Reviewers' comments:
Reviewer #1 (Remarks to the Author):

Zhang et al. describe AdaFDR, a fast procedure to select covariate-specific p-value cutoffs at a
predefined FDR. The procedure post-processes p-values based on a linear regression, then model the
relationships between the p-values and covariates. The authors showed that AdaFDR outperformed a
set of methods independent hypothesis weighting (IHW) and NeurolFDR in multiple datasets. The
procedure is promising.

(1) There are multiple ways to incorporate covariates into association or regression models, such as
Bayesian hierarchical model (Gaffney et al. 2012). It is important to compare AdaFDR with hierarchical
models in terms of detecting eQTLs.

(2) The authors compared AdaFDR's results with SBH's. However, whether the AdaFDR only
associations are biological meaningful is not clear.

Reviewer #2 (Remarks to the Author):

The authors proposed a multiple testing procedure with integration of additional covariates. The
manuscript is well written. The method is illustrated on selected tissues from GTEx data and
simulation studies are conducted as well. However, it is unclear why a biased multiple testing
procedure would be preferred over an unbiased one. And how one can use key covariates and
annotations learned from the data to make prioritize on new discovery. There are also many other
major issues listed below.

1. On the one hand, some of that information may help prioritize true signals in certain data sets, and
on the other hand, they may bias the analysis and miss more opportunities to make new discoveries
with unknown covariates.

2. What if the covariates are not informative? Would they hurt the analysis?

3. The authors are correct that the problem of multiple testing with covariates or other information
has been actively explored. In addition to the references cited, there are other recent developments,
for example, “a unified treatment of multiple testing with prior knowledge.” arXiv:1703.06222. More
comparison with methods allowing for covariates would be helpful.

4. A higher number of discoveries and a higher number of replicated eQTLs are illustrative but not
enough. In one particular data set, maybe the replicated eQTLs are enriched with associations to one
of the covariates. A more comprehensive evaluation and replication of all kinds of annotations and
covariates on multiple data sets with replication would better convince the reviewer. Especially the
discovery results on the SNPs that are not being prioritized by the covariates, how much we are going
to lose by incorporating covariates.

5. In addition to multiple testing procedures, there are many joint analysis methods or integrative
analysis methods may better serve the purpose of the data analysis. For example, colocalization
analysis of eQTLs and other SNP annotations (PMID: 28278150).

6. The dependence among SNPs under the null (LD) is a known challenge, especially when LD is
strong or even perfect. Some claims made in the manuscript need to be revisited to “....be extended to
allow arbitrary dependency”.



Reviewer #3 (Remarks to the Author):

The authors introduce a new statistical method, AdaFDR, for controlling the false discovery rate (FDR)
while performing multiple hypothesis testing. AdaFDR joins several other methods developed over the
last 5 years for controlling FDR while making use of "side information" or "covariates" (aside from just
the p-values) to increase power over traditional FDR-controlling methods such as Benjamini and
Hochberg's step-up procedure (BH) and the g-value. AdaFDR is shown to be computationally
manageable, while also providing substantial gains over other methods in total discoveries (assumed
to be true positives) across several computational biology problems (eQTL analysis, RNA-seq
differential analysis, microbiome association analysis, and others). The gains of AdaFDR may be
attributed to [1] the method's ability to make use of multiple informative covariates simultaneously
and [2] the use of a flexible class of GLM and gaussian mixture models to estimate the decision
boundary at a specified nominal FDR threshold (e.g. 0.05).

The vignettes and simulations presented show impressive performance, and the method could prove
to be a great tool for increasing power when performing multiple testing correction. However, | have
several concerns which need to be addressed before the paper is suitable for publication, regarding [1]
the methods and covariates used in the comparisons, [2] the stability of the method, [3] the limited
usability of the software, and [4] the interpretation of the results. Details are provided as bullet points
below.

## Regarding comparison.

1. In the main analysis described in the Results section (eQTLs in GTEx), AdaFDR and AdaFDR-fast are
only compared against BH, g-value, and in some cases IHW. While the size of the problem may make
the comparison of some methods (e.g. AdaPT) computationally unreasonable, other notable methods
are missing from the analysis. Several covariate-aware methods are referenced in the paper (bottom
of page 2, refs 32-38). It is unclear why most of these methods were included in the comparison. This
needs to be clarified, and at the very least, the method of Boca and Leek (2018) should be included in
the comparison. The Boca and Leek (2018) approach is similarly able to handle multiple covariates
and seems like a reasonable and meaningful comparison.

2. The authors state: "the standard assumption of AdaFDR and all the related methods is that the
covariates should not affect the p-values under the null hypothesis" (page 2). Have the authors
verified that the covariates used in the data analyses are indeed independent of the p-value under the
null? I am particularly concerned that the independence assumption is violated when the p-values
from a separate eQTL analysis are used as the covariate. This needs to be checked and demonstrated
since violation of the assumption can lead to significant false positives.

3. The "AdaFDR" and "AdaFDR-fast"” methods are labelled as just "AdaFDR" in Figures 3. This is
confusing and unclear. While | recognized that both are contributions of the paper, from a practical
perspective, for a **user**, these two are not the same as they require setting different parameters.
At the very least, Figure 3 and the accompanying legend should be updated to clarify when results for
AdaFDR or AdaFDR-fast are reported (to match other results tables, e.g. Figure 2).

