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Supplementary Figures
a number of selected eQTLs in the two colon tissues

unit: million BH SBH IHW AdaFDR AdaFDR (aug) AdaFDR (ctrl)
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Adipose_Visceral_Omentum Cells_EBV-transformed_lymphocytes

Supplementary Figure 1. Additional results on the GTEx data. (a) Results on the two colon tissues. (b) Feature
visualization for Colon_Sigmoid (c) Validation for GTEx Adipose_Visceral_Omentum using the MuTHER adipose eQTL data
(left) and for GTEx Cells_EBV-transformed_lymphocytes using the MuTHER lymphocytes (LCL) eQTL data (right).
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Supplementary Figure 2. Comparing the AdaFDR result and the SBH result on the GTEx data. (a) Result comparison
between SBH and AdaFDR. For all 17 GTEx tissues, AdaFDR missed a tiny proportion of SBH discoveries while having
substantially more other discoveries. Source data are provided as a Source Data file. (b-c) The marginal distribution of
AdaFDR-only discoveries and SBH-only discoveries over each covariate is shown for the tissue Adipose_Subcutaneous and
Colon_Sigmoid respectively. There is a higher proportion of AdaFDR-only discoveries at locations where 1) the distance from
TSS is small (upper left); 2) the SNP has an active chromatin state (upper right); 3) the SNP AAF is close to 0.5 (lower left); 4)
the gene expression level is neither too high or too low (lower right). All these match the enrichment pattern of eQTLs
(Results), indicating that the AdaFDR-only discoveries are more biologically relevant.
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Supplementary Figure 3. Contribution of each covariate for the GTEx data. To investigate the individual contribution of
different covariates, we run AdaFDR using each covariate separately for all tissues in the GTEx experiment. We use a nominal
FDR level of 0.01 same as before. The distance from TSS is most informative while others have have smaller but still notable
effects. Interestingly, the combined improvement of using all covariates (31.9%) is similar to the sum of the four individual
improvements (33.0%), indicating that the four covariates carry very different information regarding the hypotheses. Source
data are provided as a Source Data file.
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distance from TSS 

log10 gene expression level 

alternative allele frequency 

chromatin state (15 states model)

augmented -log10 p-value (from Adipose_Visceral_Omentum)

Supplementary Figure 4. Assumption check for the GTEx Adipose_Subcutaneous data. To verify the algorithm
assumption (Theorem 1) for the GTEx experiments, we plot the p-value histograms stratified by each covariate separately for
the tissue Adipose_Subcutaneous. All histograms show a mixture of a uniform distribution and an enrichment of small p-values
to the left, indicating that the null p-values are uniformly distributed independent of the covariate.
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distance from TSS 

log10 gene expression level 

alternative allele frequency 

chromatin state (15 states model)

augmented -log10 p-value (from Colon_Transverse)

Supplementary Figure 5. Assumption check for the GTEx Colon_Sigmoid data. P-value histograms stratified by each
covariate separately for the tissue Colon_Sigmoid. Similar to Supplementary Figure 4.
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log10 expression level

a covariate for airway b covariate for enigma_al 

mean nonzero abundance 

ubiquity

Supplementary Figure 6. Additional covariate visualizations. (a) The covariate visualization for the RNA-Seq airway data.
(b) The covariate visualization for the microbiome enigma_al data. Top: ubiquity; bottom: mean nonzero abundance.

discoveries (std) reproduced discoveries %

small_GTEx: Adipose_Subcutaneous 1491 (41) 94.5%
small_GTEx: Adipose_Visceral_Omentum 1396 (96) 89.5%

RNA-Seq: Bottomly 2147 (38) 93.6%
RNA-Seq: Pasilla 830 (15) 94.4%
RNA-Seq: airway 6041 (33) 97.2%

microbiome: enigma_ph 119 (8) 87.8%
microbiome: enigma_al 480 (46) 82.4%

proteomics 408 (18) 89.6%
fMRI: auditory 1066 (10) 96.9%

fMRI: imagination 2233 (12) 97.6%

Supplementary Figure 7. Algorithm stability. AdaFDR may produce slightly different results in different runs on the same
dataset due to its inherent randomness. To showcase its stability, we repeat all 10 experiments in Figure 3a 50 times with
different random seeds. As shown in the first column of the table, the number of discoveries of the 50 repetitions are highly
consistent. Furthermore, for each of the 50 repetitions, we run AdaFDR for a second time and report the proportion of
reproduced discoveries in the second column of the table (number of overlapped discoveries in both runs divided by average
number of discoveries in the first run). The average replication rate is 92.4% across the ten datasets, indicating good stability of
the algorithm. The two microbiome datasets have relatively lower replication rate (87.8% and 82.4%, respectively), due to their
smaller data size (⇠ 4000 hypotheses).
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a

simulated data in AdaPT 

b comparison with NeuralFDR

NeuralFDR AdaFDR

2DGM 18844 20182

5DGM 18364 19832

GTEx_ 
NeuralFDR 37195 37141

more simulations for FDP and power 

simulated data in IHW 

simulated data with 2 covariates 

simulated data with 10 covariates simulated data with strongly-dependent p-values 

Supplementary Figure 8. More simulation studies. 95% confidence intervals are provided for all panels. (a) Additional
simulations for FDP and power. Descriptions of the data are in Supplementary Note 2.6. (b) Comparison between
NeuralFDR and AdaFDR.
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polyester RNA-Seq resampling experiment
power in SummarizedBenchmark simulations

polyester (uninformative covariate)

varying number of tests varying non-null proportion

yeast RNA-Seq resampling experiment a

dc

b

e

AdaFDR (fast) 
AdaFDR 
AdaPT

AdaPT

AdaFDR (fast) 
AdaFDRAdaPT

AdaFDR (fast) 
AdaFDR 
AdaPT 

BL 
SBH

IHW 
BH

AdaFDR 
AdaPT

AdaFDR (fast)

