GigaScience

An integrated respiratory microbial gene catalogue to better understand the microbial aetiology of Mycoplasma pneumoniae pneumonia --Manuscript Draft--

Manuscript Number:	GIGA-D-19-00029R3	
Full Title:	An integrated respiratory microbial gene car aetiology of Mycoplasma pneumoniae pneu	talogue to better understand the microbial imonia
Article Type:	Research	
Funding Information:	Sanming Project of Medicine in Shenzhen (SZSM201512030)	Dr Yuejie Zheng
	Shenzhen Science and Technology Project (JCYJ20170303155012371)	Mr Heping Wang
	Shenzhen Science and Technology Project (JCYJ20170816170527583)	Mr Heping Wang
	Key Medical Disciplines Building Project of Shenzhen (SZXJ2017005)	Mr Zhiwei Lu
	Guangdong Medical Research Foundation (A2017213)	Mrs Yanmin Bao
Abstract:	Background The imbalanced respiratory microbiota obse and mortality in childhood. Respiratory meta comprehensive microbial gene catalogue, w understanding of host–microorganism intera Results We collected 334 respiratory microbial sam children with pneumonia. The respiratory m comprised 2.25 million non-redundant micro genes. The major oropharyngeal microbial s Prevotella and Streptococcus. In children w (MPP), oropharyngeal microbial diversity ar compared to those of healthy children. The microorganisms in patients predominantly for pneumoniae. Functional orthologues, which various lipids, membrane transport and sign oropharyngeal microbiome of children with genes and virulence factor genes were ider and 13 other microorganisms reconstructed common macrolide/beta-lactam resistance of M. pneumoniae genome, a single nucleotid macrolide resistance was identified in a 235 Conclusions The results of this study will facilitate explor and host–microorganism interactions in stud also yield further insights into the microbial	erved in pneumonia causes high morbidity agenomic analysis demands a which will significantly advance our actions. ples from 171 healthy children and 76 icrobial gene catalogue we established obial genes, covering 90.52% of prevalent species found in healthy children were ith Mycoplasma pneumoniae pneumonia ad associated gene numbers decreased concurrence network of oropharyngeal eatured Staphylococcus spp. and M. are associated with the metabolism of nal transduction, accumulated in the pneumonia. Several antibiotic resistance tified in the genomes of M. pneumoniae I via metagenomic data. Although the genes were not identified in the assembled e polymorphism (A2063G) related to S rRNA gene.
Corresponding Author:	Yuejie Zheng Shenzhen Children's Hospital	
	Shenzhen, Guangdong CHINA	
Corresponding Author Secondary Information:		
Corresponding Author's Institution:	Shenzhen Children's Hospital	
Corresponding Author's Secondary Institution:		

First Author:	Wenkui Dai
First Author Secondary Information:	
Order of Authors:	Wenkui Dai
	Heping Wang
	Dongfang Li
	Qian Zhou
	Xin Feng
	Zhenyu Yang
	Wenjian Wang
	Chuangzhao Qiu
	Zhiwei Lu
	Ximing Xu
	Mengxuan Lyu
	Gan Xie
	Yinhu Li
	Yanmin Bao
	Yanhong Liu
	Kunling Shen
	Kaihu Yao
	Xikang Feng
	Yonghong Yang
	Shuaicheng Li
	Ke Zhou
	Yuejie Zheng
Order of Authors Secondary Information:	
Response to Reviewers:	Dear Editors,
	Thanks for your professional assessments and comments. We have addressed the comments and approved the revision. Please kindly check the updated manuscript without tracked changes.
	Yuejie Zheng
Additional Information:	
Question	Response
Are you submitting this manuscript to a special series or article collection?	No
Experimental design and statistics	Yes
Full details of the experimental design and statistical methods used should be given in the Methods section, as detailed in our Minimum Standards Reporting Checklist. Information essential to interpreting the	

data presented should be made available in the figure legends.	
Have you included all the information requested in your manuscript?	
Resources	Yes
A description of all resources used, including antibodies, cell lines, animals and software tools, with enough information to allow them to be uniquely identified, should be included in the Methods section. Authors are strongly encouraged to cite <u>Research Resource</u> <u>Identifiers</u> (RRIDs) for antibodies, model organisms and tools, where possible.	
Have you included the information requested as detailed in our <u>Minimum</u> <u>Standards Reporting Checklist</u> ?	
Availability of data and materials	Yes
All datasets and code on which the conclusions of the paper rely must be either included in your submission or deposited in <u>publicly available repositories</u> (where available and ethically appropriate), referencing such data using a unique identifier in the references and in the "Availability of Data and Materials" section of your manuscript.	
Have you have met the above requirement as detailed in our <u>Minimum</u> <u>Standards Reporting Checklist</u> ?	

