

New Phytologist Supporting Information

Article title: Genetic map-guided genome assembly reveals a virulence-governing minichromosome in the lentil anthracnose pathogen *Colletotrichum lentis*

Authors: Vijai Bhadauria, Ron MacLachlan, Curtis Pozniak, Aurelie Cohen-Skalie, Li Li, Jerlene Halliday, Sabine Banniza Article acceptance date: 02 July 2018

The following Supporting Information is available for this article:

Figs S1-S4

Fig. S1 Comparative analysis of secondary metabolite backbone genes in *Colletotrichum* species. PKS, Polyketide synthase; NRPS, Non-ribosomal peptide synthetase; PKS-NRPS, hybrid PKS-NRPS; and DMAT, Dimethylallyl tryptophan synthase.

Fig. S2 Validation of the genetic linkage map of ascospore-derived isolates originated from a cross between *Colletotrichum lentis* isolates CT-30 and CT-21. 2D-CheckMatrix heat plots were generated using the CheckMatrix python script (Kozik & Michelmore, 2006). Each heat plot represents a linkage group. SNP markers are lined up against each other. A red block along the lines indicates tightly linked markers with low recombination. Panels beneath heat maps show the proportion of parental alleles (Red = CT-30, Blue = CT-21). Yellow (CT-30) and light blue (CT-21) colors in the middle represent segregation distortion.

Fig. S3 Genetic and QTL mapping. (a) A side-by-side comparison of genetic maps generated by MadMapper (Kozik & Michelmore, 2006) and R/qtl (Broman *et al.*, 2003). (b) Mapping of QTLs controlling *Colletotrichum lentis* virulence on lentil using R/qtl. Red, blue and green dotted lines represent LOD (log of the odds) score thresholds at 0.1, 0.05 and 0.01 significance levels, respectively.

Fig. S4 *Colletotrichum lentis* minichromosome 11. Bottom, middle and top frames of the figure show GC content, gene density and QTL (*qCIVIR11*) position.

Fig. S1 Comparative analysis of secondary metabolite backbone genes in *Colletotrichum* species. PKS, Polyketide synthase; NRPS, Non-ribosomal peptide synthetase; PKS-NRPS, hybrid PKS-NRPS; and DMAT, Dimethylallyl tryptophan synthase.

Fig. S2 Validation of the genetic linkage map of ascospore-derived isolates originated from a cross between *Colletotrichum lentis* isolates CT-30 and CT-21. 2D-CheckMatrix heat plots were generated using the CheckMatrix python script (Kozik & Michelmore, 2006). Each heat plot represents a linkage group.

Fig. S3 Genetic and QTL mapping. (a) A side-by-side comparison of genetic maps generated by MadMapper (Kozik & Michelmore, 2006) and R/qtl (Broman *et al.*, 2003). (b) Mapping of QTLs controlling Collectorichum lentis virulence on lentil using R/qtl. Red, blue and green dotted lines represent LOD (log of the odds) score thresholds at 0.1, 0.05 and 0.01 significance levels, respectively.

Fig. S4 *Colletotrichum lentis* minichromosome 11. Bottom, middle and top frames of the figure show GC content, gene density and QTL (*qCIVIR11*) position.

References

Broman KW, Wu H, Churchill GA. 2003. R/qtl: QTL mapping in experimental crosses. Bioinformatics 19: 889-890.

Kozik A, Michelmore R. 2006. Suite of Python MadMapper scripts for quality control of genetic markers, group analysis and inference of linear order of markers on linkage groups. URL http://cgpdb.ucdavis.edu/XLinkage/MadMapper/.

[accessed 11 December 2015].

New Phytologist Supporting information

Article title: Genetic map-guided genome assembly reveals a virulence-governing minichromosome in the lentil anthracnose pathogen Colletotrichum lentis

Authors: Vijai Bhadauria, Ron MacLachlan, Curtis Pozniak, Aurelie Cohen-Skalie, Li Li, Jerlene Halliday, Sabine Banniza Article acceptance date: 02 July 2018

The following Supporting Information is available for this article:

Notes S1 RNA-Seq data analysis. Below is the entire procedure used to identify differentially expressed genes in *Colletotrichum lentis* isolate CT-30-infected tissues of lentil cultivar Eston.