Supplementary Figure 9. SummarizedBenchmark simulations11 (power). Power in five SummarizedBenchmark
simulations11 with the corresponding FDP shown in Supplementary Figure 10. Panels a-d correspond to Figure 3 in11 while
panel e corresponds to the first row of Table S2 in11. Ten resamplings were done for RNA-Seq experiments (a,b,e) while twenty
were done for others; 95% confidence intervals are provided. Panels a, b are two RNA-Seq spike-in resampling experiments
with an informative covariate, panel c contains a simulated data with the number of tests varying from 500 to 50k, while panel d
contains a simulated data with the non-null proportion of tests varying from 0.95 to 0.6. In all four experiments, AdaFDR and
AdaPT have the highest power (with AdaFDR being slightly better). We note that AdaPT does not have such high power in the
same experiments in11. This is probably because we used adapt_gam while adapt_glm is used in11; the former has a better
performance but takes a longer time to run. Panel e uses the same set of p-values as panel b but with an uninformative covariate.
We can see the performance of IHW reduces to BH while others reduce to SBH, a phenomenon also mentioned in11.
AdaFDR maintains high power here indicating that it does not overfit the uninformative covariate.
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polyester RNA-Seq resampling experiment
FDR control in SummarizedBenchmark simulations

polyester (uninformative covariate)

varying number of tests varying non-null proportion

yeast RNA-Seq resampling experiment a

dc

b

e
AdaFDR (fast) 

AdaFDR 
AdaPT 

BL 
SBH

IHW 
BH

AdaFDR (fast) 
AdaFDR 
AdaPT 

BL 
SBH

IHW 
BH

IHW 
BH

AdaFDR (fast) 
AdaFDR 
AdaPT 

BL 
SBH

Supplementary Figure 10. SummarizedBenchmark simulations11 (FDP). 95% confidence intervals are provided for all
panels. FDR control in five SummarizedBenchmark simulations11 with the corresponding power shown in Supplementary
Figure 9. The detailed description of the data can also be found in Supplementary Figure 9. All methods control the FDR
accurately, except in panel c, where BL slightly exceeds the nominal FDR level when the number of tests is small.
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Supplementary Notes

1 Supplementary Note 1: Additional Algorithm Information

1.1 Feature preprocessing

We perform feature preprocessing to integrate both numerical covariates and categorical covariates. First for each categorical
covariate, the categories are reordered based on the ratio of the alternative probability and the null probability, estimated on the
training set using the same method as above. Then quantile normalization is performed for each covariate separately. Note that
after this transformation, all covariates will have values between 0 and 1. Also, overfitting is not a concern since the entire
proprecessing is done without seeing p-values from the testing set.

1.2 Remark on Theorem 1

Theorem 1 is similar to, but stronger than that for NeuralFDR. First, NeuralFDR requires the scale factor to be selected
from a finite set of L numbers and has an extra multiplicative factor

p
logL in the error term e . In contrast, AdaFDR selects

the scale factor over all positive numbers and the
p

logL term is no longer needed. This is done by using a stochastic process
argument instead of the union bound. Second, NeuralFDR uses an empirical Bayes model where the tuples (Pi,xi,hi) are
generated i.i.d. following some hierarchical model. AdaFDR, however, requires a less restrictive assumption made only on the
conditional distribution of null p-values, whereas the covariates and alternative p-values can have arbitrary dependence.

1.3 Initialization via EM algorithm

Here we present the EM algorithm that is used to fit the mixture model (2) on a set of N points {xi}N
i=1. Recall that due to

quantile normalization, the value of xi is within [0,1]d . Therefore, each component in the mixture model is truncated to be
within [0,1]d , i.e., truncated GLM or truncated Gaussian. Since we need to use the samples each associated with a sample
weight, let us consider the general case where each sample xi receives a positive weight vi 2 R+.

For the sake of convenience, let us reparameterize the parameters to have the standard probability distribution

fall(x;w,a,{µµµk,sss k}K
k=1) = w0 fslope(x;a)+

K

Â
k=1

wk fbump(x; µµµk,sss k), x 2 [0,1]d , (1)

where w 2 [0,1]K+1 with ÂK
k=0 wk = 1 and

fslope(x;a) = exp
�
aTx
� d

’
j=1

a j

exp(a j)�1
,

fbump(x; µµµk,sss k) =
d

’
j=1

1

Zk j

q
2ps2

k j

exp

 
�
(x j �µk j)2

2s2
k j

!
,

for Zk j =
Z 1

0

1q
2ps2

k j

exp

 
�
(x j �µk j)2

2s2
k j

!
dx.

It is not hard to see that (1) is equivalent to the mixture threshold (2) up to a scale factor that can be specified by b in (2);
knowing one, the parameters for the other can be computed without difficulty.