1	An integrated respiratory microbial gene catalogue to better
2	understand the microbial aetiology of Mycoplasma pneumoniae
3	pneumonia
4	Wenkui Dai ^{2,#} , Heping Wang ^{1,#} , Dongfang Li ^{3,#} , Qian Zhou ⁴ , Xin Feng ⁴ , Zhenyu
5	Yang ⁴ , Wenjian Wang ¹ , Chuangzhao Qiu ⁴ , Zhiwei Lu ¹ , Ximing Xu ⁵ , Mengxuan Lyu ² ,
6	Gan Xie ¹ , Yinhu Li ⁴ , Yanmin Bao ¹ , Yanhong Liu ⁴ , Kunling Shen ^{1,6} , Kaihu Yao ^{1,6} ,
7	Xikang Feng ² , Yonghong Yang ^{1,4,6} , Shuaicheng Li ² , Ke Zhou ^{3,*} , Yuejie Zheng ^{1,*}
8	
9	¹ Department of Respiratory Diseases, Shenzhen Children's Hospital, Shenzhen
10	518026, China
11	² Department of Computer Science, City University of Hong Kong, Hong Kong
12	999077, China
13	³ Wuhan National Laboratory for Optoelectronics, Huazhong University of Science
14	and Technology, No. 1037 Luoyu Road, Wuhan 430074, China
15	⁴ Department of Microbial Research, WeHealthGene Institute, Shenzhen 518000,
16	China

17	⁵ Institute of Statistics, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
18	⁶ Department of Respiratory Diseases, Beijing Children's Hospital, Beijing 100045,
19	China
20	[#] These authors contributed equally to this work.
21	*Corresponding authors
22	
23	ORCIDs and email addresses:
24	Wenkui Dai, 0000-0002-9723-1416, daiwenkui84@gmail.com; Heping Wang,
25	0000-0002-9527-1334, szetgmy@163.com; Dongfang Li, 0000-0002-6587-2892,
26	loveli_biocc@163.com; Qian Zhou, 0000-0002-8433-2875,
27	zhouqian@wehealthgene.com; Xin Feng, 0000-0003-1853-7255,
28	fengxin@wehealthgene.com; Zhenyu Yang, yangzhy@wehealthgene.com; Wenjian
29	Wang, 0000-0001-9459-3764, dhbk2005@163.com; Chuangzhao Qiu,
30	0000-0001-5560-0992, qiuchzh@wehealthgene.com; Zhiwei Lu,
31	luzhiwei1950@163.com; Ximing Xu, ximing@nankai.edu.cn; Mengxuan Lyu,
32	mengxualv2-c@my.cityu.edu.hk; Gan Xie, 0000-0001-6041-2523,

33	xiegan1987@163.com; Yinhu Li, 0000-0001-6378-6571, liyh@wehealthgene.com;
34	Yanmin Bao, baoyanming1978@163.com; Yanhong Liu,
35	liuyanhong@wehealthgene.com; Kunling Shen, kunlingshen1717@163.com; Kaihu
36	Yao, jiuhu2655@sina.com; Xikang Feng, xikangfeng2-c@my.cityu.edu.hk; Yonghong
37	Yang, 0000-0002-8423-1652, yyh628628@sina.com; Shuaicheng Li,
38	0000-0001-6246-6349; shuaicli@cityu.edu.hk; Ke Zhou, k.zhou@hust.edu.cn; Yuejie
39	Zheng, 0000-0003-1094-2395, shine1990@sina.com.
40	
41	Abstract
42	Background: The imbalanced respiratory microbiota observed in pneumonia causes
43	high morbidity and mortality in childhood. Respiratory metagenomic analysis
44	demands a comprehensive microbial gene catalogue, which will significantly advance
45	our understanding of host-microorganism interactions. Results: We collected 334

46 respiratory microbial samples from 171 healthy children and 76 children with

- 47 pneumonia. The respiratory microbial gene catalogue we established comprised
- 48 2.25 million non-redundant microbial genes, covering 90.52% of prevalent genes. The

