDKEAPDSDAEGYVEGLDDEEEDEDVKDRDDKEAPDSDAEGYVEG	X2-like $(24.9 \pm 0.5\%)$
Chicken (DF-1)	GYDRDDKEAPDSDAEGYVEGLDDEEEDEDEEEYDDDAQVVEDEED	X3-like (9.1 ± 0.8%)
Chicken (CAM ³)	GYDRDDKEAPDSDAEGYVEGLDDEEEDEDVLSLVKDRDDKEAPDSDAEG	X1-like (65.2 ± 1.6 %)
Chicken (CAM)	GYDRDDKEAPDSDAEGYVEGLDDEEEDEDVKDRDDKEAPDSDAEGYVEG	X2-like (26.2 ± 2.3%)
Chicken (CAM)	GYDRDDKEAPDSDAEGYVEGLDDEEEDEDEEEYDDDAQVVEDEED	X3-like (8.6 ± 0.8%)

¹ ANP32A transcripts are identical between the porcine PK-15 and NSK cell lines.

² Dog (MDCK) sample presents two ANP32A variants coding for identical proteins (underlined, the synonymous, t \rightarrow c, SNP).

clANP32A_A:

 $tatctcgatggctacgaccgggacgacaaggagggcccccgactcggacgc\underline{t}gagggctacgtggagggcctggatgacgacgaggaggacgaggatgaagaagaagaatatgatgaagatgctcaggtagtggaagacgaggaggatgaagagg$

clanp32a_b:

³ CAM, chorioallantoic membrane (n = 3).

Species (cell-line)	aa sequence	ANP32A transcript (% ± SD)
Chicken (LMH-1)	GYDRDDKEAPDSDAEGYVEGLDDEEEDEDVLSLVKDRDDKEAPDSDAEG	X1-like (62.6 ± 1.2 %)
Chicken (LMH-1)	GYDRDDKEAPDSDAEGYVEGLDDEEEDEDVKDRDDKEAPDSDAEGYVEG	X2-like (26.7 ± 0.3%)
Chicken (LMH-1)	GYDRDDKEAPDSDAEGYVEGLDDEEEDEDEEEYDDDAQVVEDEED	X3-like (10.8 ± 1.1%)
Chicken (SL-29)	GYDRDDKEAPDSDAEGYVEGLDDEEEDEDVLSLVKDRDDKEAPDSDAEG	X1-like (62.0 ± 1.5 %)
Chicken (SL-29)	GYDRDDKEAPDSDAEGYVEGLDDEEEDEDVKDRDDKEAPDSDAEGYVEG	X2-like (28.5 ± 1.3%)
Chicken (SL-29)	GYDRDDKEAPDSDAEGYVEGLDDEEEDEDEEEYDDDAQVVEDEED	X3-like (9.6 ± 1.3%)
Duck (CCL-141)	GYDRDDKEAPDSDAEGYVEGLDDEEEDEDVLSLVKDRDDKEA	X1-like (76.7 ± 1.3%)
Duck (CCL-141)	GYDRDDKEAPDSDAEGYVEGLDDEEEDEDVKDRDDKEAPDSDAE	X2-like (19.4 ± 1.6%)
Duck (CCL-141)	GYDRDDKEAPDSDAEGYVEGLDDEEEDEDEEEYDDDAQDR	X3-like $(3.9 \pm 0.3\%)$
Mallard (SEF-R)	GYDRDDKEAPDSDAEGYVEGLDDEEEDEDVLSLVKDRDDKEAP	X1-like (82.9 ± 1.5%)
Mallard (SEF-R)	GYDRDDKEAPDSDAEGYVEGLDDEEEDEDVKDRDDKEAPDSDAE	X2-like (15.4 ± 1.6%)
Mallard (SEF-R)	GYDRDDKEAPDSDAEGYVEGLDDEEEDEDEEEYDDDAQDR	X3-like (1.7 ± 0.2%)
Turkey (PF-R)	GYDRDDKEAPDSDAEGYVEGLDDEEEDEDVLSLVKDRDDKEAPDSDAEG	X1-like (67.9 ± 1.7%)
Turkey (PF-R)	GYDRDDKEAPDSDAEGYVEGLDDEEEDEDVKDRDDKEAPDSDAEGYVEG	X2-like (23.1 ± 1.3%)
Turkey (PF-R)	GYDRDDKEAPDSDAEGYVEGLDDEEEDEDEEEYDDDAQVVEDEEDR	X3-like (9.0 ± 1.7%)
Quail (QT-6)	GYDRDDKEAPDSDAEGYVEGLDDEEEDEDVLSLVKDRDDKEAPDSDA	X1-like (61.9 ± 0.7%)
Quail (QT-6)	GYDRDDKEAPDSDAEGYVEGLDDEEEDEDVKDRDDKEAPDSDAEGYV	X2-like (38.1 ± 0.7%)
Gull (SMF-R)	GYDRDDKEAPDSDAEGYVEGLDDEEEDEDVLSLVKDRDDKEAPDSDAEG	X1-like (100%)
Goose (GF-R) ⁴	GYDRDDKEAPDSDAEGYVEGLDDEEEDEDVLSLVKDRDDKEAPDSDAEG	X1-like (67.7 ± 1.3%)
Goose (GF-R)	GYDRDDKEAPDSDAEGYVEGLDDEEEDEDVKDRDDKEAPDSDAEGYVEG	X2-like $(6.9 \pm 0.6\%)$
Goose (GF-R)	GYDRDDKEAPDSDAEGYVEGLDDEEEDEDEEEYDDDAQVVEDEEDR	X3-like (25.4 ± 1.7%)

