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Supplementary materials

mutations

We have assumed the additive null model for epistasis in our model. Another commonly used

multiplicative model states that the growth rate Fn of a cell with n independent mutations is

given by Fn = F0(1+s1)(1+s2)...(1+sn), implying that log(Fn) = log(F0)+
∑n

i log(1+si).

This corresponds to our original fitness function (main text Eqn. 1) if we replace F with log(F ).

The fixation probability of a mutation at site iwill now be proportional to ∆F
F

= ∆log(F ) ∝ |hi|

instead of |hi|
F

in the original additive model.

When the dynamics is governed by hopping between metastable states, the logarithmic tra-

jectory is driven by the structure of the landscape rather than the specific details of the transition

rates between states. The multiplicative null model for microscopic epistasis would therefore

give a logarithmic trajectory for log(F ) ∼ a log(t), which implies that F ∼ ta. If a is small,

one would also get an increase in fitness that resembles a logarithmic function.

N

In our model, we make the following assumptions:

1. Within the hill-climbing regime, pf (s) = max(s, 0). This is true if

N � 1/s (S1)

For this to always hold at all times during the simulation, this condition must apply for s =

sb,min, where sb,min is the smallest fitness effect among all beneficial mutations. However,

since the average trajectory is dominated by the typical behaviour, this assumption is

reasonable as long as the Eqn.S1 holds for the average fitness effect of fixed mutations

〈sfix〉 =
∫
s2P (s)ds∫
sP (s)

, where P (s) is the distribution of fitness effects.

Section SA. Choice of null model for the combined effect of multiple independent

Section SB. Range of validity for population size



2. No clonal interference (SSWM limit). This means that the time taken for a beneficial

mutation with fitness effect s to fix τfix = log(Ns)
s

is much shorter than the average time

for the next successful mutation to emerge τemerge = 1
Nµ〈pf (s)〉 , where the average 〈〉 is

taken over all L sites. Together with the previous assumption that pf (s) = s for beneficial

mutations, the condition for this to always be true becomes: Nµb
〈sb〉
sb,min

log(Nsb,min)� 1,

where µb is the beneficial mutation rate, 〈sb〉 is the average beneficial fitness effect and as

before, sb,min is the weakest available beneficial mutation.

However, the probability of sb,min emerging is low, and hence an adequate condition that

takes into account the distribution P (s) of mutations s that try to fix is:∫
Nµb
〈sb〉
s

log(Ns)P (s)ds� 1 (S2)

3. At a metastable state, the probability of a stochastic tunneling event outweighs that of a

deleterious mutation fixation event, even when there is only one possible stochastic tun-

neling path out for the state. Denoting the average probability of a first mutant becoming

a successful double mutant (given that there exists a stochastic tunneling path through

that first mutant) as pd,av (Eqn.4), this assumption requires that:

pd,av �
L∑
i=1

pf (s
(i)
1 ) =

L

N

∫ s1,max

−∞
e−N |s1|P (s1)ds1 (S3)

where P (s1) is the distribution of first mutation effects from a metastable state and s1,max

is the upper bound of this distribution.

Given the parameters L = 200, ρ = 0.05, β = 0.9, ∆ = 0.05 (which together give

the distribution of fitness effects) used in our main simulations (Fig. 3), we find numerically

(by sampling 100 states on 10 quenched landscapes) that 〈sfix〉 ∼ 10−2. Our first condition

(Eqn.S1) therefore gives N � 102.



Similarly, we find numerically that for µb = µ = 10−8, our second condition (Eqn.S2) gives

N � 106.5. In our case, since the states in our simulations are close to fitness peaks, the fraction

of beneficial mutation sites out of L is at most about 0.1. Therefore µb = 0.1 · µ = 10−9 which

gives the condition that N � 107.5.

By sampling metastable states, we find that |s1,max| ∼ 10−5, and the upper bound to
√
〈seff 〉
|s1|

is ∼ 102, which gives
√
µ〈seff 〉
|s1| . 10−2. This implies that we are almost always in the deep

valley regime where pd =
µ〈seff 〉
|s1| (Eqn.4), and with our parameters, for the case where there

is just one possible stochastic tunneling path, pd,av = µ
L
〈
(
seff
|s1|

)
〉 ∼ 10−9. Solving the integral

in Eqn.S3 numerically, we find that this third condition gives N � 105. However, in practice,

even if nearly-neutral deleterious mutations occasionally fix, the same back mutation will occur

with high probability as long as there are not too many of these weak deleterious mutations

available. In fact, we find numerically (by specifying a population size N and allowing delete-

rious mutations with |s1| < 1/N to fix) that even for population size of 104, we still observe a

similar logarithmic trajectory (data not shown).