The EM algorithm can be described as follows. For the initialization, the responsibility ri 2 [0,1]K+1, i 2 [N] for each point
xi is initialized as

rinit
i =


0.5,

1
2K

,
1

2K
, · · · , 1

2K

�
,

where the first component corresponds to the slope component and the rest correspond to the K bump components. Then, the
algorithm iterates between the E-step and the M-step as follows until convergence:

1. Expection (E-step): For each point xi, update the responsibility

rnew
i =

1
fall(xi;wold,aold,{µµµold

k ,sssold
k }K

k=1)
[wold

0 fslope(xi;aold),

wold
1 fbump(xi; µµµold

1 ,sssold
1 ),wold

2 fbump(xi; µµµold
2 ,sssold

2 ), · · · ,wold
K fbump(xi; µµµold

K ,sssold
K )].
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2. Maximization (M-step): Update the component weights wnew by

wnew
k =

ÂN
i=1 viwold

ik

ÂK
k=0 ÂN

i=1 viwold
ik

, k = 0,1, . · · · ,K

Update the parameters for the slope component and each of the K bump component:

anew = MLslope({xi,virnew
i0 }N

i=1)

µµµnew
k ,sssnew

k = MLbump({xi,virnew
ik }N

i=1), k 2 [K].

The ML estimates of slope and bump, i.e., MLslope({xi,virnew
i0 }N

i=1) and MLbump({xi,virnew
ik }N

i=1), are described as follows.
ML estimate of the slope. The log likelihood function of a single observation xi can be written as

li(a) = log fslope(xi;a) =
d

Â
j=1

log
✓

a j

exp(a j)�1

◆
+aT xi. (2)

Further the weighted average log likelihood function,

l̄(a) = ÂN
i=1 virnew

i0 li(a)
ÂN

i=1 virnew
i0

=
d

Â
j=1

log
✓

a j

exp(a j)�1

◆
+

aT

Ân
i=1 virnew

i0

N

Â
i=1

virnew
i0 xi. (3)

We add a regularization term ckak2
2 to encourage small values of ckak2

2, i.e.

l̄(a) =
d

Â
j=1

log
✓

a j

exp(a j)�1

◆
+

aT

ÂN
i=1 virnew

i0

N

Â
i=1

virnew
i0 xi � ckak2

2. (4)

We found that setting c = 0.005 gives a stable result. We solve the ML estimation problem by setting the derivative to be zero.
Namely, for the jth element a j,

∂ l̄
∂a j

=
1
a j

� ea j

ea j �1
+

1
ÂN

i=1 virnew
i0

N

Â
i=1

virnew
i0 xi j �2ca j = 0. (5)

Rearranging terms on both sides we have that the ML estimate â j satisfies

eâ j

eâ j �1
� 1

â j
+2câ j =

1
ÂN

i=1 virnew
i0

N

Â
i=1

virnew
i0 xi j. (6)

Since the left-hand-side term is monotonic in â j, the ML solution â j can be computed via binary search.
ML estimate of the k-th bump. Since the density function can be factorized as a product of different dimensions, the ML
estimation can be done for each dimension separately. Now consider observation xi. The log likelihood function corresponding
to dimension j can be written as

li j(µk j,sk j) =� logZk j �
1
2

log(2p)� logsk j �
1

2s2
k j
(xi j �µk j)

2. (7)

Then the weighted average log likelihood function for dimension j can be written as

l̄ j(µk j,sk j) =
ÂN

i=1 virnew
ik li j(µk j,sk j)

ÂN
i=1 virnew

ik
(8)

=� logZk j �
1
2

log(2p)� logsk j �
1

2s2
k j Ân

i=1 virnew
ik

N

Â
i=1

virnew
ik (xi j �µk j)

2. (9)

Since l̄ j(µk j,sk j) is convex, we compute the ML estimation µ̂k j and ŝk j via gradient descent, where the derivatives are given as
follows.

∂ l̄ j

∂ µk j
=� 1

Zk j

∂Zk j

∂ µk j
+

1
s2

k j ÂN
i=1 virnew

ik

N

Â
i=1

virnew
ik (xi j �µk j) (10)

∂ l̄ j

∂sk j
=� 1

Zk j

∂Zk j

∂sk j
� 1

sk j
+

1
s3

k j ÂN
i=1 virnew

ik

N

Â
i=1

virnew
ik (xi j �µk j)

2, (11)
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where the derivatives with respect to Zk j are

∂Zk j

∂ µk j
=

1
sk j

[f(b1)�f(b2)],
∂Zk j

∂sk j
=

1
sk j

[b1f(b1)�b2f(b2)], (12)

for b1 =
�µk j
sk j

, b2 =
1�µk j

sk j
and f(x) = 1p

2p exp(� 1
2 x2).

1.4 Extension to dependent case

Here we describe a simple procedure that extends AdaFDR to allow arbitrary dependency of p-values, borrowing ideas from
the extended version of IHW8. The procedure can be described as follows:

1. Partition the hypotheses into two folds that are independent of each other, i.e., {(Pi,xi)}i2D1 and {(Pi,xi)}i2D2 that are
mutually independent.

2. For each fold j = 1,2, let {ti}i2D j be the threshold learned from the other fold (up to a scaling factor). Weight the
p-values by

P̃i = Pi
Âi2D j ti
|D j|ti

,

where |D j| is the cardinality of the set D j.

3. Apply the BH procedure on the set of weighted p-values {P̃i}i2[N] with nominal FDR level a/Âi2[N]
1
i .

We note that in eQTL studies, SNPs from different chromosomes can be regarded as being independent of each other. Also, the
third step corresponds to the Benjamini-Yekutieli procedure1. By Theorem 1 in8, the above procedure controls FDR under
arbitrary dependency of p-values. More specifically, it controls FDR under the assumptions:

1. The two folds are independent of each other.

2. The null p-values, conditional on the covariates, are independent and stochastically greater than the uniform distribution.

As a side note, in practice, the dependent case will have minimum effect as long as the two folds are independent, i.e., step
1 in the procedure above.