49	major oropharyngeal microbial species found in healthy children were Prevotella and
50	Streptococcus. In children with Mycoplasma pneumoniae pneumonia (MPP),
51	oropharyngeal microbial diversity and associated gene numbers decreased compared
52	to those of healthy children. The concurrence network of oropharyngeal
53	microorganisms in patients predominantly featured Staphylococcus spp. and M.
54	pneumoniae. Functional orthologues, which are associated with the metabolism of
55	various lipids, membrane transport and signal transduction, accumulated in the
56	oropharyngeal microbiome of children with pneumonia. Several antibiotic resistance
57	genes and virulence factor genes were identified in the genomes of M. pneumoniae
58	and 13 other microorganisms reconstructed via metagenomic data. Although the
59	common macrolide/beta-lactam resistance genes were not identified in the assembled
60	M. pneumoniae genome, a single nucleotide polymorphism (A2063G) related to
61	macrolide resistance was identified in a 23S rRNA gene. Conclusions: The results of
62	this study will facilitate exploration of unknown microbial components and host-
63	microorganism interactions in studies of the respiratory microbiome. It will also yield
64	further insights into the microbial aetiology of MPP.

65 Keywords: Pneumonia; *Mycoplasma pneumoniae*; Oropharynx; Microbiome;
66 Respiratory microbial gene catalogue

67

68 Background

69 Several microorganisms have been identified as indispensible for the respiratory 70 microbiota (RM) [1-5]. In cases of pneumonia, an imbalance in the levels of the 71 microorganisms within the RM [6, 7] is a leading cause of high morbidity and 72 mortality [8, 9] worldwide, especially in children under 5 years old [10, 11]. In recent 73 years, the number of cases of Mycoplasma pneumoniae pneumonia (MPP) in Chinese 74 children has been increasing [12] and the microbial aetiology of this disease remains 75 poorly understood. 76 Previous studies by our group have revealed altered RM in children with MPP 77 [13, 14]. However, current RM research has mainly focused on analysis of 16S rRNA 78 [6, 7, 15, 16], which only provides cues about known bacterial components at the 79 genus level. Emerging 16S rRNA analysis has revealed an imbalanced microbial 80 structure in the respiratory tracts of children with pneumonia [7, 17, 18]; however,

82 of patients with MPP remain unexplored. In addition, current multi-omics studies are 83 limited to explorations of known bacterial genomes in the RM [15]. Nevertheless, the 84 RM includes many unknown microbial species [1-3, 5, 6] that require further 85 exploration. 86 A comprehensive catalogue of reference genes is crucial for in-depth functional 87 metagenomic analysis such as species/gene profiling, discovery of microbial 88 biomarkers and functional annotation. Given that the RM varies with the environment 89 [19], age [1, 2, 4] and disease [6, 7, 15, 16], we took samples from the nasopharynx 90 (NP), oropharynx (OP) and lungs of 76 children with pneumonia and OP samples 91 from 171 healthy children in China. These samples were used to establish an 92 integrated respiratory microbial gene catalogue (RMGC), with which to study the 93 imbalanced RM in Chinese children with MPP. Using this catalogue, we assessed the 94 microbial components and functions in the OP microbiota of healthy children and 95 children with MPP, as well as the characteristics of recovered microbial genomes.

changes in microbial functions and the species-level microbial components of the RM

96 **Data Description**

97	Between 3 July 2016 and 27 August 2016, 247 patients were recruited from the
98	hospitalization zone in the Department of Respiratory Diseases of Shenzhen
99	Children's Hospital, China. Inclusion criteria were characteristic chest radiographic
100	abnormalities consistent with pneumonia, exclusion of asthma and clearance of
101	respiratory infections or exposure to antibiotics within one month of sampling (Table
102	1). NP (25-800-A-50, Puritan, Guilford, ME, USA) and OP (155C, COPAN, Murrieta,
103	CA, USA) swabs were collected from 76 hospitalized patients within 24 hours of
104	hospitalization and before the administration of antibiotics. Broncho-alveolar lavage
105	fluid (BALF) was collected 2–15 days after hospitalization (Supplementary Table 1).
106	Healthy children were recruited during physical examinations at Shenzhen
107	Children's Hospital, China, between July and August of 2016. OP swabs were
108	collected from 171 healthy children meeting the following inclusion criteria: no
109	diagnosis of asthma or family history of allergy; no history of pneumonia; a lack of
110	wheezing, fever, cough or other respiratory/allergic symptoms at sampling 1 month
111	prior to the study and 1 week after sampling; no exposure to antibiotics 1 month prior
112	to sampling.