4. Building on the last point, AdaFDR-fast (rather than AdaFDR) is used in both the Microbiome and
Proteomics data sets "due to the small sample size." This distinction of when to use AdaFDR-fast or
AdaFDR (and the definition of "small sample size") needs to be made clear in the Discussion or
Introduction.

## Regarding stability.

5. Based on Algorithm 1 (page 7), the AdaFDR method appears to estimate a decision threshold based
on splitting the data into two (random) folds. How sensitive is the method to the random split, i.e.



how different are the resulting significance calls if the hypotheses are reordered? | can imagine a
scientist using the method, removing one or two tests or reordering their p-values and re-running the
method and being surprised at getting different sets of significant calls. How much will the calls
change if the data sets analyzed in the Results section were reordered?

6. AdaFDR estimates a threshold for a specified nominal FDR threshold (alpha). Presumably, the
method needs to be re-run every time a different alpha threshold is wanted, e.g. to obtain
approximate "g-values". While the flexibility of the GLM-gaussian mixture model allows for estimating
complex decision boundaries, | am curious whether this also poses challenges for monotonicity. That
is, do decision boundaries frequently cross such that a hypothesis is significant for some alpha, but not
significant for some alpha* > alpha? Does this occur for the data sets analyzed when comparing
common alpha cutoffs (e.g. 0.01, ..., 0.10)? Again, this may cause surprise for anyone using the
method.

## Regarding usability.

7. The authors have done a good job in making the AdaFDR software
(github.com/martinjzhang/adafdr) and the analysis performed for the paper
(github.com/martinjzhang/AdaFDRpaper) available on GitHub and pypi. However, I am concerned with
the limited usability of the method. Large scale statistical inference (i.e. hypothesis testing) in
genomics and bioinformatics is often performed in R or with command line tools and not Python (note
also that all other FDR controlling methods benchmarked in this paper are also implemented in R). The
current software could be greatly improved if the authors provided an example for calling the AdaFDR
Python function from R, e.g. using the "reticulate” package (https://rstudio.github.io/reticulate/) to
access a wider audience of users.

## Regarding interpretation.

8. Precise language needs to be used to describe the results. The descriptions and labels of the null
and alternative hypothesis distribution plots (e.g. Figure 2C) are misleading. The plots show f(x | pval
not significant) and f(x | pval significant), the conditional distributions of the covariate given that a
test shows either weak (large p-value) or strong (small p-value) evidence for being significant.
However, the plots are labeled as "null/alternative proportion”, which suggests something else -
namely, p(h =0 | x) and p(h = 1 | x). This is made even more confusing as the discussion of these
plots in the text make statements of p(pval significant | x) and p(pval not significant | x), e.g. "genes
with higher expression levels are more likely to have significant associations" (page 3). First, and most
importantly, "significant associations" should not be used interchangeably with tests being truly
alternative (as in the plot label), This is not correct. Second, even if the two were the same, the
conditioning is being flipped between the text/labels and the plots - further confusing the
interpretation of these results. These details need to be clarified as it impacts the interpretation of the
results presented in the paper. For example, while "genes with higher expression levels are more
likely to have significant associations"” (page 3), this **should not** be interpreted as genes having
higher expression levels being more likely to be truly differential, as currently implied by Figure 2C
and stated on page 4: "alternative hypotheses are more likely to occur when the expression levels are
high." This is not a correct interpretation of the data. While more significant p-values occur when the
expression levels are high, this can be due to reasons other than the association between alternative
hypotheses and expression levels claimed in the text. Instead, it may simply be due to better power to
detect differences when the expression levels are high.

## Minor Issues

- In general, the Introduction is awkwardly organized, with (somewhat redundant) subsections and a



few mislabeled references. This should be cleaned up.

- Throughout, "multiple hypothesis testing" is used to mean "multiple testing correction”. This should
be corrected.

- On page 2, mathematical notation is introduced without ever being mentioned again in the main text
and can be dropped.

- The descriptions of the various applications (e.g. RNA-seq differential expression analysis) should be
made more precise. For example, "RNA-seq data" is used synonymously with differential gene
expression analysis with RNA-seq data (page 2).

| agree to have my name released.

Patrick Kosuke Kimes, PhD

Postdoctoral Research Fellow

Department of Data Sciences, Dana-Farber Cancer Institute
Department of Biostatistics, Harvard TH Chan School of Public Health



We thank the reviewers for their thoughtful feedback. We provide point-by-point response to al of the
reviewers guestions below.

REVIEWER 1 COMMENTS:

Zhang et al. describe AdaFDR, afast procedure to select covariate-specific p-value cutoffs at a predefined
FDR. The procedure post-processes p-values based on alinear regression, then model the relationships
between the p-values and covariates. The authors showed that AdaFDR outperformed a set of methods
independent hypothesis weighting (IHW) and Neurol FDR in multiple datasets. The procedureis
promising.

Thank you for your careful review and helpful suggestions.

(1) There are multiple ways to incorporate covariates into association or regression models, such
as Bayesian hierarchical model (Gaffney et a. 2012). It isimportant to compare AdaFDR with
hierarchical modelsin terms of detecting eQTLSs.