RNA-Seq data analysis was done following a pipeline described by Haas et al. 2013. The analysis is primarily based on the Trinity assembly and analysis pipeline (Grabherr et al. 2011).

Quality control

Paired-end reads (2x125 bp) were clipped from the 3-prime ends to have a quality score of \geq 30 using the Trimmomatic software package (Bolger et al. 2014; Table 1).

Sample	Read set ²	PE reads ³	PE reads after quality control ^⁴	%PE reads after quality control [°]
23hpi-l	23hpi-I.MPS12302102-C10.3648.6	79,716,513	63,890,278	80.1
23hpi-ll	23hpi-II.MPS12302102-D10.3648.6	89,351,382	73,282,859	82.0
23hpi-III	23hpi-III.MPS12302102-E10.3648.6	75,714,608	62,948,632	83.1
96hpi-l	96hpi-I.MPS12302102-A11.3648.7	25,540,331	18,973,304	74.3
55hpi-III	55hpi-III.MPS12302102-H10.3648.7	23,319,338	19,528,056	83.7
96hpi-III	96hpi-III.MPS12302102-C11.3648.7	25,076,218	20,130,102	80.3
96hpi-ll	96hpi-II.MPS12302102-B11.3648.7	43,514,017	34,341,835	78.9
55hpi-ll	55hpi-II.MPS12302102-G10.3648.7	26,456,859	22,114,141	83.6
55hpi-l	55hpi-I.MPS12302102-F10.3648.7	26,695,514	22,235,259	83.3
Myc-ll	Myc-II.MPS12302102-A10.3648.7	26,417,771	20,125,499	76.2
Myc-I	Myc-I.MPS12302102-H09.3648.7	24,607,486	19,662,840	79.9
Myc-III	Myc-III.MPS12302102-B10.3648.7	27,578,722	21,169,800	76.8
Myc-I	Myc-I.MPS12302102-H09.3648.8	24,176,050	19,312,394	79.9
Myc-ll	Myc-II.MPS12302102-A10.3648.8	25,914,154	19,735,746	76.2
55hpi-l	55hpi-I.MPS12302102-F10.3648.8	26,757,131	22,278,697	83.3
55hpi-ll	55hpi-II.MPS12302102-G10.3648.8	28,041,493	23,432,745	83.6
55hpi-III	55hpi-III.MPS12302102-H10.3648.8	24,681,539	20,664,241	83.7
96hpi-ll	96hpi-II.MPS12302102-B11.3648.8	43,261,765	34,127,130	78.9
96hpi-l	96hpi-I.MPS12302102-A11.3648.8	27,411,006	20,360,398	74.3

 Table 1. Read statistic before and after quality control.

96hpi-III	96hpi-III.MPS12302102-C11.3648.8	25,436,884	20,400,061	80.2
Myc-III	Myc-III.MPS12302102-B10.3648.8	26,949,699	20,670,244	76.7

¹23 hpi (appressoria-assisted penetration phase), 55 hpi (biotrophic phase) and 96 hpi (necrotrophic phase) and Myc (vegetative mycelia)

²Raw 125 bp paired-end reads generated from the Illumina HiSeq platform

³Number of paired-end reads survived after quality control

⁴Percentage of survived paired-end reads

De novo transcriptome assembly and annotation

High-quality paired-end reads (phred score ≥30, minimum read length 50) were assembled *de novo* using the Trinity

software package (Grabherr et al. 2011; Table 2; Fig. 1). Transcripts were annotated by Trinotate

(https://trinotate.github.io/), which uses a number of functional annotation methods, such as homology search using

BLAST, SwissProt and Uniref90 databases.

 Table 2. De novo transcriptome assembly.

Features	Value
Nb. Transcripts	216,422
Nb. Components	152,169
Total Transcripts Length (bp)	225,712,952
Min. Transcript Length (bp)	201
Median Transcript Length (bp)	537
Mean Transcript Length (bp)	1,043
Max. Transcript Length (bp)	1,4729
N50 (bp)	1,933

Figure 1. Distribution of transcript length.