113	All samples were collected by an experienced clinician. Samples were stored at
114	-80°C within 20 minutes of collection and DNA was extracted within 10 days of
115	sampling. A TGuide S32 Magnetic Swab Genomic DNA Kit (DP603-T2, TIANGEN
116	Biotech (Beijing) Co., Ltd., Beijing, China) was utilized to extract the DNA.
117	Metagenomic sequencing was performed using the Illumina Hi-Seq platform (San
118	Diego, USA) according to the manufacturer's instructions. Unused swabs and DNA
119	extraction kits from the same batch served as negative controls to assess DNA
120	contamination.

122 Sample information and data output

123	Two hundred forty-seven children aged <13 years were enrolled in this study (Table 1
124	and Supplementary Table 1). After removing host contamination and low-quality data,
125	metagenomic sequencing produced 4,765,288,986 reads, with an average of
126	14,267,332 reads per sample. The DNA concentration of unused sampling swabs and
127	DNA extraction kits was less than 0.01 ng/ μ l, whereas the DNA concentration was
128	greater than 80 ng/ μ l in sampling swabs and BALF. Furthermore, the DNA

amplification results of extracted bacterial DNA were less than 0.01 nmol/l for the

130 enveloped sampling or extraction materials (Supplementary Figure 1)

131

132 **Construction of the RMGC**

133 By applying metagenomics sequencing data from 247 children and three 134 respiratory-related microbial genome/gene resources (Figure 1), we constructed a 135 comprehensive RMGC with 2,245,343 non-redundant ORF. Data are freely accessible 136 on our website [20]. The total length of ORFs in the RMGC was 1.71 Gbp and the average length was 760 nt (range: 102-32,241 nt). We selected 241 samples with 137 \geq 650 Mb data to examine the coverage of the microbial genes in the RMGC. In 138 139 accordance with the rarefaction curve, 90.52% of prevalent microbial genes were 140 captured in the RMGC (Figure 2a and 2b). 141

142 Taxonomic assessment and functional annotation of the RMGC

143 Based on taxonomic profiling, 1,281,673 genes (57.08% of RMGC) were assigned to

144 phyla and 1,143,382 genes (50.92% of RMGC) were assigned to genera, representing

145	56.58% and 51.75% of the sequencing reads, respectively. A total of 617,968 genes
146	(25.92% of RMGC) were annotated to known bacterial species, representing 33.49%
147	of the sequencing reads. The RMGC was dominated by the phyla Firmicutes,
148	Bacteroides, Proteobacteria, Actinobacteria and Fusobacteria, while the most
149	prevalent microbial genera were Staphylococcus, Streptococcus, Haemophilus,
150	Corynebacterium, Dolosigranulum, Prevotella, Blautia, Rothia, Porphyromonas,
151	Lactobacillus, Veillonella, Fusobacterium and Leptotrichia. Unknown microbial
152	species accounted for 9.62–55.50% of the RMGC. Detailed taxonomic information of
153	the RMGC is deposited on our website [20].
154	Metagenomic analysis revealed a genus-level microbial structure resembling the
155	results of the 16S rRNA analysis (Supplementary Figure 2). Notably, a greater
156	proportion of microbial genera remained unclassified in the metagenomic analysis
157	than in the 16S rRNA analysis; this might be attributed to the wide detection by
158	metagenomics sequencing and limited reference microbial genomes.
159	By aligning the RMGC to the KEGG database, 6,408 KEGG orthologous (KO)

160 groups were identified, including 853,446 genes representing 37.85% of the total

161	sequencing data. As more samples were included, known microbial functions
162	(annotated by KEGG) saturated quickly to 6,346 groups (Figure 2c). Combining
163	novel gene families, the rarefaction curve plateaued when 12,924 groups were
164	detected (Figure 2c). Upon alignment to the eggNOG database, 53.95% of genes in
165	the RMGC were assigned to known functional categories.

166

167 Core microbial species in the OP microbiota of healthy children

168 We acquired 67 core species across five dominant phyla: Bacteroidetes, Firmicutes,

- 169 Proteobacteria, Actinobacteria and Fusobacteria (Figure 3). Prevotella
- 170 melaninogenica (4.38 \pm 2.91%, mean \pm sd), Prevotella sp. (3.06 \pm 1.92%), P. histicola
- 171 $(3.23 \pm 3.58\%)$, *P. pallens* $(2.31 \pm 1.88\%)$ and *Veillonella atypical* $(1.60 \pm 1.44\%)$

172 were the top five microbial species. In addition, Streptococcus pseudopneumoniae