Thank you for pointing us to this paper. In the context of eQTL studies, the mentioned work [Gaffney, et
a., 2012] presents a post-hoc analysis that, given the eQTL discoveries, prioritize the causal SNPs using
regulatory annotations. Thisis different from our work because 1) our work directly incorporates the
covariates into the discovery process while the mentioned work uses annotations for the post-hoc analysis,
2) our work considers general covariates and provides FDR control guarantee while the mentioned work
specifically considers regulatory annotations without guarantees regarding the false positives. We will
clarify thisin the revision as below.

of 0.01. Such experiment of testing all SNP-gene pairs simultaneously is a prescreening step for detecting casual
eQTLs and is also performed in some recent works'2 13, A similar analysis workflow is to first discover significant
genes (eGenes) and then match significant SNPs (eVariants) for each eGene*?. There are also works that, given
the eQTL discoveries, prioritize the casual SNPs based on regulatory annotations in a post-hoc fashion*# or use
eQTL findings to help identify casual SNPs in GWAS*’.

Also, since the focus of the present paper is on developing a genera statistical method instead of eQTL
study, we compared our method AdaFDR with other general statistical methods (AdaPT [Lei, et d., 2018],
IHW [Ignatiadis et al, 2016], BL [Boca and Leek, 2018]) instead of methods specifically developed for
eQTL studies. Moreover, we have demonstrated how AdaFDR improves discovery in several other
biological settings such as RNA-seq, microbiome, proteomics, and fMRI data.

(2) The authors compared AdaFDR's results with SBH's. However, whether the AdaFDR only
associations are biological meaningful is not clear.

Thank you for the comment. To further investigate the biological meanings of the AdaFDR-only
discoveries, we plotted the marginal distribution of AdaFDR-only discoveries and SBH-only discoveries
over each biological covariate in Supplementary Figure 2, copied below. The results for different tissues
are similar, so we only included the results for Adipose_Subcutaneous and Colon_Sigmoid.



As shown in the figure below, thereis a higher proportion of AdaFDR-only discoveries at |ocations where
1) the distance from TSSis small (upper left); 2) the SNP has an active chromatin state (upper right); 3)
the SNP AAF iscloseto 0.5 (lower left); 4) the gene expression level is neither too high or too low (lower
right). All these match the enrichment pattern of eQTLSs, indicating that AdaFDR-only discoveries are
more biologically relevant. We have added this as a supplementary figure in the revision.
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Supplementary Figure 2. (a) Result comparison between SBH and AdarDR. For all 17 GTEXx tissues,
AdaFDR missed a tiny proportion of SBH discoveries while having substantially more other discoveries. (b-c) The
marginal distribution of AdaFDR-only discoveries and SBH-only discoveries over each covariate is shown for the
tissue Adipose_Subcutaneous and Colon_Sigmoid respectively. There is a higher proportion of AdarFDr-only
discoveries at locations where 1) the distance from TSS is small (upper left); 2) the SNP has an active chromatin
state (upper right); 3) the SNP AAF is close to 0.5 (lower left); 4) the gene expression level is neither too high or too
low (lower right). All these match the enrichment pattern of eQTLs (Results), indicating that the AdaFDRr-only
discoveries are more biologically relevant.

As part of the validation, we have also shown that the AdaFDR-only discoveries have much smaller p-
values than SBH-only discoveries on an independent eQTL dataset (MUTHER) of the same tissue.
Previously we have done it for the tissues Adipose_Subcutaneous and Adipose Visceral Omentum. As
shown in the figure below (right panel), we added a third validation on the tissue Cells EBV-
transformed_lymphocytes, where we observe a similar result that AdaFDR-only discoveries have much
smaller p-values on the independent MUTHER dataset.

Since the paper focuses on developing a general statistical method instead of eQTL studies, we do not
include more downstream validations of the eQTL discoveries.



C validation on MuTHER
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Supplementary Figure 1. Additional results on the GTEx data. (a) Results on the two colon tissues. (b) Feature

isualization for Colon_Sigmoid (c) Validation for GTEx Adipose_Visceral Omentum using the MUuTHER adipose
eQTL data (left) and for GTEx Cells_ EBV-transformed_lymphocytes using the MuTHER lymphocytes (LCL) eQTL
data (right) .




REVIEWER 2 COMMENTS:

The authors proposed a multiple testing procedure with integration of additional covariates. The
manuscript iswell written. The method isillustrated on selected tissues from GTEXx data and simulation
studies are conducted as well. However, it is unclear why a biased multiple testing procedure would be
preferred over an unbiased one. And how one can use key covariates and annotations learned from the
data to make prioritize on new discovery. There are also many other major issues listed below.

Thank you for your review and helpful comments. We want to clarify that AdaFDR has no prior bias over
how to prioritize hypothesis based on covariates. It learns everything entirely in a data-driven manner,
similar to popular state-of-the-art methods such as IHW [Ignatiadis et al, 2016], AdaPT [Lei, et a., 2019],
and BL [Bocaand Leek, 2018]. All of our experiments demonstrate that AdaFDR makes substantially
more discoveries than methods that do not use side information, while controlling FDR. We provide a
point-to-point response as below.

1. On the one hand, some of that information may help prioritize true signals in certain data sets,
and on the other hand, they may bias the analysis and miss more opportunities to make new
discoveries with unknown covariates.