It is also useful to note that decreasing µ while keeping the other parameters (and hence

fitness effect distributions) the same will increase the upper bound ofN (that comes from clonal

interference) while keeping the lower bound relatively constant, thereby increasing the range of

N that falls within our regime of interest.

Since the dynamics of fitness is governed by the structure of the fitness landscape, we inves-

tigated how these properties vary with L by randomly sampling fitness peaks of a quenched

landscape. The random samples of fitness peaks were obtained by randomly specifying a state

and randomly flipping beneficial sites (i.e. sites that provide an increase in fitness when mutated

are chosen with equal probability) until there are no longer any beneficial mutations left.

Section SC. Structural features of fitness landscapes



By assuming that the average fitness effect of mutations is independent of L (which is con-

sistent with the scaling σh ∼ O(1) and σJ ∼ 1/
√
ρL), the average values of fitness peaks within

our model increases linearly with L (Fig.S1a).

Since we have only included pairwise interactions, the landscape is highly correlated. This

is in contrast to the uncorrelated House of Cards (HoC) landscape where fitness values of every

state is drawn independently from the same distribution.

To understand the correlation structure of the landscape, we consider without loss of gener-

ality the state ~x = [−1,−1, ... − 1] with fitness Fx = −
∑

i hi +
∑

i<j Jij . A state ~y with the

first k spins flipped will then have fitness Fy = Fx + 2
∑k

i=1 hi − 2
∑k

i=1

∑L
j=k+1 Jij , where

k is also the hamming distance between the two states. To calculate the correlation C(Fx, Fy)

between two states a distance k apart, we will need to take average over all states with k spin

flips, but this is equivalent to taking an average over the variables h and J , which we denote

using angular brackets 〈〉. Since 〈hihj〉 = δijσ
2
h and 〈JijJkl〉 = δikδjlσ

2
J for |Jij| > 0, we have

C(Fx, Fy) =
〈FxFy〉 − 〈Fx〉〈Fy〉

σ2
F

=

(
〈F 2

x 〉+ 2〈Fx
k∑
i=1

hi〉 − 2〈Fx
k∑
i=1

L∑
j=1+k

Jij〉

)
/σ2

F

= 1− 2k
σ2
h

σ2
F

− 2k(L− k)ρ
σ2
J

σ2
F

= 1− 2
k

L

σ̃2
h

σ2
F

− 4
k

L

(
1− k

L

)
σ̃2
J

σ2
F

(S4)

where σ̃2
h = Lσ2

h, σ̃2
J = ρL2

2
σ2
J , and the variance in fitness σ2

F = σ̃2
h + σ̃2

J . With σh = (1− β)∆

and σJ = β∆/
√
ρL, both σ̃2

h

σ2
F

= 2(1−β)2

2(1−β)2+β2 and σ̃2
J

σ2
F

= 1 − σ̃2
h

σ2
F

are independent of k and L. The

correlation between two states is therefore only a function of k/L, and the form of C(Fx, Fy)

signifies the presence of long range correlations. This expression forC(Fx, Fy) was also verified

numerically by calculating the correlation between fitness values of states as a function of their

hamming distance (Fig.S1b).



Similarly, both the average number of steps Nsteps it takes for a randomly drawn state to

reach a fitness peak and the average hamming distance d between connected metastable states

(two MS are connected if one of them can be reached from the other via a beneficial double mu-

tation possibly followed by beneficial single mutations) also scale linearly with L (Fig.S1c,d).

In contrast, for a HoC landscape, Nsteps ∼ log(L).

C..1 Stability of metastable states to double mutations

Since within our model a system can only escape from metastable states via beneficial dou-

ble mutants (which is only possible if the fitness peak is unstable to double mutations), we

investigated the stability of 100 randomly sampled local fitness peaks in any specified land-

scape within our model, and found that when interactions are sparse, almost all these states are

metastable states that are unstable to double mutations (Fig. S1e). This is in contrast to having

a much larger density of interactions such as ρ = 0.5 where there is a significant fraction of

local fitness peaks that are stable to all possible double mutations (Fig. S1e). For the standard

fully-connected SK model (ρ = 1), Punstable plateau off at ∼ 0.7 (Data not shown).