- 173 $(1.26 \pm 0.96\%)$, Haemophilus influenzae $(0.60 \pm 0.68\%)$, S. pneumoniae $(0.60 \pm$
- 174 0.50%), H. parainfluenzae (0.42 \pm 0.49%) and Staphylococcus aureus (0.27 \pm 1.52%),
- 175 which were generally defined as opportunistic pathogens, were also prevalent in the
- OP microbiota of healthy children (Figure 3). 176

191

179 differed from those of healthy children 180 Based on permutational analysis of variance (PERMANOVA), onset of pneumonia is 181 the most significant factor (adjusted P-value <0.001) explaining the variations 182 observed in OP microbial samples. This is followed by feeding pattern (adjusted 183 P-value = 0.037) and age (adjusted P-value = 0.048). Compared with healthy children, 184 children with MPP exhibited significantly decreased microbial gene numbers and 185 alpha diversity of the OP microbiota (Figure 4a and 4b). Thirty co-abundance gene 186 groups (CAGs) accumulated significantly in the OP microbiota of children with MPP, 187 comprising six unknown and 24 known microbial species. These species were 188 primary respiratory pathogens such as M. pneumoniae, Staphylococcus epidermidis 189 and S. aureus (Figure 5a). Ninety-five CAGs were enriched in the OP microbiota of 190 healthy children, including prevalent colonizers such as *Prevotella* species (Figure 5a).

Microbial structure and functions of the OP microbiome of children with MPP

- 192 of healthy children; negative correlations were only identified between

The microbial co-occurrence networks of children with MPP were simpler than those

193	healthy-enriched and MPP-enriched CAGs (Figure 5a). For example,
194	healthy-enriched Prevotella spp. negatively correlated with MPP-enriched S.
195	epidermidis (r <-0.60, adjusted <i>P</i> -value ≤ 0.05 , Figure 5a).
196	By comparing functional KEGG annotations (Supplementary Table 2), we
197	assessed the functional alterations of the OP microbiota in children with MPP.
198	Microbial functions relateing to lipid metabolism, membrane transport and signal
199	transduction were slightly enriched in children with MPP (Figure 5b). In contrast, the
200	OP microbiota of healthy children was significantly enriched in orthologues involved
201	in glycan biosynthesis and metabolism, biosynthesis of secondary metabolites, and
202	cell growth and death (Figure 5b and Supplementary Table 2). Host
203	homeostatis-associated functions, such as the immune system, digestive system,
204	circulatory system and environmental adaptation, were also significantly abundant in
205	the OP microbiota of healthy children (Figure 5b and Supplementary Table 2).
206	

207 Characterization of the *M. pneumoniae* genome and 13 other reconstructed 208 microbial genomes

209	We re-assembled 14 qualified microbial CAGs (Supplementary Table 3), representing
210	the <i>M. pneumoniae</i> genome (0.80 Mbp) and the genomes of 13 other microorganisms
211	(average genome size: 2.30 Mbp). The M. pneumoniae genome accumulated
212	significantly in the OP microbiota of MPP patients and had high similarity with the
213	reference genome (97.79% genome coverage; Supplementary Table 3). The M.
214	pneumoniae genome included four antibiotic resistance genes (ARGs) against
215	common antibiotics including peptide, rifamycin and fluoroquinolone (Figure 6,
216	Supplementary Table 4). In eight patients who had been given experimental
217	macrolides or beta-lactams (such as azithromycin, erythromycin or sulbactam), a SNP
218	mutation, A2063G, which is related to macrolide resistance, was identified in the 23S
219	rRNA (Supplementary Table 1). In addition, 136 virulence factor genes (VFGs) were
220	found along its reassembled genome sequence (Supplementary Table 5), as well as
221	redundant M. pneumoniae VFGs enriched in the secretion of adhesin P1,
222	cytadherence protein and community-acquired respiratory distress syndrome (CARDS)
223	toxin (Figure 6 and Supplementary Table 5).

Of the 13 other microbial genomes included in our study, five could be annotated

225	as specific species, one was annotated at the genus level (Ralstonia), and the
226	remaining seven were novel microbial genomes (average genome size 1.74 Mbp)
227	(Supplementary Table 3). For the five annotated microbial species, S. aureus and S.
228	epidermidis increased significantly in MPP patients, while the other three Prevotella
229	spp. mainly accumulated in healthy children (Figure 7, Supplementary Table 3). The
230	largest reassembled Ralstonia genome (5.89 Mbp) carried numerous ARGs, including
231	13 beta-lactam ARGs, 21 tetracycline ARGs, and 11 macrolide ARGs. P. histicola, P.
232	shahii and CAG00068 all had one copy each of a macrolide resistance gene and a
233	beta-lactam antibiotic resistance gene. These genomes also harboured abundant VFG
234	resources, ranging from 105 to 808 copies of relative genes. Correlation analysis
235	revealed no significant correlation between these 14 reassembled microbial genomes
236	and five clinical indices (Supplementary Table 6).