Thank you for the comment. First, we do not consider AdaFDR as a biased multiple testing procedure
since it does not assume any prior knowledge about the covariates; it learns the rel ationship between the
covariates and the p-values in an unbiased data-driven manner. Second, as shown in the figure (panel a)
below, the proportion of SBH-only discoveriesistiny for al 17 tissues, indicating that AdaFDR would
not miss many discoveries made by the non-adaptive methods (SBH here). We have added thisas a
supplementary figure in the revision. The current state-of-the-art methods such as IHW, AdaPT and BL
also use side information to prioritize hypothesisin a similar data-driven manner, and they are not
considered to be biased.
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Supplementary Figure 2. (a) Result comparison between SBH and AdarDR. For all 17 GTEx tissues,
AdaFDR missed a tiny proportion of SBH discoveries while having substantially more other discoveries. (b-c) The

2. What if the covariates are not informative? Would they hurt the analysis?

Thank you for the comment. When the covariate is not informative, AdaFDR will have similar
performance as the non-adaptive method SBH. We have mentioned thisisin the paper (simulation studies,

page 5):



AdaFDR achieves greater power than all other methods while controlling FDR (Supplementary Figure 9, 10). AdaFDR reduces
to SBH when the covariate is not informative, indicating that it is not overfitting the uninformative covariate (Supplementary
Figure 9e).

The corresponding figure is shown as below (Supp. Fig. 9e):
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3. The authors are correct that the problem of multiple testing with covariates or other
information has been actively explored. In addition to the references cited, there are other recent
developments, for example, “aunified treatment of multiple testing with prior knowledge.”
arXiv:1703.06222. More comparison with methods allowing for covariates would be helpful.

Thanks for pointing us to this work. The mentioned work [Ramdas et al., 2017] considers structured
covariates (covariate-dependent null proportion, hypothesis weights, grouping information, etc) while our
work considers general covariates without prior information about their connection to the p-values.
Therefore, the two methods are not directly comparable. We have cited this work among other statistical
literaturesin page 2 of the revision.

We have compared AdaFDR with AdaPT [Lei, et al., 2018], IHW [Ignatiadis et a, 2016], and BL [Boca
and Leek, 2018], the three methods that are recommended in a recent comparison paper [Korthauer et al,
2018]. In the previous version, the performance of BL was only reported for a subset of simulation studies
(Supp. Figures 9-10). We have added BL to all other experiments except the eQTL study (due to
computational concerns) in the current version, namely those in Figures 3-4 and Supp. Figure 8. Overall,
the additional results agree with the previous results (Supp. Figures 9-10): BL controls FDR but has less
power than AdaFDR; its running speed is slower than AdaFDR-fast (Figure 4b).

4. A higher number of discoveries and a higher number of replicated eQTLs are illustrative but
not enough. In one particular data set, maybe the replicated eQTL s are enriched with associations
to one of the covariates. A more comprehensive evaluation and replication of all kinds of
annotations and covariates on multiple data sets with replication would better convince the
reviewer. Especially the discovery results on the SNPs that are not being prioritized by the
covariates, how much we are going to lose by incorporating covariates.



Thank you for the comment. To answer these questions, we performed more analysis on the GTEx data as
below, which we have added as supplementary figuresin the revision.

First, to investigate the contribution of each covariate, we run AdaFDR using each covariate separately
for al 17 tissues as below. The distance from TSS is the most informative while other covariates have
smaller but still notable effects. Also, the combined improvement of using all covariates (31.9%) is
similar to the sum of the four individual improvements (33.0%), indicating that the four covariates carry
very different information regarding the hypotheses.

BH m AdaFDR with log10(exp) (+1.9%) ® AdaFDR with AAF (+4.6%) AdaFDR dist (+24.6%)
2 m AdaFDR with state (+2.0%) = AdaFDR with all covariates (+31.9%)
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Supplementary Figure 3. To investigate the individual contribution of different covariates, we run AdaFDR using
each covariate separately for all tissues in the GTEx experiment. We use a nominal FDR level of 0.01 same as
before. The distance from TSS is most informative while others have have smaller but still notable effects.
Interestingly, the combined improvement of using all covariates (31.9%) is similar to the sum of the four individual
improvements (33.0%), indicating that the four covariates carry very different information regarding the hypotheses.

Second for the validation, previously we have shown that the AdaFDR-only p-values are much smaller
than SBH-only p-values on an independent eQTL dataset (MUTHER) for the tissues
Adipose_Subcutaneous and Adipose_Visceral_Omentum. We added a third validation on the tissue
Cells EBV-transformed_|lymphocytes (right panel below), where we observe a similar result that
AdaFDR-only discoveries have much smaller p-values on the independent MUTHER dataset.



C validation on MuTHER
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Supplementary Figure 1. Additional results on the GTEx data. (a) Results on the two colon tissues. (b) Feature
visualization for Colon_Sigmoid (c) Validation for GTEx Adipose_Visceral_Omentum using the MuTHER adipose
eQTL data (left) and for GTEx Cells_ EBV-transformed_lymphocytes using the MuTHER lymphocytes (LCL) eQTL

data (right) .

Third, we compared the AdaFDR-only discoveries with SBH-only discoveries for all 17 tissuesin the
figure below. We found that the proportion of SBH-only discoveriesistiny, indicating that AdaFDR
would not miss many discoveries made by the non-adaptive methods (SBH here).
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Supplementary Figure 2. (a) Result comparison between SBH and AdaFDR. For all 17 GTEX tissues,
AdaFDR missed a tiny proportion of SBH discoveries while having substantially more other discoveries. (b-c) The

5. In addition to multiple testing procedures, there are many joint analysis methods or integrative
analysis methods may better serve the purpose of the data analysis. For example, colocalization
analysis of eQTLs and other SNP annotations (PMID: 28278150).s

