
Online Supplement

S1. Modification of vaccination effectiveness by vaccination history

There are plausible mechanisms causing interference of previous seasons’ vaccination (and/or natural in-
fection) with the immune response to the current season’s vaccination: If, e.g., the two vaccines or, more
generally, the cause of the previous immune response against influenza antigens and the current vaccine, were
antigenically similar, then persisting antibodies may inactivate vaccine antigen, thus interfering with the
vaccine response (“antigenic distance hypothesis”, [1]). This mechanism would result in effect modification,
i.e. the modification of VE by vaccination history. The following model could then be used instead of (5)

logit
(

Pr(casei = 1|v, h2, . . . , hK)
)

= β0 + βvv +

K∑
m=2

αmνm +

R∑
m=2

γmdm, (S1.1)

where R is the number of vaccination history subsets that are associated with distinct VEs, and

dm =

{
1 if belonging to subset m, ∀m ∈ (1, . . . , R)

0 otherwise.

Model (S1.1) gives rise to the following R history-specific VE estimates:

φ̂m =

{
1− exp β̂v if d1 = 1

1− exp(β̂v + γ̂m) otherwise
(S1.2)
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S2. Simulation model

Model description

We simulated test-negative design (TND) studies of seasonal influenza VE. The source population of 106

consisted of subjects with five different levels of health behavior ξ ∈ Ξ, where Ξ = (1, . . . , 5). The assumed
prevalences qξ for different levels of ξ, the probabilities to get vaccinated in any given season pξ and the
probabilities to seek medical care for an acute respiratory illness that met the case definition, wξ are listed
in Table S2.1. We simulated six influenza seasons that gave rise to 26 = 64 distinct full vaccination

ξ qξ wξ pξ
1 0.3 0 0.2
2 0.2 0.2 0.2
3 0.2 0.75 0.55
4 0.2 0.9 0.65
5 0.1 0.95 0.8

Table S2.1: Assumed values of parameters determining the effect of health behavior ξ on vaccination uptake
and health care-seeking behavior in simulation studies: Prevalence qξ, vaccination uptake wξ and probability
of health care-seeking when case definition was met (ARI, ILI, etc.).

histories (including current season). The per-season vaccination probabilities, that remained constant for
each subject, and their distribution in the population, determined the distribution of vaccination histories in
the population. For example, each of the

(
6
2

)
trajectories of two vaccinated and four unvaccinated seasons

previously and including the current season was calculated as the sum of the probabilities contributed by
each ξ-type, weighted by the ξ-types prevalence, e.g.

Pr(v = (0, 1, 0, 0, 0), v = 1) =
∑
ξ∈Ξ

qξ p
2
ξ(1− pξ)4, (S2.1)

Generally, the probability of k vaccinated seasons out of six is

Pr(nv = k) =

(
6

k

)∑
ξ∈Ξ

qξ p
k
ξ (1− pξ)6−k, (S2.2)

where nv is the number of vaccinations received in all the previous seasons. We further assumed only one
influenza virus entity to circulate and assumed that the influenza risk in a particular season was only a
function of a subject’s immunity, acquired either by vaccination or natural infection.

All individuals were assumed to be immunologically näıve—and thus unvaccinated—before the start of
vaccination prior to the first simulated season. All subjects infected with the influenza virus remained immune
to influenza for the remainder of the season. Those with natural immunity in a given season, say k, either
from natural infection in that season or carry-over had a probability ω of carrying their natural immunity over
to the following season, k+1. Similarly, we assumed that subjects with vaccine-derived immunity would carry
over their immunity to the following season with probability ρ. Carry-over of infection-derived immunity was
assumed to be at least as likely as vaccine-derived immunity, i.e., ω ≥ ρ. Therefore, the subdiagonals in all
Figures—except for Figure 1, which depicts a DAG—are left blank.

We assumed that—except for the sensitivity analysis of Online Supplement S4—seasonal risk of influenza
infection in individuals susceptible at the beginning of a season was constant at 0.2 and VE (φ) was 60% over
all seasons, while the seasonal risk for non-influenza respiratory infection was 0.3. Of those with influenza
infection, half developed a syndrome making them eligible for study inclusion, while that proportion was
only 30% in those with non-influenza respiratory infection, independent of their ξ-type, but the probability
of seeking care with given symptoms was only determined by wξ.