C..2 Number of escape paths out of a metastable state

In addition to Punstable which indicates the presence of at least one escape path out of a fitness

peak, the number of such double mutant escape states np will also affect adaptation dynamics

on the landscape. By again averaging over many metastable states, we find that np decreases

sharply with ρ (Fig. S1f).
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Fig. S1. Properties of fitness landscape as a function of L. In (a) and (c)-(f), data is shown for
ρ = 0.005 (blue diamonds), ρ = 0.01 (red circles), ρ = 0.05 (black crosses), ρ = 0.5 (purple
triangles). (a) Average fitness of peaks increases linearly with L. (b) Correlation between two
states is only a function of k/L, where k is the hamming distance between the two states. Data
is shown for L = 100 (purple diamonds) and L = 1000 (green circles), with ρ = 0.005 (filled
markers) and ρ = 0.05 (unfilled markers). All data sets collapse and fit well to the analytical
expression (black line, Eqn.S4). Both (c) the average number of steps to a fitness peak Nsteps

and (d) the average hamming distance between connected metastable states scale linearly with
L. (e) The fraction of metastable states that are unstable to two mutations (Punstable) plateau
to 1 as L increases for small values of ρ but seems to stabilize at a lower value for much
larger values of ρ. The inset plots log10(1 − Punstable) as a function of L. Data points are
not plotted when all fitness peaks sampled are metastable states. (f) The average number of
escape paths from a metastable state increases with L, with the rate of increase higher for
smaller ρ. All crosses represent averages taken over 100 randomly chosen states on a quenched
landscape, and error bars represent standard deviations over 10 different quenched landscapes.
[other parameters: β = 0.9,∆ = 0.05, Foffset = 0]

C..3 Including weak dense pairwise interactions

We also consider the more general scenario where all sites interact weakly with one another, in

addition to having strong, sparse interactions:

F =
∑
i=1

hiαi +
∑
i<j

JSijαiαj +
∑
i<j

JFijαiαj + Foffset (S5)



where JS is the sparse J matrix in our main model (Eqn.1), while JF is now a fully-filled

interaction matrix with elements JFij ∼ N (0, σ2
JF ). By having σh = (1 − β1 − β2)∆, σJS =

β1∆/
√
ρL, and σJF = β2∆/L, the relative contributions of the three terms can be tuned using

β1 and β2.

We find that having this additional JF term with a small β2 does not seem to change the

values of Punstable and np (compare Fig.S2 with Fig.S1f,e). This suggests that our results for

the long-term dynamics of average fitness trajectories hold as long as the sparse interactions

between sites are strong.
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Fig. S2. Properties of fitness peaks as a function of L when additional weak in-
teractions between all sites are included. Both the number of double mutant escape
states out of a metastable state np(a) and the probability that a randomly chosen fitness
peak is a metastable state Punstable(b) remains approximately the same as in Fig.S1f,e for
ρ = 0.005 (blue diamonds), ρ = 0.01 (red circles), and ρ = 0.05 (black crosses).
[other parameters: β1 = 0.8, β2 = 0.1,∆ = 0.05, Foffset = 0]

C..4 Properties of metastable states are correlated with fitness

Since the dynamics seems to be governed by the structure of the landscape, in particular the

property that the number of escape states decreases exponentially with fitness, it is useful to

probe these features of the landscape by randomly drawing metastable states instead of only

using the states stored in a Markov chain.

We find that on average, the trapping time of a metastable state increases exponentially with



fitness and is predominantly due to an approximately exponential decrease in the number of

escape paths with fitness (Fig. S3). These observations for how metastable state properties vary

with fitness also hold for other values of ρ (Fig. S3).
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Fig S3 Figure showing how properties of M S s  vary with fitness for ρ = 0.01
(black diamonds, Foffset = −3.4), ρ = 0.025 (red circles, Foffset = −3.8), ρ = 0.05 (green
triangles, Foffset = −4.2), ρ = 0.075 (blue squares, Foffset = −4.4), and ρ = 0.1 (purple
crosses, Foffset = −4.5). Here the metastable states were obtained by starting with a random
initial state and randomly flipping beneficial sites until a metastable state is reached. The dots
are the averaged values among 100 sets of data, each set consisting of 500 metastable states.
The error bars span the interquartile range. (a,b) Average trapping time of a metastable state in-
creases approximately exponentially with fitness. In (b), the lines are fits to the linear function.
(c) Number of escape paths (i.e. double mutant states) out of a metastable state seems to de-
crease exponentially with fitness. The lines are fit to the exponential function. (d) The average
rate out of a metastable state to any other beneficial double mutant state is approximately the
same for different fitness values. [parameters: L = 200, µ = 10−8, β = 0.9, ∆ = 0.05]

. .