Differential gene expression analysis

DESeq (Anders and Huber 2010) and edgeR (Robinson et al. 2010) were used to examine the differential expression of transcripts

following the below experimental design (Table 3, Table 4):

Sample	Myc_v s 23h	Myc_vs_55h pi	Myc_vs_96h pi	23hpi_vs_55 hpi	23hpi_vs_96 hpi	55hpi_vs_96 hpi
	<u>рі</u>	Р.	P.			
23hpi-l	2	0	0	1	1	0
23hpi-II	2	0	0	1	1	0
23hpi-III	2	0	0	1	1	0
55hpi-l	0	2	0	2	0	1
55hpi-II	0	2	0	2	0	1
55hpi-III	0	2	0	2	0	1
96hpi-l	0	0	2	0	2	2
96hpi-II	0	0	2	0	2	2
96hpi-III	0	0	2	0	2	2

 Table 3. Experimental design for the expression analysis.

Myc-I	1	1	1	0	0	0	
Myc-ll	1	1	1	0	0	0	
Myc-III	1	1	1	0	0	0	

0, 1 and 2. If a sample is assigned 0, it is not included in a particular analysis. If a sample is assigned 1, the sample is considered as a member of the control group. If a sample is assigned 2, the sample is considered as a member of the test/case group.

 Table 4. Snapshot of differentially expressed genes for contrasts.

Differentially Expressed genes for contrast Myc_vs_23hpi										
id	gene_symbol	log_FC	log_CPM	deseq.p- value	deseq.adj.pvalue	edger.p.value	edger.adj.p.value			
TRINITY DN159362 c0 g1	TRINITY DN159362 c0 g1	19.038	13.481	0	0	0	0			
TRINITY_DN163150_c1_g1	TRINITY_DN163150_c1_g1	19.651	13.633	0	0	0	0			
TRINITY_DN175612_c0_g1	TRINITY_DN175612_c0_g1	19.547	13.529	0	0	0	0			
TRINITY_DN179977_c0_g1	TRINITY_DN179977_c0_g1	19.748	13.729	0	0	0	0			
TRINITY_DN182678_c0_g1	TRINITY_DN182678_c0_g1	19.955	13.936	0	0	0	0			
TRINITY_DN184450_c0_g1	TRINITY_DN184450_c0_g1	21.156	13.1	0	0	0	0			
TRINITY_DN185405_c0_g1	TRINITY_DN185405_c0_g1	21.693	13.637	0	0	0	0			
TRINITY_DN186078_c0_g3	TRINITY_DN186078_c0_g3	22.565	14.509	0	0	0	0			
TRINITY_DN191213_c0_g1	TRINITY_DN191213_c0_g1	20.189	14.634	0	0	0	0			
TRINITY_DN192168_c0_g1	TRINITY_DN192168_c0_g1	21.283	13.227	0	0	0	0			
Differentially Expressed genes for contrast Myc_vs_55hpi										
id	gene_symbol	log_FC	log_CPM	deseq.p- value	deseq.adj.pvalue	edger.p.value	edger.adj.p.value			
TRINITY_DN194141_c0_g1	TRINITY_DN194141_c0_g1	14.908	13.853	0	0	0	0			
TRINITY_DN200788_c0_g2	TRINITY_DN200788_c0_g2	15.497	13.418	0	0	0	0			
TRINITY_DN203527_c2_g1	TRINITY_DN203527_c2_g1	15.183	13.766	0	0	0	0			