⁴ ANP32A transcripts are identical between the three goose cell lines (GF-R, GN-R and CCL-169).

Species (cell-line)	aa sequence	ANP32A transcript (% ± SD)
Goose (GN-R) ⁴	GYDRDDKEAPDSDAEGYVEGLDDEEEDEDVLSLVKDRDDKEAPDSDAEG	X1-like (65.5 ± 0.5%)
Goose (GN-R)	GYDRDDKEAPDSDAEGYVEGLDDEEEDEDVKDRDDKEAPDSDAEGYVEG	X2-like (6.1 ± 0.2%)
Goose (GN-R)	GYDRDDKEAPDSDAEGYVEGLDDEEEDEDEEEYDDDAQVVEDEEDR	X3-like (28.4 ± 0.5%)
Goose (CCL-169) ⁴	GYDRDDKEAPDSDAEGYVEGLDDEEEDEDVLSLVKDRDDKEAPDSDAEG	X1-like (66.6 ± 0.6%)
Goose (CCL-169)	GYDRDDKEAPDSDAEGYVEGLDDEEEDEDVKDRDDKEAPDSDAEGYVEG	X2-like (8.8 ± 0.1%)
Goose (CCL-169)	GYDRDDKEAPDSDAEGYVEGLDDEEEDEDEEEYDDDAQVVEDEEDR	X3-like (24.6 ± 0.7%)
Mute swan (SWD-R)	GYDRDDKEAPDSDAEGYVEGLDDEEEDEDVLSLVKDRDDKEAPDSDAEG	X1-like (69.1 ± 1.6%)
Mute swan (SWD-R)	GYDRDDKEAPDSDAEGYVEGLDDEEEDEDVKDRDDKEAPDSDAEGYVEG	X2-like $(7.4 \pm 0.5\%)$
Mute swan (SWD-R)	GYDRDDKEAPDSDAEGYVEGLDDEEEDEDEEEYDDDAQVVEDEEDR	X3-like (23.5 ± 1.9%)
Swallow (CS1T1-R)	GYDRDDKEAPDSDAEGYVEGLDDEEEDEDVLSLVKDRDDKEAPDSDAEG	X1-like (14.0 ± 1.1%)
Swallow (CS1T1-R)	GYDRDDKEAPDSDAEGYVEGLDDEEEDEDVKDRDDKEAPDSDAEGYVEG	X2-like (25.2 ± 1.1%)
Swallow (CS1T1-R)	GYDRDDKEAPDSDAEGYVEGLDDEEEDEDEEEYDDDAQVVEDEEDR	X3-like (60.8 ± 2.0%)
Blackbird (TME-R)	GYDRDDKEAPDSDAEGYVEGLDDEEEDEDALSLVKDRDDKEAPDSDAEG	X1-like (36.9 ± 2.0%)
Blackbird (TME-R)	GYDRDDKEAPDSDAEGYVEGLDDEEEDEDVKDRDDKEAPDSDAEGYVEG	X2-like (59.0 ± 1.8%)
Blackbird (TME-R)	GYDRDDKEAPDSDAEGYVEGLDDEEEDEDEEEYDDDAQVVEDEEDR	X3-like (4.1 ± 0.2%)
Magpie (EGE-R)	GYDRDDKEAPDSDAEGYVEGLDDEEEDEDVLSLVKDRDDKEAPDSDAEG	X1-like (31.3 ± 0.2%)
Magpie (EGE-R)	GYDRDDKEAPDSDAEGYVEGLDDEEEDEDVKDRDDKEAPDSDAEGYVEG	X2-like (33.0 ± 1.3%)
Magpie (EGE-R)	GYDRDDKEAPDSDAEGYVEGLDDEEEDEDEEEYDDDAQVVEDEEDR	X3-like (35.7 ± 1.4%)