VE represents the probability that a vaccinated, previously susceptible, individual is fully protected from
influenza. The complement, 1−φ, is the probability that a vaccinated individual will remain fully susceptible
despite vaccination. Vaccination-derived immunity was only acquired by subjects without infection-derived
immunity and vice versa.
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There were no measured or unmeasured confounders or covariates other than vaccination history, current
vaccination status and health behavior, ξ. Influenza infection was determined with perfect accuracy. When
seeking care, all subjects were enrolled into the study and tested for influenza. Study recruitment—i.e.,
the limitaton of the numbers of subjects enrolled by enrollment targets—was ignored except in the analysis
of Type I errors in Online Supplement S3, because our focus was bias and not precision. Unless study
enrollment, given a health care visit for acute respiratory illness, depends on either v, v, or ξ this choice does
not affect the average results.

Simulation with vaccination status and history assessed with perfect accuracy

The simulation was implemented by first calculating the event probabilities (case event=influenza ARI and
control event=non-influenza ARI). Generally, the number of influenza infections risk for season k was cal-
culated for each full vaccination history stratum as a binomial pseudo-random number using the seasonal
attack rate in susceptibles λI and the number susceptible at the beginning of season k, using the stratum
size and the proportion susceptible, Sk = 1− Ik − Vk, where Ik is the prevalence of protection from natural
influenza infection at the beginning of season k and Vk is the prevalence of protection due to vaccination.
Again, immunity is always assumed to be absolute and prevalence of immunity is not assumed to decrease
during an influenza season. For simplicity, vaccination history indices are omitted. Ik was then iteratively
calculated, for each vaccination history stratum separately, as

Ik =
(
Sk+1λI(k + 1) + Ik+1

)
ω,∀k ∈ (4, . . . , 0) (S2.3)

and
Vk =

(
Vk+1 ρ+ vk (1− Ik − Vk+1 ρ) φk

)
,∀k ∈ (4, . . . , 0) (S2.4)

where I5 = V5 = 0, i.e. absence of vaccine- or infection-derived immunity at the beginning of the
first season. Note that, by assumption, immunity from infection and vaccination are mutually exclusive.
Prevalence of natural and vaccine-derived influenza immunity decayed from season to season at independent,
constant rates. Together with the infection and vaccination events in the past seasons, these decay rates
determined the level of susceptibility to influenza infection during the final season, which was of interest for
VE estimation.

Thus we calculated S0 iteratively for all 64 vaccination histories. Using these probabilities and the sizes of
the respective source populations, pseudo-random numbers were generated from a binomial distribution. This
was done 10,000 times (number of simulations), unless otherwise indicated. Similarly, numbers of controls
were generated for each stratum (vaccination history), using λnI , independent of vaccination or infection
history. These procedures resulted in two 10, 000× 64 matrices, one for cases and one for controls. The nth
row of the respective matrix represented data from the nth simulated study.

Simulation with vaccination status and history assessed with error

To investigate the impact of misclassification of current and prior season’s vaccination status we assumed
that misclassification of current and prior season’s vaccination status, v and ṽ, respectively, was characterized
by the same sensitivity σ = 95% and specificity ζ = 90%.

Each subject falls into either of the following four categories:

1. Unvaccinated both in previous and current season, n1

2. Unvaccinated in prior season—vaccinated in current season, n2

3. Vaccinated in prior season—unvaccinated in current season, n3

4. Vaccinated in prior season—vaccinated in current season, n4

let n = (n1, . . . , n4). The observed numbers, n∗ᵀ = (n∗1, . . . , n
∗
4) will be multinomially distributed according

to probabilities pᵀ = (p1, . . . , p4) and the total number N =
∑4
i=1 ni; accordingly, E(n∗) = pN . The
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probabilities p are given by the matrix product of

C =


ζ2 (1− σ)ζ ζ(1− σ) (1− σ)2

(1− ζ)ζ σζ (1− ζ)(1− σ) σ(1− σ)
ζ(1− ζ) (1− σ)(1− ζ) ζσ (1− σ)σ
(1− ζ)2 σ(1− ζ) (1− ζ)σ σ2

 (S2.5)

and the normalized vector n
N .