1.5 Accelerate AdaFDRby data filtering using p-values

For input, AdaFDR also allows filtered data with only small p-values close to 0 and large p-values close to 1. This is because
the mirror estimator only needs to look at these two parts of the data. In such case, the original number of hypotheses (before
filtering) is required as input to control FDR (the argument n_full in the algorithm implementation). For the GTEx data, the
data are filtered to have only data points with p-values Pi < 0.01 or Pi > 0.99, which greatly accelerated the algorithm. Let
c0 be the filtering threshold. Then for filtered data, only data points with p-values Pi < c0 or Pi > 1� c0 are kept as input to
AdaFDR. The filtering threshold c0 should be much larger than the rejection threshold. For example, in the GTEx data, the
rejection threshold can be smaller than 10�4 while the filtering threshold is chosen to be c0 = 0.01.

1.6 Implementation of other methods

1. AdaPT: adapt_gam is used with a 5-degree spline for each dimension. This choice is based on a discussion with the
authors of AdaPT.

2. IHW: The covaraites are first clustered into 20 clusters using Kmeans clustering. Then IHW is run with the default setting
and the cluster label as the univariate covariate. This automatically incorporates the multi-dimensional case. For the
univariate case, this does not change the result much as compared to directly running IHW. For example, for the airway
data, directly running IHW gives 4873 discoveries while Kmeans+IHW gives 4862 discoveries.

3. BL: First the null distribution p0(x) is estimated using lm_pi0 with 5 degrees of freedom. Then BH is used with p-values
weighted by 1/p0(xi). This is the same as the usage in11.
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2 Supplementary Note 2: Data Information

Most data are available on GitHub repository (https://github.com/martinjzhang/AdaFDRpaper).

2.1 eQTL study

GTEx For eQTL study, we used Genotype-Tissue Expression (GTEx) dataset4. This dataset aims at characterizing variation in
gene expression levels across individuals and diverse tissues of the human body. We used the V7 release of GTEx analysis data
(dbGaP Accession phs000424.v7.p2). The dataset contains 11688 samples, and in total there are 53 tissues from 714 donors
(44 of them with sample size >70 are used in the GTEx paper). We filtered the tissues based on the following criteria. First,
the tissue needs to have eQTL analysis, where the number of samples with genotype is greater than 70. Second, we set the
number of samples threshold to be 100 in order to make the p-values more reliable. Third, we would like the tissue to have a
corresponding roadmap2 cell type, so that we can leverage the cell-specific chromatin state data from roadmap. After filtering,
we were left with 17 cell types. The meta-information of the filtered GTEx dataset is listed in Table 1.

Table 1. Information for selected GTEx tissue types

Tissue name Sample size Roadmap cell type Number of hypothesis
Adipose Subcutaneous 298 E063 1.72E+08
Adipose Visceral Omentum 185 E063 1.73E+08
Artery Aorta 197 E065 1.66E+08
Breast Mammary Tissue 183 E027 1.80E+08
Cells EBV-transformed lymphocytes 114 E116 1.60E+08
Colon Sigmoid 124 E106 1.70E+08
Colon Transverse 169 E075, E076 1.77E+08
Esophagus Gastroesophageal Junction 127 E079 1.67E+08
Esophagus Mucosa 241 E079 1.67E+08
Esophagus Muscularis 218 E079 1.66E+08
Heart Atrial Appendage 159 E104 1.61E+08
Heart Left Ventricle 190 E095 1.50E+08
Lung 278 E096 1.82E+08
Muscle Skeletal 361 E107, E108 1.47E+08
Pancreas 149 E098 1.59E+08
Stomach 170 E110, E111 1.69E+08
Whole Blood 338 E062 1.45E+08

In this filtered dataset, each hypothesis is a gene-variant pair. Nominal P values for each gene-variant pair were estimated
using a two-tailed t-test. Each gene-variant is associated with 4 or 5 covariates listed below:

• gene expression We obtained the median gene expression from the gene in gene-variant pair and used as a feature.

• alternative allele frequency We mapped each SNP to the dbSNP database14. We took the alternative allele frequency as
a feature. If there were multiple alternative alleles, we took the smallest one. For the SNPs we cannot find a mapping,
this feature is imputed with mean alternative allele frequency.

• TSS distance The distance from the SNP to the transcription starting site is used as a feature. It is defined as posSNP �
posT SS.

• cell-specific chromatin state We took the position of the SNP and mapped it to roadmap database2. Each SNP falls into
the 15-state chromatin model. This state is used as a categorical feature.

• p-value from another tissue (optional) Optionally, we used the P value from another tissue as a covariate. If we cannot
find the same gene-variant pair in another tissue, we impute with the mean P value. This covariate is only used for
“AdaFDR (aug)” and “AdaFDR (ctrl)” experiments.

Due to their large data size, we only provide the p-value filtered (< 0.01 or > 0.99) curated data for 17 all tissues in our online
repository.
MuTHER In the Multiple Tissus Human Expression Resource project5, samples from 850 individuals were collected and 3
tissues, namely adipose, LCL, and skin, were studied. We used only the data for the adipose tissue and the LCL tissue, where a
nominal p-value is provided for each SNP-gene pair. Such curated MuTHER data is available in our online repository.
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2.2 RNA-Seq data

We used three RNA-Seq datasets to validate our algorithm. The first one bottomly3 is an RNA-Seq dataset used to detect
differential gene expression between mouse strains. We used the same data preprocessing pipeline as in IHW9. p-values were
calculated using DESeq2, and the mean of normalized counts for each gene were chosen to be the covariate. The second
dataset airway6 is an RNA-Seq dataset used to identify the differentially expressed genes in airway smooth muscle cell lines
in response to dexamethasone. The dataset is processed with the same pipeline as bottomly. The thrid dataset Pasilla7 is
an RNA-Seq dataset for detecting genes that are differentially expressed between the normal and Pasilla-knockdown conditions.
This dataset is available in Pasilla package and it is analyzed in the vignette of genefilter package using independent
filtering method. The p-values were generated using DESeq package and the logarithm of normalized count were used as the
covariate. All the preprocessing steps can be reproduced using vignettes of R package IHWPaper10. The data are available in
our online repository.