Thank you for pointing us to this paper. The mentioned work [Wen, et al., 2017] uses eQTL discoveries
as annotations to help identify causal SNPsin GWAS. Thisisdifferent from out work because 1) it uses
eQTL discoveries as annotations for GWAS analysis, and the eQTL analysisitself does not use additional
annotations; 2) it considers the specific case of using eQTL discoveries as the covariate without guarantee
on false positives, while our work considers general covariates and provides FDR control guarantee. We
will mention thisin the revision as below.




of 0.01. Such experiment of testing all SNP-gene pairs simultaneously is a prescreening step for detecting casual
eQTLs and is also performed in some recent works'? 13, A similar analysis workflow is to first discover significant
genes (eGenes) and then match significant SNPs (eVariants) for each eGene®2. There are also works that, given
the eQTL discoveries, prioritize the casual SNPs based on regulatory annotations in a post-hoc fashion** or use
eQTL findings to help identify casual SNPs in GWAS*.

Also, since the focus of the present paper is on developing a genera statistical method instead of eQTL
study, we compared our method AdaFDR with other general statistical methods (AdaPT [Lei, et a., 2018],
IHW [Ignatiadis et al, 2016], BL [Boca and Leek, 2018]) instead of methods specifically developed for
eQTL studies. Moreover, we have demonstrated how AdaFDR improves discovery in several other
biological settings such as RNA-seq, microbiome, proteomics, and fMRI data.

6. The dependence among SNPs under the null (LD) is aknown challenge, especially when LD is
strong or even perfect. Some claims made in the manuscript need to berevisitedto “....be
extended to alow arbitrary dependency”.

Thank you for the comment. We have added a detailed description on extending AdaFDR to alow
arbitrary dependency in the supplementary material.

2.4 Extension to dependent case
Here we describe a simple procedure that extends AdaFDR to allow arbitrary dependency of p-values, borrowing
ideas from the extended version of IHW'3. The procedure can be described as follows:

1. Partition the hypotheses into two folds that are independent of each other, i.e., {(F,x;) }icz, and {(F.x;) }icz,
that are mutually independent.

2. Foreach fold j = 1,2, let {1;};-», be the threshold learned from the other fold (up to a scaling factor). Weight
the p-values by
a Ef-ﬁ 7] ti
P=P=
|Djlti

where |%,| is the cardinality of the set &;.
3. Apply the BH procedure on the set of weighted p-values {7 }.y) with nominal FDR level &/ ¥y L

We note that in eQTL studies, SNPs from different chromosomes can be regarded as being independent of each
other. Also, the third step corresponds to the Benjamini-Yekutieli procedure®. By Theorem 1 in'3, the above
procedure controls FDR under arbitrary dependency of p-values. More specifically, it controls FDR under the
assumptions:

1. The two folds are independent of each other.

2. The null p-values, conditional on the covariates, are independent and stochastically greater than the uniform
distribution.

As a side note, in practice, the dependent case will have minimum effect as long as the two folds are independent,
i.e., step 1 in the procedure above.




REVIEWER 3COMMENTS:

The authors introduce a new statistical method, AdaFDR, for controlling the false discovery rate (FDR)
while performing multiple hypothesis testing. AdaFDR joins several other methods developed over the
last 5 years for controlling FDR while making use of "side information™ or “covariates' (aside from just
the p-values) to increase power over traditional FDR-controlling methods such as Benjamini and
Hochberg's step-up procedure (BH) and the g-value. AdaFDR is shown to be computationally
manageable, while also providing substantial gains over other methods in total discoveries (assumed to be
true positives) across several computational biology problems (eQTL analysis, RNA-seq differential
analysis, microbiome association analysis, and others). The gains of AdaFDR may be attributed to [1] the
method's ability to make use of multiple informative covariates simultaneously and [2] the use of a
flexible class of GLM and gaussian mixture models to estimate the decision boundary at a specified
nomina FDR threshold (e.g. 0.05).

The vignettes and simulations presented show impressive performance, and the method could prove to be
agreat tool for increasing power when performing multiple testing correction. However, | have several
concerns which need to be addressed before the paper is suitable for publication, regarding [1] the
methods and covariates used in the comparisons, [2] the stability of the method, [3] the limited usability
of the software, and [4] the interpretation of the results. Details are provided as bullet points below.

Thank you for your very thoughtful review and helpful suggestions.

## Regarding comparison.

1. In the main analysis described in the Results section (eQTLs in GTEX), AdaFDR and
AdaFDR-fast are only compared against BH, g-value, and in some cases IHW. While the size of
the problem may make the comparison of some methods (e.g. AdaPT) computationally
unreasonable, other notable methods are missing from the analysis. Several covariate-aware
methods are referenced in the paper (bottom of page 2, refs 32-38). It is unclear why most of
these methods were included in the comparison. This needsto be clarified, and at the very least,
the method of Boca and Leek (2018) should be included in the comparison. The Boca and Leek
(2018) approach issimilarly able to handle multiple covariates and seems like a reasonable and
meaningful comparison.

Thank you for the comment. We chose AdaPT [Lei, et al., 2018], IHW [Ignatiadis et al, 2016], and BL
[Bocaand Leek, 2018] for comparison since they are the three methods that control FDR as evaluated in a
recent comparison paper [Korthauer et al., 2018]. In the previous version, the performance of BL was
only reported for a subset of simulation studies (Supp. Figures 9-10). We have added BL to all other
experiments except the eQTL study in the current version, namely those in Figures 3-4 and Supp. Figure
8.