Using these parameters the 4×4 matrix C (S2.5) can be calculated. For each simulation, C was multiplied
by the vector having the true numbers in each category as entries, devided by the total, to obtain p (see
text). This was used to generate pseudo-random numbers from a multinomial distribution.

Example R code

Sample R code is available as online material.
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S3. Statistically significant spurious differences in VEs from models 2 and 4

For both model 2 and model 4 we estimated the probabilities that the hypothesis of modification of VE in
the current season by vaccination in the prior season would be accepted, despite the absence of such an effect
(Type I error). First, this was done for accurate assessment of current and prior vaccination status, then for
misclassified vaccination status.

(a) (b)

Figure S3.1: Proportion of statistically significant differences between VE for those vaccinated vs. those
unvaccinated in previous season (a) from model 2 and (b) from model 4, when current and prior vaccination
status is accurately measured, with 1000 cases and 2000 controls; 10 000 simulations per parameter combi-
nation. Blue cells indicate probabilities of rejection of the null hypothesis of no effect modification (Type I
error) lower than α = 0.05, while shades of red indicate Type-I error probabilities > α.
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(a) (b)

Figure S3.2: Proportion of statistically significant differences between VE for those vaccinated vs. those
unvaccinated in previous season (a) from model 2 and (b) from model 4, when current and prior vaccination
status is misclassified (σ = 90%, ζ = 95%), with 1000 cases and 2000 controls; 10 000 simulations per
parameter combination. Blue cells indicate probabilities of rejection of the null hypothesis of no effect
modification (Type I error) lower than α = 0.05, while shades of red indicate Type-I error probabilities > α.
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S4. Simulations using variable VE and seasonal influenza risk

We investigated the effect of seasonally variable VE and influenza risk. First we assumed that VE was 20,
60, 30, 40, 30 and 60% in seasons 1 through 6, respectively, and the corresponding seasonal influenza risk
was 20, 10, 15, 18, 15 and 10% in those susceptible at the beginning of the season (Figure S4.1). We then
assumed that VE in the current season was 20% instead and influenza risk in that season was 30% (Figure
S4.2).

Current season’s VE 60%

(a) (b)

Figure S4.1: VE estimates with variable VE and seasonal influenza risk in the past and a current VE of 60%
(a) unadjusted for prior season’s vaccination status (model 1) and (b) adjusted for prior season’s vaccination
status (model 3), when current and prior vaccination status is accurately measured; 10 000 simulations per
parameter combination. Blue cells indicate negative bias (VE estimates too low), while shades of red indicate
positive bias (VE estimates too high).
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Current season’s VE 20%

(a) (b)

Figure S4.2: VE estimates with variable VE and seasonal influenza risk in the past and a current VE of 20%
(a) unadjusted for prior season’s vaccination status (model 1) and (b) adjusted for prior season’s vaccination
status (model 3), when current and prior vaccination status is misclassified (σ = 90%, ζ = 95%); 10 000
simulations per parameter combination. Blue cells indicate negative bias (VE estimates too low), while
shades of red indicate positive bias (VE estimates too high).
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S5. Sensitivity analysis for accuracy of vaccination status assessment and bias in
VE

To investigate the role specific assumptions regarding accuracy of vaccination status assessment for current
and prior season, we varied sensitivity and specificity values: 80,85,90,95 and 98%, both for VE estimates not
adjusted (model 1, Figure S5.1) and adjusted for prior season’s vaccination status (model 3, Figure S5.2).
Per parameter setting, we ran 1000 simulations.

Figure S5.1: Bias in VE estimates that are not adjusted for prior season’s vaccination status (model 1), by
sensitivity and specificity of current and prior season’s vaccination status assessment. 1000 simulations per
parameter combination. Shades of blue indicate negative bias (VE estimates too low) and shades of red
indicate positive bias.
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Figure S5.2: Bias in VE estimates that are partially adjusted for prior season’s vaccination status (model 3),
by sensitivity and specificity of current and prior season’s vaccination status assessment. 1000 simulations
per parameter combination. Shades of blue indicate negative bias (VE estimates too low) and shades of red
indicate positive bias.
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