2.3 Microbiome data

The two microbiome experiments are from the benchmark paper11. The data are available in our online repository.

2.4 Proteomics data

The proteomics data is from the IHW paper9. The data is available in our online repository.

2.5 fMRI data

The two fMRI data are from the fMRI paper13. The data are available in our online repository.

2.6 Simulated data

All simulated data generated (with different random seeds) are available in our online repository as data files.
Data 1. Simulated data with one covariate. The covariate xi ⇠Unif[0,1] and the probability of being an alternative hypothesis
given the covariate P(hi = 1|xi) is defined using the mixture model (1) as

P(hi = 1|xi) = 0.1 fall(x;w = [0.5,0.25,0.25],a = 0.5,µ1 = 0.25,µ2 = 0.75,s1 = s2 = 0.05).

The null p-values are generated i.i.d. from Unif[0,1] while the alternative p-values are generated i.i.d. from Pi ⇠ Beta(a =
0.3,b = 4). The number of hypotheses is 20000 and 10 datasets are generated with different random seeds.
Data 2. Simulated data with two covariates The covariate xi ⇠Unif[0,1] and the probability of being an alternative hypothesis
given the covariate P(hi = 1|xi) is defined using the mixture model (1) as

P(hi = 1|xi) =0.1 fall(x;w = [0.5,0.25,0.25],a = [0.5,0.5],
µµµ1 = [0.25,0.25],µµµ2 = [0.75,0.75],sss1 = sss2 = [0.1,0.1]).

The null p-values are generated i.i.d. from Unif[0,1] while the alternative p-values are generated i.i.d. from Pi ⇠ Beta(a =
0.3,b = 4). The number of hypotheses is 20000 and 10 datasets are generated with different random seeds.
Data 3. Simulated data with ten covariates First a simulated data with two covariates is generated (data 2). Then, another 8
noisy dimensions are added to the covariates with each entry drawn i.i.d. from Unif[0,1]. The number of hypotheses is 20000
and 10 datasets are generated with different random seeds.
Data 4. Simulated data with weakly-dependent p-values The covariate xi ⇠ Unif[0,1] and the probability of being an
alternative hypothesis given the covariate P(hi = 1|xi) is generated same as the simulated data with one covariate (data 1).
The p-values are converted to z-scores via p = 1�F(z), where F(·) is the cdf of the standard normal distribution. Every 10
consecutive null z-scores are generated from N (0,S), while every 10 consecutive alternative z-scores are generated from
N (2,S), with the symmetric covariance matrix whose upper triangular part is specified as

Sii = 1,
Si j = 0.25, i < j  4,
Si j =�0.25, j > 4.

We note instead of 0.25, the value 0.4 is used in the original paper (Section 3.2,15). However such choice makes the covariance
matrix not positive semi-definite. We decrease the value until the matrix becomes positive semi-definite. The number of
hypotheses is 20000 and 10 datasets are generated with different random seeds.
Data 5. Simulated data with strongly-dependent p-values The setting is the same as the weakly dependent data (data 4)
except the generation of z-scores. Here, every 5 consecutive null z-scores are generated from N (0, I), while every 5 consecutive
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alternative z-scores are generated from N (2, I). This perfect correlation means to model the linkage disequilibrium (LD) that
frequently occurs in SNPs. Due to the reduction of the inherent multiplicity, the number of hypotheses is increased to 50000.
10 datasets are generated with different random seeds.
Data 6. Simulated data used in AdaPT The same data for Figure 6a in12 is used where the number of hypotheses is 2500. 10
datasets are generated with different random seeds.
Data 7. Simulated data used in IHW The data is generated according to Supplementary Note 4.2.2 in9 where the number of
hypotheses is 20000. While the original paper varies the effect size from 1 to 2.5 (the shift of z-scores for alternative p-values),
here we only use a fixed effect size 2. 10 datasets are generated with different random seeds.
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3 Supplementary Note 3: Technical Proofs

3.1 Proof of Theorem 1

Proof. To avoid ambiguity, we make a few clarifications before the proof. First, the entire analysis is done while conditioning
on the hypotheses splitting, all covariates {xi}i2[N], the type of hypotheses {hi}i2[N], and the alternative p-values {Pi}i2H1 ,
hence allowing arbitrary dependencies of them. Here we note that the reason for splitting the hypotheses at random is to attain
good power. The randomness of the analysis comes from the null p-values, which are assumed to be i.i.d. uniformly distributed
for convenience. A discussion on extending to the case where the null p-values, conditional on the covariates, are independently
distributed and stochastically greater than the uniform distribution is provided at the end.

We also clarify a few notations. We use t⇤
D1

to denote the threshold which is learned on fold 1 and will be applied on fold 2.
g⇤1 denotes the scale factor of fold 1. For the testing-related quantities, we use subscript “1” to denote those evaluated on fold
1, including the number of discoveries D1(g⇤1 t⇤

D2
), the number of false discoveries FD1(g⇤1 t⇤

D2
), the mirror-estimated number

of false discoveries cFD1(g⇤1 t⇤
D2
) and the mirror-estimated false discovery proportion dFDP1(g⇤1 t⇤

D2
). Note that here t⇤

D2
is the

threshold that is learned on fold 2 and then applied on fold 1. The term inside the bracket, (g⇤1 t⇤
D2
), may be omitted when there

is no concern of being ambiguous. Quantities for fold 2 are defined in a similar fashion. Now we preceed to the proof.
Step 1: show that in order to prove the result, it suffices to show that

P(FDP2 � (1+ e)a) d
2
. (13)

Indeed, if (13) it true, then by symmetry P(FDP1 � (1+ e)a) d
2 . Further by the union bound, with probability (w.p.) at least

1-d ,

FDP2 < (1+ e)a, and FDP1 < (1+ e)a.