238 Discussion

239 Morbidity and mortality related to MPP is increasing in Chinese children. The240 development of RM studies has improved our understanding of the microbial

241	aetiology of MPP by revealing infection-associated RM imbalances [13, 14]. However,
242	microbial functions and host-microbiota interactions in the RM of patients with MPP
243	remain to be explored, particularly for novel microbial species.
244	In recent years, several reference gut microbial catalogues have been constructed
245	to promote understanding of host-microorganism interactions. Qin et al. built a global
246	view of the human gut microbiome (GM) and revealed a comprehensive functional
247	potential of the prevalent gut microbial genes [21]. Li et al. upgraded the gut gene
248	catalogue in 2014 [22], enabling studies to associate microbial genes with human
249	health conditions. These frameworks have allowed researchers to deepen their
250	understanding of the correlations between GM and various diseases, such as
251	gastrointestinal and cardiovascular diseases [23, 24].
252	Like the reference gene catalogues that have been developed for the GM, our
253	RMGC will further understanding of microbial aetiology in respiratory diseases. The
254	development of a well-established RMGC is crucial for the functional metagenomics
255	analysis needed to improve our knowledge of host-microbiota interactions in MPP.
256	By aligning metagenomics data directly with the RMGC we have established,

257	researchers will be able to profile all microbial species, as well as explore microbial
258	functions in both known and unknown microbial species. The fact that microbial
259	assignment using the RMGC proved similar to that by 16S rRNA analysis also
260	suggests that the RMGC may be promising for taxonomic studies using our
261	constructed gene sets. Our data on the core microbial species of the OP microbiota in
262	healthy children will provide a reference for exploring microbial and host-
263	microorganism interactions in RM studies [25]. More generally, the RMGC provides
264	a comprehensive respiratory-associated microbial profile to further microbiota
265	analysis at the species level; functional profiling will facilitate further, more in-depth
266	multi-omics analyses [26, 27], such as associations between proteins products and
267	metabolites with known and novel microbial genomes. This capability would help to
268	clarify interactions between the host and alterations to the RM during the progression
269	of disease in MPP.
270	The OP microbiota of children with MPP has a simpler structure than that of
271	healthy children. Previous studies have revealed that the bacteria-like M. pneumoniae
272	is able to deplete levels of other bacteria through direct competition, and activates

273	bacterial clearance factors in host responses [28, 29]. This leads to decreased numbers
274	colonising Prevotella spp.[30] and reduced proliferation of pathogens such as S.
275	aureus and S. epidermidis. MPP patient-enriched genes have functions involved in
276	membrane transport and the metabolism of various nutrients, which may partly
277	explain the reduced tight junction proteins and increased respiratory mucosa
278	permeability after infection [31]. Several studies have also identified increased
279	glucose concentration in airway surface liquids [32-34] and associated pathogen
280	proliferation [35]. This also corroborate the existence of enriched nutrient uptake
281	pathways in the OP microbiota of children with MPP. Although the mechanism of M .
282	pneumoniae clearance in the respiratory system remains unclear, these findings would
283	provide new insights into host-microbiota interactions in MPP infection.
284	As well as a variety of well-known microorganisms, respiratory tracts also
285	harbour numerous undiscovered microbial species [36]. Moreover, recent reports have
286	demonstrated that a single bacterial genome can be recovered via reference gene sets
287	and metagenomics data [37, 38]. It is difficult to culture M. pneumoniae, thus it is
288	rarely done in clinical diagnosis, and this limits our understanding of antibiotic