Overall, the additional results agree with the previous results (Supp. Figures 9-10): BL controls FDR but
has |ess power than AdaFDR,; its running speed is between AdaFDR-fast and AdaFDR (Figure 4b).

There are two reasons that we did not run BL on the full GTEx data (Figure 2). First, BL requires the
compl ete data to be loaded into the memory which istoo much for the full GTEx. Other methods
circumvent this problem by either using p-value filtered data (e.g., containing only hypotheses with very
small and large p-values) or learning using a subset of data and generating the covariate-adaptive p-value



weights for the rest of the datain a sequential manner. Second, BL did not show promising performance
on the small GTEx experiments (Figure 3a). Since the small GTEx datasets are representative of the full
GTEx data, it is reasonable to expect that BL will not yield a good result on the full GTEx data.

2. The authors state: "the standard assumption of AdaFDR and all the related methods is that the
covariates should not affect the p-values under the null hypothesis' (page 2). Have the authors
verified that the covariates used in the data analyses are indeed independent of the p-value under
the null? | am particularly concerned that the independence assumption is violated when the p-
values from a separate eQTL analysis are used as the covariate. This needs to be checked and
demonstrated since violation of the assumption can lead to significant false positives.

Thank you for the comment. To verify the assumption for the GTEX experiments, we plotted the p-value
histograms stratified by each covariate separately (see the figures below for Adipose_Subcutaneous and
Colon_Sigmoid). We found that al histograms show a mixture of a uniform distribution and an
enrichment of small p-values to the left, indicating that the null p-values are uniformly distributed
independent of the covariate. This also includes the case where the p-value from a separate eQTL analysis
(of the matching tissue) is used as the covariate. We have added the following two figures as
supplementary figures in the revision. Similar diagnostic plots were also used in the IHW paper
[Ignatiadis et al., 2016].
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Supplementary Figure 4. To verify the algorithm assumption (Theorem 1) for the GTEx experiments, we plot the
p-value histograms stratified by each covariate separately for the tissue Adipose_Subcutaneous. All histograms
show a mixture of a uniform distribution and an enrichment of small p-values to the left, indicating that the null
p-values are uniformly distributed independent of the covariate.
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Supplementary Figure 5. P-value histograms stratified by each covariate separately for the tissue Colon_Sigmoid.
Similar to Supplementary Figure 4.

3. The"AdaFDR" and "AdaFDR-fast" methods are labelled as just "AdaFDR" in Figures 3. This
is confusing and unclear. While | recognized that both are contributions of the paper, from a
practical perspective, for a**user**, these two are not the same as they require setting different
parameters. At the very least, Figure 3 and the accompanying legend should be updated to clarify
when results for AdaFDR or AdaFDR-fast are reported (to match other results tables, e.g. Figure
2).

Thank you for the comment. We have added a clarification in the caption of Figure 3 as below.



Figure 3. (a) The number of discoveries of various methods on two small GTEx ¢QTL datasets, three RNA-Seq datasets, two
microbiome datasets, one proteomics dataset, and two fMRI datasets. 2daFDR is used for the small GTEx and the
RNA-Seq datasets while AdaFDR-fast is used for others, due to their smaller data size. The fMRI results for
AdaPT are omitted since the AdaPT software does not support categorical covariates. (b) Covariate visualization for RNA-Seq
datasets. (c) Covariate visualization for microbiome dataset. (d) Covariate visualization for proteomics dataset. (e) Covariate
visualization for fMRI datasets.

4. Building on the last point, AdaFDR-fast (rather than AdaFDR) is used in both the Microbiome
and Proteomics data sets "due to the small sample size." This distinction of when to use AdaFDR-
fast or AdaFDR (and the definition of "small sample size") needs to be made clear in the
Discussion or Introduction.

Thank you for your comment. We have added a clarification in Discussion as below.

The typical use-case for AdaFDR is when there are many hypotheses to be tested simultaneously — ideally more than 10k.
This is because AdaFDR needs many data to learn the covariate-adaptive threshold and to have an accurate estimate of FDP. A
similar recommendation on the number of hypotheses is also made for IHW. When there are less hypotheses (<10k) or it
is expected to have very few discoveries (less than a few hundreds), AdaFDR-fast is recommended as a more
robust choice. Also, when we have a smaller number of hypotheses, the discoveries are still valid but need to be treated with
precaution — ideally with some orthogonal validations.

## Regarding stability.

5. Based on Algorithm 1 (page 7), the AdaFDR method appears to estimate a decision threshold
based on splitting the data into two (random) folds. How sensitive is the method to the random
split, i.e. how different are the resulting significance calls if the hypotheses are reordered? | can
imagine a scientist using the method, removing one or two tests or reordering their p-values and
re-running the method and being surprised at getting different sets of significant calls. How much
will the calls change if the data sets analyzed in the Results section were reordered?