This further implies that w.p. at least 1-d , the FDP on the whole dataset

FDP =
FD1 +FD2

D1 +D2

✓

FD1

D1

◆
_
✓

FD2

D2

◆
= FDP1 _FDP2 < (1+ e)a,

which gives the desired result. Hence in the rest of the proof, we denote effort to proving (13). Also, since we are only to deal
with fold 2, we drop the subscript D1 for threshold learned on fold 1 to have t⇤

de f
= t⇤

D1
.

Step 2: convert the probability P(FDP2 � (1+ e)a) to some analyzable stochastic process.
Let E0 denote the set of random variables that we wish to condition on, including hypotheses splitting, all covariates {xi}i2[N],
the type of hypotheses {hi}i2[N], and the alternative p-values {Pi}i2H1 . Let us consider the conditional version of (13):

P(FDP2 � (1+ e)a|E0) = P
✓

FD2

D2 _1
� (1+ e)a

����E0

◆

= P
✓

FD2

D2 _1
1
a
�1 � e

����E0

◆
.

Let h de f
=
⇣

FD2
D2_1

1
a �1

⌘
. Recall that FD2 and D2 correspond to the best rescaled threshold on fold 2 g⇤2 t⇤ and the best scale

factor g⇤2 is selected from the set
n

g :
cFD2(gt⇤)

D2(gt⇤)_1  a,D2(gt⇤)� c0N
o
[{0}. Then h can be upper bounded by

h =
FD2(g⇤2 t⇤)

D2(g⇤2 t⇤)_1
1
a
�1

 sup
g2
⇢

g:
cFD2(gt⇤)

D2(gt⇤)_1a, D2(gt⇤)�c0N
�
[{0}

✓
FD2(gt⇤)

D2(gt⇤)_1
1
a
�1
◆

 sup
g�0

✓
FD2(gt⇤)

D2(gt⇤)_1
1
a
�1
◆
I⇢

g:
cFD2(gt⇤)

D2(gt⇤)_1a, D2(gt⇤)�c0N
�.

Furthermore, since the indicator function is one only when
cFD2(gt⇤)

D2(gt⇤)_1  a , which can also be written as 1
a  D2(gt⇤)_1

cFD2(gt⇤)
with the
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convention that x
0 = • for any x > 0, we further have

h  sup
g�0

"
FD2(gt⇤)

D2(gt⇤)_1

 
1
a
^ D2(gt⇤)_1
cFD2(gt⇤)

!
�1

#
I⇢

g:
cFD2(gt⇤)

D2(gt⇤)_1a, D2(gt⇤)�c0N
�

= sup
g�0

 
FD2(gt⇤)

(aD2(gt⇤))_a _cFD2(gt⇤)
�1

!
I⇢

g:
cFD2(gt⇤)

D2(gt⇤)_1a, D2(gt⇤)�c0N
�.

Again since indicator function is one only when D2(gt⇤)� c0N,

h  sup
g�0

 
FD2(gt⇤)

(ac0N)_cFD2(gt⇤)
�1

!
I⇢

g:
cFD2(gt⇤)

D2(gt⇤)_1a, D2(gt⇤)�c0N
�,

 0_ sup
g�0

 
FD2(gt⇤)

(ac0N)_cFD2(gt⇤)
�1

!
.

Furthermore with the notation t⇤i
de f
= t⇤(xi) where we recall that we have defined t⇤ = t⇤

D1
before,

h  0_ sup
g�0

0

@ Âi2D2\H0 I{Pigt⇤i }

(ac0N)_
⇣

Âi2D2 I{Pi�1�gt⇤i }

⌘ �1

1

A

 0_ sup
g�0

0

@ Âi2D2\H0 I{Pigt⇤i }

(ac0N)_
⇣

Âi2D2\H0 I{Pi�1�gt⇤i }

⌘ �1

1

A .

Finally, we can complete the conversion by noting that

P(FDP2 � (1+ e)a|E0) = P(h � e|E0) (14)

 P

2

4sup
g�0

0

@ Âi2D2\H0 I{Pigt⇤i }

(ac0N)_
⇣

Âi2D2\H0 I{Pi�1�gt⇤i }

⌘ �1

1

A� e
����E0

3

5 . (15)

Here, the first term in (15), i.e.
Âi2D2\H0 I{Pigt⇤i }

(ac0N)_
⇣

Âi2D2\H0 I{Pi�1�gt⇤i }

⌘ , can be understood as a stochastic process that as g grows from 0 to

infinity, new elements are added to the numerator and the denominator with equal probability. Hence this term should always
be close to 1. We next proceed to prove the result following this intuition.
Step 3: Upper bound the probability of (15).
We note that the p-values involved in (15) are all null p-values from fold 2. Hence, they are i.i.d. uniformly distributed
conditional on E0. Let H0,2

de f
= D2 \H0. For any i 2 H0,2,g > 0, define the random variables

Bi,g = I{Pigt⇤i or Pi�1�gt⇤i }, Ri = I{Pi0.5}� I{Pi>0.5}. (16)

Since 8i 2 H0,2, Pi|E0 ⇠ Unif[0,1], we have Bi,g |E0 ⇠ Bern(2gt⇤i ) and Ri|E0 are i.i.d. Rademacher random variables. In
addition, it is easy to verify that Bi,g is independent of Ri and

I{Pigt⇤i } = Bi,gI{Ri=1}, I{Pi�1�gt⇤i } = Bi,gI{Ri=�1}.