Alignment of the aa sequences of <u>ANP32A X1-like</u> transcripts as found in the analyzed species:

Chicken	GYDRDDKEAPDSDAEGYVEGLDDEEEDE D VLSLVKDRDDKEAP
Duck	GYDRDDKEAPDSDAEGYVEGLDDEEEDE D VLSLVKDRDDKEAP
Mallard	GYDRDDKEAPDSDAEGYVEGLDDEEEDE D VLSLVKDRDDKEAP
Turkey	GYDRDDKEAPDSDAEGYVEGLDDEEEDE D VLSLVKDRDDKEAP
Quail	GYDRDDKEAPDSDAEGYVEGLDDEEEDE D VLSLVKDRDDKEAP
Goose	GYDRDDKEAPDSDAEGYVEGLDDEEEDE D VLSLVKDRDDKEAP
Mute swan	GYDRDDKEAPDSDAEGYVEGLDDEEEDE D VLSL VKDRDDKEAP
Swallow	GYDRDDKEAPDSDAEGYVEGLDDEEEDE D VLSL VKDRDDKEAP
Blackbird	$\texttt{GYDRDDKEAPDSDAEGYVEGLDDEEEDE} \textbf{D} \underline{\texttt{ALSL}} \texttt{VKDRDDKEAP}$
Magpie	GYDRDDKEAPDSDAEGYVEGLDDEEEDE D VLSLVKDRDDKEAP

Alignment of the aa sequences of <u>ANP32A X2-like</u> transcripts:

Chicken	GYDRDDKEAPDSDAEGYVEGLDDEEEDE D VKDRDDKEAPDSDAE
Duck	GYDRDDKEAPDSDAEGYVEGLDDEEEDE D VKDRDDKEAPDSDAE
Mallard	GYDRDDKEAPDSDAEGYVEGLDDEEEDE D VKDRDDKEAPDSDAE
Turkey	GYDRDDKEAPDSDAEGYVEGLDDEEEDE D VKDRDDKEAPDSDAE
Quail	GYDRDDKEAPDSDAEGYVEGLDDEEEDE D VKDRDDKEAPDSDAE
Goose	GYDRDDKEAPDSDAEGYVEGLDDEEEDE D VKDRDDKEAPDSDAE
Mute swan	GYDRDDKEAPDSDAEGYVEGLDDEEEDE D VKDRDDKEAPDSDAE
Swallow	GYDRDDKEAPDSDAEGYVEGLDDEEEDE D VKDRDDKEAPDSDAE
Blackbird	GYDRDDKEAPDSDAEGYVEGLDDEEEDE D VKDRDDKEAPDSDAE
Magpie	GYDRDDKEAPDSDAEGYVEGLDDEEEDE D VKDRDDKEAPDSDAE
	* * * * * * * * * * * * * * * * * * * *

Alignment of the aa sequences of <u>ANP32A X3-like</u> transcripts:

