Science Advances

advances.sciencemag.org/cgi/content/full/5/7/eaax0698/DC1

Supplementary Materials for

β-Catenin/Tcf7l2–dependent transcriptional regulation of GLUT1 gene expression by Zic family proteins in colon cancer

Zibo Zhao, Lu Wang, Elizabeth Bartom, Stacy Marshall, Emily Rendleman, Caila Ryan, Anthony Shilati, Jeffrey Savas, Navdeep Chandel, Ali Shilatifard*

*Corresponding author. Email: ash@northwestern.edu

Published 31 July 2019, *Sci. Adv.* **5**, eaax0698 (2019) DOI: 10.1126/sciadv.aax0698

The PDF file includes:

Fig. S1. Potential prognostic value of Zic5 in colon cancer.

Fig. S2. Generation of our homemade antibodies against Zic5 for ChIP-seq analysis.

Fig. S3. Comparative ChIP-seq analysis of ZIC5 in HCT116 ZIC5 WT and KO cells.

Fig. S4. Loss of Zic5 derepresses GLUT1/SCL2A1 gene expression.

Fig. S5. β-Catenin/Tcf7l2 complex recruits Zic5 to regulate gene expression.

Fig. S6. Comparative ChIP-seq analysis of ZIC2 in HCT116 ZIC2 WT and KO cells. Legend for table S1

Other Supplementary Material for this manuscript includes the following:

(available at advances.sciencemag.org/cgi/content/full/5/7/eaax0698/DC1)

Table S1 (Microsoft Excel format). Mass spectrometry data.

Fig. S1. Potential prognostic value of Zic5 in colon cancer.

Zhao_Fig S2

Α	mouse	1	MEPPLSKRNPPALRLADLATAQAQQLQNMTGFPVLVGPPAHSQRRAVAMHLHPRDLGTD	60
	human	24	LMEPPLSKRNPPALRLADLATAQ Q LQNNTGFPALAGPPAHSQLRAAVAHLRLRDLGAD	83
	mouse	61	PGVASTALGPEHMAQASGQGPCPPSQGLPGLSQVPAPAARSVASGTHPGARTHPDGGGSS	120
	human	84	PGVATTLUGEEMMAQAS G FPSQ P T FA AART A MPGA TTF GGGSS PGVATTPLGPEHMAQASTLGLSPPSQAFPAHPEAPAAAARAAALVAHPGAGSYPCGGGSS	143
	mouse	121		180
	human	144	GAQPSAPPPAPPLPPTPSPPPPPPPPPALSGYTTTNSGGGGSSGKGHSRDFVLRRDL	203
	mouse	181	SATAPAAAMHGAPLGGEQRSGSSSPQHPTPPPHPAGMFISASGTYAGRDG-GGSALFPAL	239
	human	204	SATAPAAAIIIIGAPLGGEQRSGT SFQIIP FFFF AGIIF JSASGTTAG DG GG ALFFAL SATAPAAAMHGAPLGGEQRSGTGSPQHPAPPPHSAGMFISASGTYAGPDGSGGPALFPAL	263
	mouse	240	HDSPGAPGGHP LNGOMRLGLAAAAAAAA - ELYGRAEPPFAPRSGDAHYGAVAAAAAAA	296
	human	264	HDTPGAPGGHPHPLNGQMRLGLAAAAAAAAALUGRAEPPFAPRSGDAHYGAVAAAAAAA	323
	mouse	297	LHGYGAVNLNLNLAAAAAAAAAAAGPGPHLQHHAPPPAPPAPAPHPHHPHLPGAAG	352
	human	324	LHGYGAVNLNLN-LAAAAAAAAAGGGPHLQHHAPPPAPPPPAPAQHPHQHHPHLPGAAG	382
	mouse	353	AFLRY	401
	human	383	AFLRYMRQPIKQELICKWIDPDELAGLPPPPPPPPPPPPPPPPAGGAKPCSKTFGTMHELV	442
	mouse	402		461
	human	443	NHVTVEHVGGPEQSSHVCFWEDCPREGKPFKAKYKLINHIRVHTGEKPFPCPFPGCGKVF	502
	mouse	462	ARSENLKIHKRTHTGEKPFKCEFDGCDRKFANSSDRKKHSHVHTSDKPYYCKIRGCDKSY	521
	human	503	ARSENLKIHKRTHTGEKPFKCEFDGCDRKFANSSDRKKHSHVHTSDKPYYCKIRGCDKSY	562
	mouse	522	THPSSLRKHMKIHCKSPPPSPGALGYSSVGTPVGDPLSPVLDPTRSRSSTLSPQVTNLNE	581
	human	563	THPSSLRKHMKIHCKSPPPSPGPLGYSSVGTPVGAPLSPVLDPARSHSSTLSPQVTNLNE	622
	mouse	582	WYVCQASGAPSHLHTPSSNGTTSESEDEEMYGNPEVMRTIH 622	
	human	623	WYVCQASGAPSHLHTPSSNGTTSETEDEEIYGNPEVVRTIH 663	

Zic5CT289: 545 – 622 aa (mouse) Zic5 FL290: 358 – 622 aa (mouse)

В

	# Peaks
WT.289	10081
WT.289.specific	7040
WT.290	7895
WT.290.specific	3475
WT.289.sp AND WT.290.sp	3475

Fig. S2. Generation of our homemade antibodies against Zic5 for ChIP-seq analysis.

В

GO Biological Process

negative regulation of carbohydrate metabolic process negative regulation of cellular carbohydrate metabolic process tRNA modification maintenance of protein localization in organelle regulation of glycolysis regulation of leukocyte degranulation regulation of myeloid leukocyte mediated immunity ATP synthesis coupled proton transport regulation of triglyceride metabolic process negative regulation of Notch signaling pathway negative regulation of hematopoietic progenitor cell differentiation

Motif 1	Score
mES-Nanog-ChIP- Seq(GSE11724)/Homer	0.94
ZIC1/MA0696.1/Jaspar	0.9
ZIC4/MA0751.1/Jaspar	0.89
ZIC3/MA0697.1/Jaspar	0.89
PB0206.1_Zic2_2/Jaspar	0.82
K562-CTCFL-ChIP- Seq(GSE32465)/Homer	0.74
GLIS2/MA0736.1/Jaspar	0.73

E	
Motif 2	Score
Ets1-distal(ETS)/CD4+-Polll-	
ChIP-	
Seq(Barski_et_al.)/Homer	0.58
POL009.1_DCE_S_II/Jaspar	0.57
PB0187.1_Tcf7_2/Jaspar	0.57
SA0002.1_at_AC_acceptor/J	
aspar	0.55
Bcl6/MA0463.1/Jaspar	0.55
SNAI2/MA0745.1/Jaspar	0.54
STAT3/MA0144.2/Jaspar	0.53

Fig. S3. Comparative ChIP-seq analysis of ZIC5 in HCT116 ZIC5 WT and KO cells.

D

Fig. S4. Loss of Zic5 derepresses *GLUT1/SCL2A1* gene expression.

Fig. S5. β-Catenin/Tcf7l2 complex recruits Zic5 to regulate gene expression.

Fig. S6. Comparative ChIP-seq analysis of ZIC2 in HCT116 ZIC2 WT and KO cells.

Table S1. Mass spectrometry data.