Hence (15) can be written in terms of Bi,g ’s and Ri’s as

P(FDP2 � (1+ e)a|E0) P
"

sup
g�0

 
Âi2H0,2 Bi,gI{Ri=1}

(ac0N)_Âi2H0,2 Bi,gI{Ri=�1}
�1

!
� e
����E0

#

 P
"

sup
g�0

 
Âi2H0,2 Bi,g Ri

(ac0N)_Âi2H0,2 Bi,gI{Ri=�1}

!
� e
����E0

#
.
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Furthermore, let g0 =
ac0N

Âi2H0,2 t⇤i
. Divide the set of g in the sup from [0,•) into [0,g0] and (g0,•), and apply union bound to

have

P(FDP2 � (1+ e)a|E0)

 P
"

sup
0gg0

 
Âi2H0,2 Bi,g Ri

(ac0N)_Âi2H0,2 Bi,gI{Ri=�1}

!
� e
����E0

#

+P
"

sup
g>g0

 
Âi2H0,2 Bi,g Ri

(ac0N)_Âi2H0,2 Bi,gI{Ri=�1}

!
� e
����E0

#

 P
 

sup
0gg0

Âi2H0,2 Bi,g Ri

ac0N
� e
����E0

!
+P

 
sup
g>g0

Âi2H0,2 Bi,g Ri

Âi2H0,2 Bi,gI{Ri=�1}
� e
����E0

!
.

Define the random set Bg = {i : i 2 H0,2,Bi,g = 1}. We note that the sequence of sets {Bg}g�0 is monotonic in the sense
that as g grows, more elements are incorporated into Bg . With this definition, the above inequality can be further written as

P(FDP2 � (1+ e)a|E0) (17)

 P
 

sup
0gg0

Âi2Bg Ri

ac0N
� e
����E0

!
+P

 
sup
g>g0

Âi2Bg Ri

Âi2Bg I{Ri=�1}
� e
����E0

!
. (18)

Next we upper bound the two terms in (18) respectively. Here let us use m
de f
= ac0N for simplicity.

The first term in (18): For some m0 > 2m to be specified later, by the law of total probability,

first term in (18) = P
 

sup
0gg0

Âi2Bg Ri

m
� e
����E0

!
(19)

 P
 

sup
0gg0

Âi2Bg Ri

m
� e, |Bg0 | m0

����E0

!
+P

 
sup

0gg0

Âi2Bg Ri

m
� e, |Bg0 |> m0

����E0

!
(20)

 P
 

sup
0gg0

Âi2Bg Ri

m
� e
����|Bg0 | m0,E0

!
+P

�
|Bg0 |> m0|E0

�
. (21)

The two terms in (21) are upper bounded separately. Consider the first term. Recall that {Bg}g�0 is a random sequence
of monotonic sets; let {B̃g}g�0 denote any of its realization. Then since taking expectation over all possible {B̃g}g�0 s.t.
|B̃g0 | m0 is no greater than taking the sup of them,

first term in (21)  sup
{B̃g}g�0 s.t. |B̃g0 |m0

P
 

sup
0gg0

Âi2Bg Ri

m
� e
����{Bg}g�0 = {B̃g}g�0,E0

!
.

Consider the term inside the probability, i.e. sup0gg0

Âi2Bg Ri
m , where due to conditioning {Bg}g�0 = {B̃g}g�0. Recall that

the sequence {B̃g}g�0 is monotonic that as g grows more elements are incorporated into the set but no element is removed
from the set. Also up to the point g = g0 there are altogether |B̃g0 | elements. Then the sup is equivalent to being evaluated over

a sequence of |B̃g0 |+1 monotonic sets, i.e. sup0gg0

Âi2Bg Ri
m is equal to sup0k|B̃g0 |

Âi2[k] R̃i
m in distribution, where R̃1, R̃2, · · ·

is a sequence of i.i.d. Rademacher random variables independent of everything else. Therefore,

first term in (21)  sup
{B̃g}g�0 s.t. |B̃g0 |m0

P
 

max
0k|B̃g0 |

Âi2[k] R̃i

m
� e

!

= P
 

max
1km0

Âi2[k] R̃i

m
� e

!
 2e�

m2e2
2m0 ,

where the last inequality is due to Lemma 1.
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Now consider the second term in (21). Recall that E[|Bg0 |] = Âi2H0,2 2g0ti = 2m by the definition of g0. By Lemma 2,

second term in (21) = P
⇥
|Bg0 |> m0|E0

⇤
 e

�
1
2 (m0�2m)2

2m+ 1
3 (m0�2m) . (22)

By setting m0 = 3m, we have

first term in (18) = P
 

sup
0gg0

Âi2Bg Ri

m
� e
����E0

!
 2e�

me2
6 + e�

3m
14 . (23)

The second term in (18): For some m1  2m to be specified later, by the law of total probability,

second term in (18) = P
 

sup
g>g0

Âi2Bg Ri

Âi2Bg I{Ri=�1}
� e
����E0

!
(24)

= P
 

sup
g>g0

Âi2Bg Ri

Âi2Bg I{Ri=�1}
� e, |Bg0 |� m1

����E0

!
+P

 
sup
g>g0

Âi2Bg Ri

Âi2Bg I{Ri=�1}
� e, |Bg0 |< m1

����E0

!
(25)

 P
 

sup
g>g0

Âi2Bg Ri

Âi2Bg I{Ri=�1}
� e
����|Bg0 |� m1,E0

!
+P

�
|Bg0 |< m1|E0

�
. (26)

Using the same argument for analyzing the first term in (21),

first term in (26)  P
 

sup
k�m1

Âi2[k] R̃i

Âi2[k] I{R̃i=�1}
� e

!
 2e

� m1e2

4(e+2)2

1�2e
� m1e2

4(e+2)2

,

where we recall that R̃1, R̃2, · · · is a sequence of i.i.d. Rademacher random variables indepedent of everything else, and the
second inequality is due to Lemma 1.