Human	${\tt GYDRDDKEAPDSDAEGYVEGLDDEEEDEDEEEYDEDAQVV}$
Pig	GYDRDDKEASDSDAEGYVEGLDDDEEDEDEEEYDEDAQVV
Dog	${\tt GYDRDDKEAPDSDAEGYVEGLDDDEEDEDEEEYDEDAQVV}$
Mouse	GYDRDNKEAPDSDVEGYVEDDDEEDEDEEEYDEYAQLV
Bat	GYDRDDKEAPDSDAEGYVEGLDDDEEDEDEEEYDEDAQVV
Horse	${\tt GYDRDDKEAPDSDAEGYVEGLDDDEEDEDEEEYDEDAQVV}$
Chicken	GYDRDDKEAPDSDAEGYVEGLDDEEEDE DEEEYDDDAQVV
Duck	GYDRDDKEAPDSDAEGYVEGLDDEEEDE D EEEYDDDAQDR
Mallard	GYDRDDKEAPDSDAEGYVEGLDDEEEDE D EEEYDDDAQDR
Turkey	GYDRDDKEAPDSDAEGYVEGLDDEEEDE D EEEYDDDAQVV
Goose	GYDRDDKEAPDSDAEGYVEGLDDEEEDE D EEEYDDDAQVV
Mute swan	GYDRDDKEAPDSDAEGYVEGLDDEEEDE D EEEYDDDAQVV
Swallow	GYDRDDKEAPDSDAEGYVEGLDDEEEDE D EEEYDDDAQVV
Blackbird	GYDRDDKEAPDSDAEGYVEGLDDEEEDE D EEEYDDDAQVV
Magpie	GYDRDDKEAPDSDAEGYVEGLDDEEEDE D EEEYDDDAQVV
	****:*** ***. *****. :*****************

In bold, the aspartate (D) at the 5' end of the splicing site of avian ANP32A. Underlined, the SLS site present in the X1-like variants.

	ANP32A transcript variant		
Tissue	X1 (%)	X2 (%)	X3 (%)
Brain	74.3	13.3	12.4
Cecum	72.1	16.1	11.8
Eye	71.1	17.3	11.6
Heart	74.1	12.9	13.0
Kidney	71.8	16.6	11.6
Liver	70.5	17.6	11.9
Lung	68.7	18.6	12.8
Small intestine	75.4	13.5	11.1
Skeletal muscle	73.0	17.0	10.0
Spleen	68.3	20.4	11.4

Summary of ANP32A transcript analyses from different primary chicken tissues

Summary of cells and cell-lines used in this study

Cell ID	Source	Provider	Species
A549	Human lung epithelial carcinoma	ATCC ¹	H. sapiens
BEPC	Human primary bronchial epithelial cells	PromoCell ²	H. sapiens
NEPC	Human primary nasal epithelial cells	PromoCell	H. sapiens
SAEPC	Human primary small airway epithelial cells	PromoCell	H. sapiens
HTEpC	Human primary tracheal epithelial cells	PromoCell	H. sapiens
HEK293T	Human, embryonic kidney (transformed, epithelial)	ATCC	H. sapiens
PK-15	Swine kidney adult (spontaneously immortalized, epithelial)	Lanz et al. ³	S. scrofa
NSK	Swine kidney newborn (spontaneously immortalized, epithelial)	Lanz et al.	S. scrofa
MDCK	Canine kidney adult (spontaneously immortalized, epithelial)	ATCC	C. familiaris
MEF	Murine embryonic fibroblasts (immortalized)	ATCC	M. musculus
D _e V:	Description of high and (incompared line down it hali al)	Crameri et	D
PaK1	Pteropid bat kidney (immortalized, epithelial)	$al.^4$	P. alecto
NBL6	Horse, dermal fibroblasts	ATCC	E. caballus
DF-1	Chicken, embryonal fibroblasts spontaneously transformed	ATCC	G. gallus
LMH-1	Chicken, hepatocellular carcinoma (chemically induced, epithelial)	ATCC	G. gallus
SL-29	Chicken, embryonal fibroblasts	ATCC	G. gallus
CAM	Chicken, chorioallantoic membrane	AnimalCo	G. gallus
CCL-141	Duck, embryonic fibroblasts	ATCC	A. platyrhynchus dom.
SEF-R	Mallard, whole embryo	CCLV FLI ⁵	A. platyrhynchos
PF-R	Turkey, whole embryo	CCLV FLI	M. gallopavo f. dom.
QT-6	Quail, methylcholanthrene induced fibroblast	CCLV FLI	C. coturnix japonica
SMF-R	Gull, whole Embryo	CCLV FLI	L. canus
GF-R	Goose, whole embryo	CCLV FLI	A. anser f. dom.
GN-R	Goose, kidney adult(epithelial)	CCLV FLI	A. anser f. dom.
CCL-169	Goose, sternum fibroblasts	ATCC	A. anser
SWD-R	Mute swan, intestine (epithelial)	CCLV FLI	C. olor
CS1T1-R	Swallow, whole embryo	CCLV FLI	P. pyrrhonota
TME-R	Blackbird, whole embryo	CCLV FLI	T. merula
EGE-R	Magpie, whole embryo	CCLV FLI	P. pica