289	resistance and virulence [39] in this species. Reconstruction of the M. pneumoniae
290	genome using the RMGC and metagenomics data has indicated the existence of
291	various ARGs related to RNA transcription [40], DNA replication [41] and protein
292	synthesis [42]. According to clinical practice guidelines [43-45], most children with
293	MPP are treated with azithromycin, erythromycin or sulbactam; none of these were
294	associated with ARGs identified in the M. pneumoniae genome. Increasingly, reports
295	demonstrate that specific dominant bacteria are associated with severe acute
296	respiratory infections (ARIs) [6, 46, 47], but there have been no meaningful
297	correlations identified between disease severity and M . pneumonia – or indeed
298	between the other species of reassembled bacteria found in the OP microbiota of
299	children with MPP. In our previous studies, we confirmed the succession of M .
300	pneumoniae infection in NP to OP and lung, and determined an association between
301	<i>M. pneumoniae</i> load in the lung microbiota with disease severity [14].
302	Although no macrolide/beta-lactam resistance genes were discovered in the M.
303	pneumoniae genome, one SNP mutation (23S RNA, 2063A->G) associated with
304	macrolide resistance was identified in children with MPP. Meanwhile, in

305	patient-enriched microbial genomes such as Ralstonia, plenty of ARGs related to
306	macrolide, beta-lactam and tetracycline resistance were found. Given rigorous
307	antibiotic selective pressure and complex microbial interactions, environmentally
308	redundant genetic components can be rapidly transferred into the pathogen genome by
309	horizontal gene transfer [48, 49], causing the emergence of several diseases, such as
310	happened in the European enterohemorrhagic Escherichia coli breakout [50] and the
311	emergence of scarlet fever caused by Streptococcus pyogenes in Hong Kong [51].
312	Considering these findings, it should be recognised that current regimes for the
313	treatment of M. pneumoniae hold the potential to trigger emerging drug-resistant
314	strains, whether in <i>M. pneumoniae</i> or other novel microbial species. Indeed,
315	macrolide resistance has already been reported in M. pneumoniae-PCR-positive
316	children [52–54].
317	In OP microbiota samples from healthy children, several bacterial genomes were
318	recovered, including the key player Prevotella spp. [55, 56], and several other novel
319	microorganisms, such as Vampirovibrio, which might function as pathogen

320 competitors [57]. Microbial genomes recovered from respiratory tracts hold the

321	potential to improve our understanding of the microbial aetiology in MPP pneumonia.
322	There are several limitations of this study. Given that there are currently no
323	effective medicines for MPP, the patients in our study received empirical treatments
324	that might have slightly shifted their airway ecology [58]. Despite promising
325	applications for the RMGC, unclassified CAGs and novel gene families in the RMGC
326	must be annotated and further explored. The copy numbers of several genes require
327	further assessment because of the potential for inaccuracies caused by the low
328	respiratory bacterial biomass, NGS sequencing and assembly methods. In this study,
329	the respiratory microbial samples were obtained from Chinese children; therefore, like
330	the continual updates made to the GM reference genes, metagenomics data from a
331	more diverse sample will be incorporated into the RMGC in the future to more
332	broadly characterise microbial components and functions [22, 59, 60]. This will
333	incrementally improve studies of the imbalanced RM in patients with respiratory
334	diseases. Alterations in the OP microbiota of Chinese patients with MPP will also
335	provide extensive insights into the microbial aetiology of acute respiratory infection.

337 Potential implications

338 The respiratory microbial gene catalogue established here will help to deepen 339 respiratory micro-ecology research, and has the potential to elucidate respiratory 340 microbial communities at the microbial species level. In addition, by aligning 341 metagenomics data with the reference catalogue, our work will facilitate assembly of 342 the genomes of novel microbial genera or species, allow exploration of microbial 343 functions and their associated microbial components, and allow the construction of 344 whole microbial networks within the respiratory microbial community. Established 345 reference gene sets can be employed to deepen multi-omics analysis, which will 346 further our understanding of host-microorganism interactions in acute respiratory 347 infection. One example of how these gene sets might be used is in the comparison of 348 the OP microbiota of healthy and diseased children.

349

350 Methods

351 Clinical detection of infectious pathogens

Broncho-alveolar lavage fluid was used to identify common microorganisms of the
microbiota. Culturing was conducted to detect *Streptococcus pneumoniae*, *H. influenzae*, *Moraxella catarrhalis*, *Staphylococcus aureus* and *Staphylococcus haemolyticus*. The D3 Ultra DFA Respiratory Virus Screening and ID Kit (Diagnostic

356	Hybrids, Inc., Athens, OH, USA) was used to detect common viruses, including
357	adenovirus (AdV), respiratory syncytial virus (RSV), influenza virus and
358	parainfluenza virus. Cytomegalovirus (CMV) and Epstein-Barr virus (EBV) were
359	detected using the Diagnostic Kit for Quantification of Human CMV DNA and EBV
360	Polymerase Chain Reaction (PCR) Fluorescence Quantitative Diagnostic Kit,
361	respectively (DaAnGene, Guangzhou, China). M. pneumoniae and Chlamydia
362	pneumonia were diagnosed using a diagnostic kit for M. pneumoniae DNA (PCR
363	Fluorescence Probing; DaAnGene) and Anti C. pneumoniae ELISA (IgM)
364	(EUROIMMUN AG, Lübeck, Germany), respectively.