C..5 The number of other metastable states connected to a MS

Among the states within the Markov chain, we also find that the number of double mutant

escape paths out of a metastable state is strongly correlated with the number of connecting

metastable states, i.e., the number of metastable states that the system can transit to next from

the current metastable state (Fig. S4). These two quantities are slightly different because two

different paths can lead to the same metastable state and a path out of a metastable state can also

lead to multiple metastable states. This suggests that the exponential decrease in the number

of escape paths with fitness could be related to the exponential decrease in the number of local

fitness maxima.
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np
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Fig S4 The number of connect ing M S s s ta tes ns, which is the number of MSs
that the system can transi t to next from the current , correlates with the
number of double mutant escape paths out of a state np. The grey crosses are all the individual
states, while the blue dots are the averaged values. [parameters: L = 200, β = 0.9, ∆ = 0.05,
ρ = 0.05]

To investigate how relaxation to a fitness maximum varies with the degree of microscopic epis-

tasis, we considered a strain of rank r = L/2, and varied the relative contributions of the field

MS
. .

Section SD. Relaxation to local fitness maximum



and interaction terms by changing β from 0 to 1. For every set of quenched variables, we car-

ried out 200 simulations starting from the same initial state, and found that the average fitness

trajectories can be well fitted to the power law F (t) = Fmax − Fmax−1
(1+b1t)γ

, where Fmax and b1 are

constants. The fitted parameters show that the trajectory slows down with increasing β, but is

not as slow as a logarithmic trajectory (Fig.S5). The value of γ = 2 when β = 0 can also be

found analytically (27).
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Fig. S5. Relaxation toward a single local fitness maximum slows down with increasing
degree of epistasis. The fitted power law exponent of average fitness trajectory γ decreases with
β. [other parameters: L = 200, initial rank = L/2, ρ = 0.05, ∆ = 0.005]

E..1 Random fixation probabilities

With the same tree of states as the one obtained in the example illustrated in the main text, we

varied the transition matrix by drawing the fixation probability of a mutant from the uniform

distribution (Fig. S6a). We found that this also gives rise to a fitness trajectory that appears

to be logarithmic (Fig S6b). This suggests that the slow fitness trajectory arises predominantly

from the structural property of the landscape (in particular the decrease in the number of escape

Section SE. Hopping between sMS



paths with increasing fitness) rather than the average rates out of the possible escape paths.
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Fig S6 Changing the distribution of fixation probabilities does not significantly change the
functional form of the fitness trajectory. (a) Uniform distribution for the transition probabilities
out of a metastable state. (b) Fitness trajectory is approximately logarithmic. The blue points
are obtained from the Markov chain, while the red line is a fit to the logarithmic function.
[parameters: L = 200, µ = 10−8, ∆ = 0.05, β = 0.9, ρ = 0.05]

E..2 Varying choice of distribution for the elements of interaction matrix

Besides drawing the non-zero elements of the interaction matrix from a Gaussian distribution,

we also tried other distributions such as the two-sided exponential (Fig. S7a) and uniform (Fig.

S7c), both of which also give fitness trajectories that fit well to a logarithmic function (Fig.

S7b,d). Our results are therefore robust to the choice of parameter distributions.

E..3 Fitness trajectories for other values of ρ

Repeating the same analysis for different values of ρ, we find that as long as ρ is sufficiently

small (so that almost all of the fitness peaks are metastable states that are unstable to two mu-

tations (Fig.S1e) and have a significant number of escape paths (Fig.S1f)), the average fitness

trajectories are approximately logarithmic (Fig.S8).

. .
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Fig. S7. Other distributions for the nonzero elements of the interaction matrix give similar
form for the fitness trajectory. (a) Exponential distribution for |J | gives rise to fitness trajectory
in (b). (c) Uniform distribution for |J | gives rise to fitness trajectory in (d) [other parameters:
L = 200, µ = 10−8, ρ = 0.05, ∆ = 0.05, β = 0.9]

E..4 Aging

As the population becomes fitter, it enters states with longer and longer trapping times. Since

the time taken to escape from a state increases, we expect that the correlation between the states

at two different times depends not only on the time difference, but also on the initial state or

time.

