Cell Reports, Volume 27

## **Supplemental Information**

## **Conserved Herpesvirus Protein Kinases**

## **Target SAMHD1 to Facilitate Virus Replication**

Kun Zhang, Dong-Wen Lv, and Renfeng Li



**Figure S1. SAMHD1 phosphorylation is regulated by CDK1 and CDK2. Related to Figures 1-3.** Western blot showing that SAMHD1 phosphorylation is reduced with CDK1 and CDK2 inhibition. The EBV-positive Akata (A) and P3HR-1 (B) cells were treated with vehicle control or increasing amount (10, 20 and 50 µM) of CDK1 inhibitor (CDK1-i) or CDK2 inhibitor (CDK2-i) for 48 hrs as indicated.





(B) EBV DNA replication is enhanced in SAMHD1-depleted cells. DNA samples were extracted from Akata (EBV+) cells treated as indicated. The relative viral genome copy numbers were determined by quantitative PCR using primer to *BALF5* gene normalized by  $\beta$ -actin. Representative results from three biological replicates are presented. Data are represented as mean ± SD of technical replicates (n=3). \* p < 0.05.



## Figure S3. SAMHD1 depletion facilitates EBV DNA replication in BGLF4-knockout cells. Related to Figure 3.

HEK293 (EBV+) cells carrying a BGLF4/BGLF5 deletion were used to establish control (sg-NC) and SAMHD1depleted (sg1) cell lines. The cells were transfected with ZTA plus BGLF5 to induce lytic replication. Western blot analysis was performed using antibodies as indicated.  $\beta$ -actin served as a loading control. The EBV genome copy numbers were measured by qPCR using primers specific to EBV *BALF5* gene normalized by  $\beta$ -actin. Representative results from three biological replicates are presented. Data are represented as mean  $\pm$  SD of technical replicates (n=3). \*\* p < 0.01.



Figure S4. SAMHD1 depletion and overexpression does not affect cell growth. Related to Figures 3-4. Control and SAMHD1-depleted Akata-BX1 (EBV+) and P3HR-1 cells (A) and SAMHD1-reconstituted Akata (EBV+) cells (B) were lytically induced for 48 hrs with the same methods used in Figures 3 and 4. The total live cell numbers are counted by trypan-blue staining methods. Data are represented as mean  $\pm$  SD of biological replicates (n=3).



**Figure S5. SAMHD1 phosphorylation does not affect its tetramerization. Related to Figure 5.** Sequential activation of SAMHD1 was performed as described in Figure 5. After 30 min of adding individual dNTPs for catalysis, the reaction mixture was subjected to cross-linking with 2.5 mM glutaraldehyde for 10 min and then quenched with 1 M Tris-HCl, pH 8.0. The mixtures were separated by SDS-PAGE and analyzed by immunoblotting with anti-SAMHD1 antibody.



**Figure S6. The model of SAMHD1 regulation by CHPKs in viral replication. Related to Figures 6 and 7.** Beta- and gamma- herpevirus protein kinases trigger the phosphorylation of SAMHD1, which leads to the increase of cellular dNTP pool for efficient viral DNA replication. The phosphorylation of SAMHD1 by beta- and gamma-herpevirus protein kinases is indicated by solid arrows. The possible regulation of SAMHD1 by alpha-herpevirus protein kinases is indicated by dashed arrows.