¹ ATCC, American Type Culture Collection. ² PromoCell GmbH (Heidelberg, Germany)

³ Lanz, C., Yanguez, E., Andenmatten, D., and Stertz, S. (2015). Swine interferon-inducible transmembrane proteins potently inhibit influenza A virus replication. J Virol 89, 863-869. ⁴ Crameri, G., Todd, S., Grimley, S., McEachern, J.A., Marsh, G.A., Smith, C., Tachedjian, M., De Jong, C., Virtue,

E.R., Yu, M., et al. (2009). Establishment, immortalisation and characterisation of pteropid bat cell lines. PLoS One 4, e8266.

⁵ Collection of Cell Lines in Veterinary Medicine (CCLV), Friedrich-Loeffler-Institut (FLI), Insel Riems, Germany.

Summary of primer pairs used for the NGS-based determination of ANP32A splice variants in different species

Primer ID	Sequence	Species
humANP32A-NGS-F	$\frac{\text{CTT TCC CTA CAC GAC GCT CTT CCG ATC T}{\text{TGA CC}^1} \text{TA TCT CGA CGG CTA}$	Human (H. sapiens)
humANP32A-NGS-R	GAC TGG AGT TCA GAC GTG TGC TCT TCC GAT CTA TCG TTA TAA CCT TCT TCA TCC	Human (H. sapiens)
ssANP32_NGS-F	CTT TCC CTA CAC GAC GCT CTT CCG ATC TTA TCT CGA TGG CTA CGA CC	Pig (S. scrofa)
ssANP32A_NGS-R	GAC TGG AGT TCA GAC GTG TGC TCT TCC GAT CTA TCG TTA TAA CCT TCC TCA TCC	Pig (S. scrofa)
clANP32A_NGS-R	<u>CTT TCC CTA CAC GAC GCT CTT CCG ATC T</u> TA TCT CGA TGG CTA CGA CC	Dog (C. familiaris)
clANP32A_NGS-R	GAC TGG AGT TCA GAC GTG TGC TCT TCC GAT CTT TAT AAC CCT CTT CAT CCT CC	Dog (C. familiaris)
mmANP32A_NGS-F	<u>CTT TCC CTA CAC GAC GCT CTT CCG ATC T</u> TA CCT CGA TGG CTA TGA CAG	Mouse (M. musculus)
mmANP32A_NGS-R	GAC TGG AGT TCA GAC GTG TGC TCT TCC GAT CT CAT TGT AAC CTT CCT CAT CC	Mouse (M. musculus)
batANP32A_NGS-F	<u>CTT TCC CTA CAC GAC GCT CTT CCG ATC T</u> TG ATG GCT ATG ACC GGG ATG	Bat (<i>P. alecto</i>)
batANP32A_NGS-R	GAC TGG AGT TCA GAC GTG TGC TCT TCC GAT CTA CTT CCC CGT CGT TAT AAC C	Bat (P. alecto)
ecANP32A_NGS-F	CTT TCC CTA CAC GAC GCT CTT CCG ATC TTA CCT CGA CGG CTA CGA CC	Horse (E. caballus)
ecANP32A_NGS-R	<u>GAC TGG AGT TCA GAC GTG TGC TCT TCC GAT CT</u> A TCT ACT TCC CCG TCA TTA TAA CC	Horse (E. caballus)
ggANP32A_NGS-F	<u>CTT TCC CTA CAC GAC GCT CTT CCG ATC T</u> AT GGC TAC GAT CGG GAT GAC	Chicken (G. gallus)
ggANP32A_NGS-R	GAC TGG AGT TCA GAC GTG TGC TCT TCC GAT CTT CTT CAT CTT CTA CTA CCT GAG C	Chicken (G. gallus)
apANP32A-NGS-2-F	CTT TCC CTA CAC GAC GCT CTT CCG ATC TCA ACT CAC ATA CCT CGA TGG	Duck (A. platyrhynchus dom.)
apANP32A-NGS-2-R	GAC TGG AGT TCA GAC GTG TGC TCT TCC GAT CTT GAG CGT CAT CAT CAT ACT CC	Duck (A. platyrhynchus dom.)
apANP32A_NGS-2-F	CTT TCC CTA CAC GAC GCT CTT CCG ATC TCA ACT CAC ATA CCT CGA TGG	Mallard (A. platyrhynchos)
ansANP32A_NGS-R	GAC TGG AGT TCA GAC GTG TGC TCT TCC GAT CTT CTT CGT CTT CTA CTA CCT GAG C	Mallard (A. platyrhynchos)
ggANP32A_NGS-F	CTT TCC CTA CAC GAC GCT CTT CCG ATC TAT GGC TAC GAT CGG GAT GAC	Turkey (M. gallopavo)
ggANP32A_NGS-R	<u>GAC TGG AGT TCA GAC GTG TGC TCT TCC GAT CT</u> T CTT CAT CTT CTA CTA CCT GAG C	Turkey (M. gallopavo)
cjANP32A_NGS-F	CTT TCC CTA CAC GAC GCT CTT CCG ATC TAT ACC TCG ATG GCT ACG ATC GG	Quail (Coturnix c. japonica)
cjANP32A_NGS-R	GAC TGG AGT TCA GAC GTG TGC TCT TCC GAT CTA CGT CAC CAT CAT TAT AGC CTT CC	Quail (Coturnix c. japonica)