Thank you for the comment. We agree that stability is a desirable property for the algorithm. To
investigate the stability of AdaFDR, we reran all 10 experiments in Figure 3a (with the same setting and
different random seeds) 50 times and found the number of discoveriesto be highly consistent (first
column in the figure below). Furthermore, for each of the 50 repetition, we run AdaFDR for a second
time and find most discoveries can be reproduced (the average replication rate is 92.4% across the ten
datasets). This shows good stability of the algorithm. The results are summarized in the following figure
which isincluded as a supplementary figure.



discoveries (std) | reproduced discoveries %

small_GTEx: Adipose_Subcutaneous 1491 (41) 94.5%
small_GTEx: Adipose_Visceral_Omentum 1396 (96) 89.5%
RNA-Seq: Bottomly 2147 (38) 93.6%

RNA-Seq: Pasilla 830 (15) 94.4%

RNA-Seq: airway 6041 (33) 97.2%
microbiome: enigma_ph 119 (8) 87.8%
microbiome: enigma_al 480 (46) 82.4%
proteomics 408 (18) 89.6%

fMRI: auditory 1066 (10) 96.9%

fMRI: imagination 2233 (12) 97.6%

Supplementary Figure 7. 2darDR may produce slightly different results in different runs on the same dataset due
to its inherent randomness. To showcase its stability, we repeat all 10 experiments in Figure 3a 50 times with
different random seeds. As shown in the first column of the table, the number of discoveries of the 50 repetitions are
highly consistent. Furthermore, for each of the 50 repetitions, we run AdaFDR for a second time and report the
proportion of reproduced discoveries in the second column of the table (number of overlapped discoveries in both
runs divided by average number of discoveries in the first run). The average replication rate is 92.4% across the ten
datasets, indicating good stability of the algorithm. The two microbiome datasets have relatively lower replication
rate (87.8% and 82.4%, respectively), due to their smaller data size (~ 4000 hypotheses).

6. AdaFDR estimates a threshold for a specified nominal FDR threshold (alpha). Presumably, the
method needs to be re-run every time a different alpha threshold is wanted, e.g. to obtain
approximate "g-values'. While the flexibility of the GLM-gaussian mixture model allows for
estimating complex decision boundaries, | am curious whether this also poses challenges for
monotonicity. That is, do decision boundaries frequently cross such that a hypothesisis
significant for some alpha, but not significant for some alpha* > alpha? Does this occur for the
data sets analyzed when comparing common alpha cutoffs (e.g. 0.01, ..., 0.10)? Again, this may
cause surprise for anyone using the method.

Thank you for the comment. We have provided a new retest function adafdr_retest that, given the testing
result from the main test function adafdr_test, produces the testing result for other different nominal FDR
levels. Therefore, the user only needsto run AdaFDR once with adafdr_test. And whenever he/she wants
the result for a different nominal FDR value, he/she only needs to call the retest function adafdr_retest to
generate the corresponding result. The retest function only contains the threshold rescaling step that takes
almost no time. Such practice also maintains the monotonicity since the shape of the threshold isfixed
and only the rescaling factor gammais changed for testing with different alphas. We have added a
notebook demo_retest.ipynb in the vignettes.

If the user chooses to run adafdr_test every time, however, the monotonicity may be slightly violated due
to the inherent randomness of the algorithm. This, however, should not change the main result since the
algorithm is stable as shown by the results above.

## Regarding usability.

7. The authors have done a good job in making the AdaFDR software
(github.com/martinjzhang/adafdr) and the analysis performed for the paper
(aithub.com/martinjzhang/A daFDRpaper) available on GitHub and pypi. However, | am




concerned with the limited usability of the method. Large scale statistical inference (i.e.
hypothesis testing) in genomics and bioinformatics is often performed in R or with command line
tools and not Python (note also that all other FDR controlling methods benchmarked in this paper
are also implemented in R). The current software could be greatly improved if the authors
provided an example for calling the AdaFDR Python function from R, e.g. using the "reticul ate"
package (https.//rstudio.github.io/reticulate/) to access a wider audience of users.

Thank you for the comment. We have provided an R package using “reticulate” at
https.//github.com/fxia22/RadaFDR

## Regarding interpretation.

8. Precise language needs to be used to describe the results. The descriptions and labels of the
null and alternative hypothesis distribution plots (e.g. Figure 2C) are misleading. The plots show
f(x | pval not significant) and f(x | pval significant), the conditional distributions of the covariate
given that atest shows either weak (large p-value) or strong (small p-value) evidence for being
significant. However, the plots are labeled as "null/alternative proportion”, which suggests
something else - namely, p(h =0 | x) and p(h = 1 | x). Thisis made even more confusing as the
discussion of these plotsin the text make statements of p(pval significant | x) and p(pval not
significant | x), e.g. "genes with higher expression levels are more likely to have significant
associations' (page 3). First, and most importantly, "significant associations" should not be used
interchangeably with tests being truly alternative (asin the plot label), Thisis not correct. Second,
even if the two were the same, the conditioning is being flipped between the text/Iabels and the
plots - further confusing the interpretation of these results. These details need to be clarified asit
impacts the interpretation of the results presented in the paper. For example, while "genes with
higher expression levels are more likely to have significant associations' (page 3), this ** should
not** be interpreted as genes having higher expression levels being more likely to be truly
differential, as currently implied by Figure 2C and stated on page 4: "alternative hypotheses are
more likely to occur when the expression levels are high." Thisis not a correct interpretation of
the data. While more significant p-values occur when the expression levels are high, this can be
due to reasons other than the association between alternative hypotheses and expression levels
claimed in the text. Instead, it may simply be due to better power to detect differences when the
expression levels are high.

Thank you for the comment. We have changed the label to “covariate distribution for null/alt”, which
indicates P(x|null) and P(x|alt). For the first concern regarding the equivalence between “significant
hypothesis’ and “true alternatives’, we use hypotheses with p-values smaller than the BH threshold as an
approximate of the alternative hypotheses. For the second concern regarding the flipping of the
conditional probability, we agree with the reviewer. We have added the following clarification in the
revision and have revised corresponding interpretations.