To test this in our model, we therefore calculate the average correlation C(tw, tw + ∆t)

between the state ~α(tw) at time tw and the state after some time tw + ∆t given that the system

starts with a specific initial state at time t = 0:

C(tw, tw + ∆t) =
1

L

〈
L∑
i=1

αi(tw)αi(tw + ∆t)

〉
(S6)



0 7
1

1.5

2

x 1012

t

F

:0.01

:0.025

:0.075

:0.1

0 2
0

0.5

1

1.5

2

log10(1+bt)

(F-1)/a(a) (b)

Fig S8 Logarithmic fitness trajectories are also observed for different values of ρ. (a) Aver-
age fitness as a function of time for ρ = 0.01 (blue circles), ρ = 0.025 (red circles), ρ = 0.075
(yellow circles), and ρ = 0.1 (purple circles). Black lines are fits to the logarithmic function:
F = 1 + a log(1 + bt). (b) Linear-log plot of the same data in (a). These trajectories are ob-
tained from Markov chains constructed with the same quenched landscapes analyzed in Fig.S3.
[Parameters: L = 200, µ = 10−8, ∆ = 0.05, β = 0.9]

where the average is taken over all possible states that the system could be in at time tw.

As expected, we find that the decay of the correlation function is slower as tw increases

(Fig.S9).
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Fig. S9. The decay of the two-time correlation function depends on both the time difference
∆t and the initial time of the measurement tw, implying that the system ages. [parameters:
L = 200, µ = 10−8, β = 0.9, ∆ = 0.05, ρ = 0.05]
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Our findings also hold for the case where cells are grown in batch culture (subject to the stan-

dard dilution protocol), after making the corresponding changes to the expression for fixation

probabilities derived below.

Average fixation probabilities

Single mutants For a standard dilution protocol, we assume there are N0 cells at the start of

the day, Nf cells at the end of the day, after which a dilution of D =
Nf
N0

fold is performed.

The probability pext,k of k single mutants with fitness effect s at the start of a day eventually

going extinct over many dilutions can be found from requiring that all daughter mutants in the

next day must eventually go extinct. This can be represented by the following equation:

pext,k =

min(Nm,k,N0)∑
j=0

Hyge(j,Nm,k, Nf , N0)pext,j (S7)

where Nm,k ≈ kD1+s is the number of mutants at the end of the day if we started the day

with k mutants, and Hyge(j,Nm, Nf , N0) =
(Nmj )(Nf−NmN0−j

)

(NfN0
)

is the distribution for the number of

mutants drawn during the dilution process. We also demand the boundary conditions pext,0 = 1

and pext,N0 = 0. Solving this set of linear equations, the fixation probability of a single mutant

emerging at the start of a day can be obtained from pf = 1− pext,1. For s = 0, this would give

pf = 1/N0.

To obtain analytical expressions for the fixation probability, we assume that pext,k ≈ pkext,1,

which is a good approximation for the typical case where k � N0 since in this regime the

mutant cells can be considered to behave independently from one another. In the limit where

Nm, Nf , N0 � 1, Hyge(j,Nm, Nf , N0) can be approximated by the Poisson distribution with

mean Λ = N0
Nm
Nf

. Therefore, pf can be found approximately from the following self-consistent

Section SF. Batch culture



equation (45):

pf = 1−
∑
j=0

e−ΛΛj

j!
(1− pf )j

= 1− e−Λpf

(S8)

For |s| log(D)� 1, which is typically the case, this gives pf ≈ 2log(D)max(s, 0).

However, in general the mutation can occur after some fraction of the day t̃ has passed.

Given that a mutation has occurred, the probability that it emerged at t̃ is given by the probability

density

P (t̃) =
Dt̃log(D)

D − 1
(S9)

For t̃ > 0, there is a reduction in the number of mutants at the end of the first day, such that

Nm(t̃) = D(1+s)(1−t̃), and following the same argument as in Eqn.S8,

pf (s, t̃) = 1−
∑
j=0

e−Λ̃Λ̃j

j!
(1− pf (s, 0))j

= 1− e−Λ̃pf (s,0)

(S10)

where Λ̃(t̃) = N0
Nm(t̃)
Nf
≈ D−t̃ for |s| � 1. This gives pf (s, t̃) = 2log(D)D−t̃ max(s, 0) for

Λ(t̃)pf (s, 0)� 1 (45).