¹ Underlined, the priming sites for 2nd round PCR primers, TS-D50x+TS-D70y of the Illumina®, TruSeq HT series.

ruffANP32A-NGS-F	<u>CTT TCC CTA CAC GAC GCT CTT CCG ATC T</u> AT GGC TAC GAC CGG GAC GAC	Common gull (L. canus)
ansANP32A_NGS-R	<u>GAC TGG AGT TCA GAC GTG TGC TCT TCC GAT CT</u> T CTT CGT CTT CTA CTA CCT GAG C	Common gull (L. canus)
ansANP32A_NGS-F	<u>CTT TCC CTA CAC GAC GCT CTT CCG ATC T</u> AT GGC TAC GAT CGG GAC GAC	Goose (Anser anser f. dom.)
ansANP32A_NGS-R	<u>GAC TGG AGT TCA GAC GTG TGC TCT TCC GAT CT</u> T CTT CGT CTT CTA CTA CCT GAG C	Goose (Anser anser f. dom.)
apANP32A-NGS-2-F	<u>CTT TCC CTA CAC GAC GCT CTT CCG ATC T</u> CA ACT CAC ATA CCT CGA TGG	Mute swan (C. olor)
ansANP32A_NGS-R	<u>GAC TGG AGT TCA GAC GTG TGC TCT TCC GAT CT</u> T CTT CGT CTT CTA CTA CCT GAG C	Mute swan (C. olor)
starlANP32A-NGS-F	<u>CTT TCC CTA CAC GAC GCT CTT CCG ATC T</u> AC GGA TAC GAC CGG GAT GAC	Swallow (P. pyrrhonota)
starlANP32A-NGS-R	<u>GAC TGG AGT TCA GAC GTG TGC TCT TCC GAT CT</u> T CTT CAT CCT CCA CTA CCT GAG C	Swallow (P. pyrrhonota)
starlANP32A-NGS-F	<u>CTT TCC CTA CAC GAC GCT CTT CCG ATC T</u> AC GGA TAC GAC CGG GAT GAC	Blackbird (T. merula)
starlANP32A-NGS-R	<u>GAC TGG AGT TCA GAC GTG TGC TCT TCC GAT CT</u> T CTT CAT CCT CCA CTA CCT GAG C	Blackbird (T. merula)
corvusANP32-NGS-F	<u>CTT TCC CTA CAC GAC GCT CTT CCG ATC T</u> AT GGA TAC GAC CGG GAT GAC	Magpie (P. pica)
corvusANP32-NGS-R	<u>GAC TGG AGT TCA GAC GTG TGC TCT TCC GAT CT</u> T CCT CGT CCT CCA CTA CCT GAG C	Magpie (P. pica)
3xFl-ANP32A-NGS-F	CTT TCC CTA CAC GAC GCT CTT CCG ATC TAC GGC TAC GAC CGG GAC GAC	Exogenous ANP32A
3xFl-ANP32A-NGS-R	GAC TGG AGT TCA GAC GTG TGC TCT TCC GAT CTT CAT CTT CCA CCA CCT GGG C	Exogenous ANP32A