Differentially Expressed genes for contrast Myc_vs_55hpi									
id	gene_symbol	log_FC	log_CPM	deseq.p-	deseq.adj.pvalue	edger.p.value	edger.adj.p.value		
TRINITY DN205185 c1 a1	TRINITY DN205185 c1 a1	15 571	13 921		0	0	0		
TRINITY DNI 04141 $a0 a2$	TRINITY DN104141 -0 -02	15 704	10.021	5 50 255	2 20 251	0	0		
TRINITY_DN001075_00_01	TRINITY_DN204275_00_01	15.704	12.309	0.5e-255	2.20-231	0	0		
		15.028	12.330	2.70-251	96-248	0	0		
TRINITY_DN204230_C4_g2	TRINITY_DN204230_c4_g2	14.954	12.274	8.46-248	2.4e-244	0	0		
TRINITY_DN188479_c0_g2	TRINITY_DN188479_c0_g2	15.464	12.146	3.3e-247	8.1e-244	0	0		
TRINITY_DN199147_c0_g2	TRINITY_DN199147_c0_g2	14.658	12.204	2e-244	4.4e-241	0	0		
TRINITY_DN201190_c0_g1	TRINITY_DN201190_c0_g1	14.465	12.006	3.4e-240	6.9e-237	0	0		
	Differentially Furs								
					yc_vs_96npi				
la	gene_symbol			aeseq.p-	deseq.adj.pvalue	edger.p.value	edger.adj.p.value		
		14.026	9.049		0	0	0		
$\frac{1}{10000000000000000000000000000000000$	TRINIT _DN110226 _0_ ~1	14.030	0.940	0	0	0	0		
TRINITY_DNI10236_C0_g1		12.905	C00.1	0	0	0	0		
TRINITY_DN110722_c0_g1	TRINITY_DN110/22_c0_g1	10.442	9.049	0	0	0	0		
TRINITY_DN115590_c0_g1	TRINITY_DN115590_c0_g1	-6.514	8.709	0	0	0	0		
TRINITY_DN14896_c0_g1	TRINITY_DN14896_c0_g1	5.502	9.087	0	0	0	0		
TRINITY_DN159438_c0_g1	TRINITY_DN159438_c0_g1	-5.721	9.729	0	0	0	0		
TRINITY_DN159559_c0_g2	TRINITY_DN159559_c0_g2	10.795	9.401	0	0	0	0		
TRINITY_DN161263_c0_g1	TRINITY_DN161263_c0_g1	11.137	8.852	0	0	0	0		
TRINITY_DN162110_c0_g1	TRINITY_DN162110_c0_g1	8.014	8.54	0	0	0	0		
TRINITY_DN164844_c0_g1	TRINITY_DN164844_c0_g1	10.06	8.295	0	0	0	0		
Differentially Expressed genes for contrast 23hpi vs. 55hpi									
id	gene symbol	log FC	log CPM	deseg p-	deseq.adi.pvalue	edger.p.value	edger.adi.p.value		
	90110_09111001			value		genpiralae	o agon a ajipir alde		

Differentially Expressed genes for contrast 23hpi_vs_55hpi										
id	gene_symbol	log_FC	log_CPM	deseq.p- value	deseq.adj.pvalue	edger.p.value	edger.adj.p.value			
TRINITY_DN191680_c0_g2	TRINITY_DN191680_c0_g2	7.501	7.117	0	0	7.2e-302	5.2e-297			
TRINITY_DN199868_c2_g1	TRINITY_DN199868_c2_g1	9.054	7.524	0	0	1.5e-279	5.6e-275			
TRINITY_DN190033_c0_g1	TRINITY_DN190033_c0_g1	10.233	7.252	6.1e-107	1.4e-103	3.9e-254	9.3e-250			
TRINITY_DN230825_c0_g1	TRINITY_DN230825_c0_g1	-7.34	9.217	5.3e-119	1.8e-115	5.9e-248	1.1e-243			
TRINITY_DN173194_c0_g1	TRINITY_DN173194_c0_g1	15.382	6.593	0	0	8.3e-245	1.2e-240			
TRINITY_DN195988_c0_g2	TRINITY_DN195988_c0_g2	-5.409	11.161	0	0	2.6e-244	3.2e-240			
TRINITY_DN173954_c0_g1	TRINITY_DN173954_c0_g1	-7.444	8.994	7.6e-117	2.3e-113	3.3e-238	3.4e-234			
TRINITY_DN183140_c0_g2	TRINITY_DN183140_c0_g2	9.941	6.518	5.1e-150	3.4e-146	3.5e-237	3.2e-233			
TRINITY_DN35064_c0_g1	TRINITY_DN35064_c0_g1	7.51	6.467	2.3e-79	2.2e-76	2e-226	1.6e-222			
TRINITY_DN199220_c0_g3	TRINITY_DN199220_c0_g3	6.89	6.207	7.8e-107	1.7e-103	2e-216	1.5e-212			