Given that a mutation of selection coefficient s arises, its average fixation probability is then

the average over all possible times within a day the mutation could have occurred:

pf (s) =

∫ 1

0

pf (s, t̃)P (t̃)dt̃

= 2
(log(D))2

D − 1
max(s, 0)

(S11)

Probability of successful double mutants In the large population limit, pf (s ≤ 0) = 0 (Eqn.

S11), which implies that the population can only successfully accumulate beneficial mutations.

For the population to escape a metastable state through beneficial double mutations, the first

mutant (with a single deleterious mutation) must gain a second mutation before going extinct,

and the effective mutant (with two mutations) must fix in the population.



Let Puext be the probability that the single mutant with selection coefficient s1 at the start

of a day goes to extinction without any successful second mutation i.e. a second mutation that

eventually fixes. For this to happen, there must be no successful second mutation on the first

day, and all single mutants that survive to the second day must also go to extinction without

gaining any successful second mutation. Adopting the same reasoning and approximations as

the ones used in the derivation of pf of a single mutant (Eqn. S8), Puext can be found from the

following self-consistent equation:

Puext = Pu1

∑
j=0

e−ΛΛj

j!
P j
uext

= Pu1e
−Λ(1−Puext)

(S12)

where as before Λ = Ds1 , and Pu1 is the probability that no successful second mutation occurs

in the first day.

There are Nm − 1 single mutant division events in the first day, and there is a probability µ

of a mutation occurring during each division event. For a second mutation to be successful, it

will need to eventually fix and the average probability of this happening can be found following

the same derivation as that for Eqn. S11:

pf (seff ) =

∫ 1

0

pf (seff , t̃)P (t̃)dt̃

=

∫ 1

0

(
2log(D)D−t̃seff

)(D(1+s1)t̃log(D)(1 + s1)

D1+s1 − 1

)
dt̃

≈ 2
(log(D))2(1 + s1)

D1+s1 − 1
seff , for |s1log(D)| � 1

(S13)

where here t̃ is the time the double mutant emerges from the first mutant, and seff is the effective

selection coefficient of the double mutant. However, since there are L possible sites that the

second mutation can occur, the average fixation probability of a double mutant arising from the

single mutant is given by the 〈pf〉 = 2 (log(D))2(1+s1)
D1+s1−1

〈seff〉, where the average 〈〉 is taken over

all L possible double mutants, and for brevity we have used 〈seff〉 to represent 〈max(0, seff )〉.



The average probability that a division event gives rise to a successful double mutant is therefore

µ〈pf〉, and Pu1, being the probability that none of these division events give rise to a successful

double mutant, is given by

Pu1 = e−µ〈pf 〉(D
1+s1−1)

= e−µ̃〈s̃eff 〉
(S14)

where s̃eff = log(D)seff and µ̃ ≈ 2µlog(D) for |s1| � 1.

Substituting this expression for Pu1 into Eqn. S12 and defining s̃1 = log(D)s1, the proba-

bility pd = 1 − Puext of a successful double mutant occurring from a single mutant at the start

of a day satisfies the equation:

log(1− pd) = −µ̃〈s̃eff〉 − es̃1pd (S15)

Taking the limit pd � 1,

pd = s̃1 +
√
s̃1

2 + 2µ̃〈s̃eff〉

=

{√
2µ̃〈s̃eff〉, for s̃1

2 � 2µ̃〈s̃eff〉 � 1

− µ̃〈s̃eff 〉
s̃1

, for 2µ̃〈s̃eff〉 � s̃1
2 � 1

(S16)

These expressions for pd are the same as that for the Moran process (Eqn.4) and other related

models such as the Wright-Fisher model (12), except for slight differences in the constant pref-

actors. In all of our derivations, we have assumed that deleterious mutations do not fix on their

own. This assumption is valid if the probability of a neutral mutation fixing is much less than

the probability of it gaining a successful second mutation i.e. N0 � 1/
√

2µ̃〈s̃eff〉.

Just like in the derivation of pf (s, t̃) for a single mutant (Eqn. S11), here it is also possible

to take into account the time at which the first mutant occurs. Following the same derivation

as above, the average probability of a successful double mutant occurring from a single mutant

that emerges at t̃1 is then given by

pd(t̃1) ≈ D−t̃1pd(t̃1 = 0) (S17)



and averaging over all possible t1, with P (t̃1) again given by Eqn.S9, the average probability of

a successful second mutation given that a single mutant of s1 has emerged is found to be

pd =

∫ 1

0

pd(t̃1)P (t̃1)dt̃1

=
log(D)

D − 1
pd(t̃1 = 0)

(S18)
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