Covariate visualization via AdaFDR_explore

AdaFDR also provides a FeatureExplcre function that can visualize the relationship between each covariate and the
significance of hypotheses, in terms of the marginal covariate distribution for the null hypothesis and the alternative
hypothesis respectively, as those shown in Figure 2¢ and Figures 3b-e. Let x; be the univariate covariate under
consideration and h; = 0/1 indicate the ground truth (true null/alternative) for the ith hypothesis. Then here we are
trying to estimate the conditional covariate distribution given the hypothesis label, i.e., P(x;|h = 0) and P(x;|h = 1).
Noting that as a function of x;,

Plxjh=1) Plxjh=1) Plh=1]x)
P(xilh=0) P(xi,h=0) P(h=0[x)

The ratio between the two distributions can also be interpreted, up to a scale factor, as the the ratio of the hypothesis
being true alternative/null given the covariate.

## Minor | ssues

- In general, the Introduction is awkwardly organized, with (somewhat redundant) subsections
and afew mislabeled references. This should be cleaned up.

Thank you for the comment. We have cleaned up the Introduction accordingly.

- Throughout, "multiple hypothesis testing” is used to mean "multiple testing correction”. This
should be corrected.

Thank you for the comment. We have added a footnote on the first page as clarification:;

!'Also known as multiple testing correction procedures.

- On page 2, mathematical notation isintroduced without ever being mentioned again in the main
text and can be dropped.

Thank you for the comment. We have dropped the notations $P_i$ and $\mathbf{ x} _i$ on page 2 and
only mention them in the Methods section.

- The descriptions of the various applications (e.g. RNA-seq differential expression analysis) should be
made more precise. For example, "RNA-seq data" is used synonymously with differential gene
expression analysis with RNA-seq data (page 2).

Thank you for the comment. We have revised the descriptions.



REVIEWERS' COMMENTS:

Reviewer #1 (Remarks to the Author):

The authors addressed my comments. There is no further comment.

Reviewer #2 (Remarks to the Author):

The authors have done an excellent job in clarifying the issues the reviewer had in the previous round.
It is reassuring to see the replication results and additional analyses.

Reviewer #3 (Remarks to the Author):

I thank the authors for the additional work performed to address the concerns raised in my previous
review. Most of my concerns have been addressed through the inclusion of BL in the comparisons, and
additional analyses and clarifications to the text. | still have one point of concern.

The sensitivity of the AdaFDR method revealed in the response to point 5 ("Regarding stability") is an
important point that needs to be made clear in the main manuscript. The results presented in the new
Supplementary Figure S7 show that the results returned by the method can change not dramatically,
but still noticeably (average replication rate of 92.4% across datasets). If | understand this correctly,
if someone runs the method twice, the significant calls will only overlap ~90% between the runs.
(Even if the authors set the random seed internally, this does not prevent a similar issue from arising
when a user reorders the p-values or drops a single test from the set.) Currently, the stochasticity of
the method and Supplementary Figure S7 do not appear to be referenced in the main paper. If it has
not been mentioned, it should be stated (at the vary least on page 6 in the Methods section) so that it
is clear to the reader.

Aside from this point, 1 am happy with the changes made to the manuscript by the authors, and
believe the method is a useful addition to the current literature of FDR-controlling methods.

| agree to have my name released.

Patrick Kimes, PhD

Postdoctoral Research Fellow

Department of Data Sciences, Dana-Farber Cancer Institute
Department of Biostatistics, Harvard TH Chan School of Public Health



Point-by-point response to referee’s comments
We thank the reviewers for their thoughtful feedback.
Reviewer #1 (Remarks to the Author):
The authors addressed my comments. There is no further comment.

Thank you for the comment.

Reviewer #2 (Remarks to the Author):

The authors have done an excellent job in clarifying the issues the reviewer had in the previous round. It
is reassuring to see the replication results and additional analyses.

Thank you for the comment.

Reviewer #3 (Remarks to the Author):

I thank the authors for the additional work performed to address the concerns raised in my previous
review. Most of my concerns have been addressed through the inclusion of BL in the comparisons, and
additional analyses and clarifications to the text. I still have one point of concern.

The sensitivity of the AdaFDR method revealed in the response to point 5 ("Regarding stability") is an
important point that needs to be made clear in the main manuscript. The results presented in the new
Supplementary Figure S7 show that the results returned by the method can change not dramatically, but
still noticeably (average replication rate of 92.4% across datasets). If [ understand this correctly, if
someone runs the method twice, the significant calls will only overlap ~90% between the runs. (Even if
the authors set the random seed internally, this does not prevent a similar issue from arising when a user
reorders the p-values or drops a single test from the set.) Currently, the stochasticity of the method and
Supplementary Figure S7 do not appear to be referenced in the main paper. If it has not been mentioned,
it should be stated (at the vary least on page 6 in the Methods section) so that it is clear to the reader.

Aside from this point, I am happy with the changes made to the manuscript by the authors, and believe
the method is a useful addition to the current literature of FDR-controlling methods.

Thank you for the comment. We added a note regarding the algorithm stability in the Discussion section
in the final paper:

step would produce an overly conservative result in this case. In addition, AdaFDR may produce slightly different results (<
10%) in two runs with different random seeds because of the random hypotheses splitting step (see Supplementary Figure 7 for
more details). It is recommended to fix the random seed for better reproducibility. Nonetheless, in all cases the discoveries are
valid in that the FDR is controlled.
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