Similar to (22), by Lemma 2,

second term in (26) = P
�
|Bg0 |< m1

�
 e

�
1
2 (2m�m1)

2

2m+ 1
3 (2m�m1) .

By setting m1 = m, we have

second term in (18) = P
 

sup
g>g0

Âi2Bg Ri

Âi2Bg I{Ri=�1}
� e
����E0

!
 2e

� me2
4(e+2)2

1�2e
� me2

4(e+2)2

+ e�
3m
14 . (27)

Combining (23) and (27) we have that for (18),

P(FDP2 � (1+ e)a|E0) 2e�
me2

6 +
2e

� me2
4(e+2)2

1�2e
� me2

4(e+2)2

+2e�
3m
14 .

Furthermore,

P(FDP2 � (1+ e)a) sup
E0

P(FDP2 � (1+ e)a|E0) (28)

 2e�
me2

6 ++
2e

� me2
4(e+2)2

1�2e
� me2

4(e+2)2

+2e�
3m
14 . (29)

By equaling the term in the right-hand-side of (29) with d
2 we have e = Q(

q
log 1

d
m ). Recall that m = ac0N where c0 is a

constant, we have

e = Q(

s
log 1

d
aN

),
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which concludes the proof.
In order for the proof to hold, it is required that the mirror estimate cFD2(gt⇤) is stochastically no less than the true number

of false discoveries FD2(gt⇤) for any g � 0. This is still true when the i.i.d. assumption for the null p-values is extended to the
assumption that the null p-values, conditional on the covariates, are independently distributed and stochastically greater than
the uniform distribution. Hence the result is directly extendable.

3.2 Lemma 1 with proof

Lemma 1. (Some properties of random walk) Let R1,R2, · · · be i.i.d. Rademacher random variables and let Sk = Âk
i=1 Rk.

Then for any integer n > 1 and for any real number t > 0,

P( max
1kn

Sk � t) 2e�
t2
2n (30)

P(max
k�n

1
k

Sk � t) 2e�
nt2
4

1�2e�
nt2
4

(31)

P(max
k�n

Sk

Âk
i=1 I{Ri=�1}

� t) 2e
� nt2

4(t+2)2

1�2e
� nt2

4(t+2)2

, (32)

where for the second and the third inequalities, we require t to be large enough for the probability to be positive.

Proof. (30) is proved via a standard reflection argument for random walk. First consider when t is an integer,

P( max
1kn

Sk � t) = P( max
1kn

Sk � t,Sn � t)+P( max
1kn

Sk � t,Sn < t)

= P(Sn � t)+P( max
1kn

Sk � t,Sn > t) = P(Sn � t)+P(Sn > t) 2P(Sn � t).

If t is not an integer,

P( max
1kn

Sk � t) = P( max
1kn

Sk � dte) 2P(Sn � dte) 2P(Sn � t).

Finally, using Hoeffding’s inequality, one has

P( max
1kn

Sk � t) 2P(Sn � t) 2e�
t2
2n .

(31) is proved via a technique called "peeling". Specifically,

P(max
k�n

1
k

Sk � t) P(9k � n,Sk � kt)


•

Â
j=0

P(9k 2 {2 jn,2 jn+1, · · · ,2 j+1n�1},Sk � kt)


•

Â
j=0

P(9k 2 {2 jn,2 jn+1, · · · ,2 j+1n�1},Sk � 2 jnt)


•

Â
j=0

P( max
1k2 j+1n

Sk � 2 jnt)


•

Â
j=0

2exp(�2 j�2nt2)
de f
=

•

Â
j=0

p j,

where the last inequality is due to (30) that we have just proved. Note that for j � 0, p j+1
p j

= exp(�2 j�2nt2) p0. Hence,

P(max
k�n

1
k

Sk � t) p0

1� p0
=

2e�
nt2
4

1�2e�
nt2
4

.
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Finally, (32) is a direct consequence of (31):

P(max
k�n

Sk

Âk
i=1 I{Ri=�1}

� t) = P(max
k�n

2Sk

k�Sk
� t)

= P(max
k�n

1
k

Sk �
t

t +2
) 2e

� nt2
4(t+2)2

1�2e
� nt2

4(t+2)2

.

3.3 Lemma 2 with proof

Lemma 2. (Some properties of non-homogeneous Bernoulli sum) Let Bi ⇠ Bern(pi) be some independent Bernoulli random
variables. Then

P(
n

Â
i=1

Bi �E[
n

Â
i=1

Bi]� t) e
�

1
2 t2

Ân
i=1 pi+

1
3 t (33)

P(
n

Â
i=1

Bi �E[
n

Â
i=1

Bi]�t) e
�

1
2 t2

Ân
i=1 pi+

1
3 t (34)

Proof. Define Xi
de f
= Bi� pi. Then Xi’s have zero means and are independent of each other. Also, note that |Xi| 1 almost surely

and ÂiE[X2
i ] Âi pi. Hence (33) and (34) can be obtained by applying Bernstein inequality on {Xi} and {�Xi} respectively.
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