Differentially Expressed genes for contrast 23hpi_vs_96hpi

id	gene_symbol	log_FC	log_CPM	deseq.p- value	deseq.adj.pvalue	edger.p.value	edger.adj.p.value
TRINITY_DN15951_c0_g1	TRINITY_DN15951_c0_g1	9.849	8.99	0	0	0	0
TRINITY_DN182724_c0_g2	TRINITY_DN182724_c0_g2	9.216	8.1	0	0	0	0
TRINITY_DN185504_c0_g1	TRINITY_DN185504_c0_g1	9.174	7.964	0	0	0	0
TRINITY_DN186556_c0_g1	TRINITY_DN186556_c0_g1	8.338	8.993	0	0	0	0
TRINITY_DN187162_c0_g1	TRINITY_DN187162_c0_g1	9.286	7.92	0	0	0	0
TRINITY_DN191663_c0_g1	TRINITY_DN191663_c0_g1	9.165	8.358	0	0	0	0
TRINITY_DN192155_c1_g1	TRINITY_DN192155_c1_g1	18.383	8.943	0	0	0	0
TRINITY_DN201204_c0_g2	TRINITY_DN201204_c0_g2	16.462	11.147	0	0	0	0
TRINITY_DN219047_c0_g1	TRINITY_DN219047_c0_g1	13.189	9.468	0	0	0	0
TRINITY_DN10491_c0_g1	TRINITY_DN10491_c0_g1	18.904	9.467	NA	NA	0	0

Differentially Expressed genes for contrast 55hpi_vs_96hpi										
id	gene_symbol	log_FC	log_CPM	deseq.p- value	deseq.adj.pvalue	edger.p.value	edger.adj.p.value			
TRINITY_DN10491_c0_g1	TRINITY_DN10491_c0_g1	11.862	9.98	0	0	0	0			
TRINITY_DN110722_c0_g1	TRINITY_DN110722_c0_g1	13.078	10.082	0	0	0	0			
TRINITY_DN14896_c0_g1	TRINITY_DN14896_c0_g1	10.795	10.089	0	0	0	0			
TRINITY_DN156182_c0_g2	TRINITY_DN156182_c0_g2	11.265	8.734	0	0	0	0			
TRINITY_DN159559_c0_g2	TRINITY_DN159559_c0_g2	12.601	10.436	0	0	0	0			
TRINITY_DN161263_c0_g1	TRINITY_DN161263_c0_g1	12.047	9.881	0	0	0	0			
TRINITY_DN161449_c0_g1	TRINITY_DN161449_c0_g1	7.954	8.623	0	0	0	0			
TRINITY_DN162110_c0_g1	TRINITY_DN162110_c0_g1	11.442	9.563	0	0	0	0			
TRINITY_DN171252_c0_g1	TRINITY_DN171252_c0_g1	11.94	10.683	0	0	0	0			
TRINITY_DN176858_c0_g1	TRINITY_DN176858_c0_g1	9.424	10.487	0	0	0	0			

¹Gene: component id

²Symbol: BLAST protein database id if available, component id otherwise

³log_FC: log2 Fold Change of gene level expression

⁴log_CPM: log2 Counts Per Million of gene level expression

⁵deseq.p-value: DESeq nominal p-value

⁶deseq.adj.pvalue: DESeq False Discovery Rate (FDR) adjusted p-value

⁷edger.p-value: edgeR nominal p-value

⁸edger.adj.pvalue: edgeR False Discovery Rate (FDR) adjusted p-value

References

Anders S, Huber W. 2010. Differential Expression Analysis for Sequence Count Data. Genome Biology 11: R106.

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 30:

2114-2120.

Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I et al. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. *Nature Biotechnology* **29**: 644-652.

Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J et al. 2013. De novo transcript sequence reconstruction from RNA-Seq Using the Trinity platform for reference generation and analysis. *Nature Protocols* **8**: 1494-1512.

Robinson MD, McCarthy DJ, Smyth GK. 2010. EdgeR: A bioconductor package for differential expression analysis of digital gene expression data. *Bioinformatics* **26**: 139-140.