366 **Construction and annotation of the RMGC**

Sequencing data were filtered using a previously reported method [61]. Samples with ≥ 650 Mbp data (Figure 1, Supplementary Figure 3) were selected for genome assembly using SOAPdenovo [62] (SOAPdenovo, RRID:SCR_010752, v2.07, -F -K 370 39 -M 3 -d 1). For samples with <650 Mbp data, data from the same respiratory site were mixed and assembled (Figure 1). Assembled contigs with ≥ 500 bps were

372	selected for gene prediction with MetaGeneMark [63] (v3.26, default parameters). We
373	applied Glimmer3.02 [64] (Glimmer, RRID:SCR_011931, default parameters) to
374	predict genes from the 1,384 respiratory bacterial genomes in the Integrated Microbial
375	Genomes and Microbiomes (IMG) database (2016-12-21 [65]). Gene sequences were
376	also retrieved from the genomes of 73 respiratory bacteria in the Pathosystems
377	Resource Integration Center (PATRIC) database (2017-3-25 [66]) and 450,204 open
378	reading frames (ORFs) of respiratory bacteria in Human Microbiome Project (HMP)
379	(2016-10-20 [67]). Genes with a length \geq 100 bp and without Ns (unidentified
380	nucleotides) were selected to construct non-redundant gene sets using CD-HIT [68]
381	(CD-HIT, RRID:SCR_007105, v4.66, -c 0.95 –aS 0.9). Genes with ≥ 2 mapped reads
382	were retained in the established RMGC.
383	Taxonomic annotation of genes was conducted as follows:
384	i) Bacterial and viral genome sequences were retrieved from IMG
385	(2016-12-21), PATRIC (2017-03-25) and National Center for
386	Biotechnology Information (NCBI) NT database (2016-08-09 [69]);. The
387	genome sequence with the longest N50 was selected as the representative

388	genome for each bacterial species. Non-redundant viral genomes were
389	produced by CD-HIT (v4.66, -aS 0.95 -aL 0.9 -M 0). Gene sets in the
390	RMGC were aligned to 6,869 representative bacterial genomes and
391	18,916 non-redundant viral DNA genomes using BLASTN (BLASTN,
392	RRID:SCR_001598, v2.5.0, default parameters except –e 0.01)
393	ii) The top 10% highest-scoring alignments of each gene were retained, with
394	\geq 65% identity and \geq 80% gene length coverage
395	iii) Assignment of each gene was determined based on ≥50% consensus
396	above the similarity threshold for a specific rank: $\geq 65\%$ for phylum, $\geq 85\%$
397	for genus and \geq 95% for species.
398	The functional annotation of each gene was determined by searching protein
399	sequences in the Kyoto Encyclopedia of Genes and Genomes (KEGG) (v78.1)
400	database and eggNOG (version 4.0) with BLASTP (BLASTP, RRID:SCR_001010,
401	v2.5.0, default parameters, except -e 1e-5). The best-hit alignment (identity \geq 30% and
402	coverage \geq 70%) was selected as the functional annotation for the gene. Genes without
403	annotations in KEGG were identified as novel gene families by the Markov Cluster

404 Algorithm (MCL) [70] (inflation factor=1.1, bit-score cut-off=60).

406	Comparing taxonomic assessments of 16S rRNA gene analysis and metagenomic
407	analysis
408	Seventy-two OP microbial samples with ≥650 Mb metagenomic sequencing data were
409	aligned to establish the RMGC to determine taxonomic assignments. The same
410	samples were also sequenced via the V3-V4 region of the 16S rRNA gene [13].
411	Microbial compositions obtained by these two methods were compared to assess the
412	accuracy of taxonomic assignments via metagenomic analysis.
413	
414	Rarefaction analysis
415	We downsized the number of mapped reads to 3 million per sample to eliminate
416	variable influence caused by the quantity of sequencing data. Estimation of total gene
417	richness was done by randomly sampling five individuals 1,000 times using gene
418	counting and Chao2 richness estimator [71].
419	To produce rarefaction curves of KEGG orthologous groups (KOs) and novel

420 gene families, saturation was evaluated by randomly sampling five individuals 1,000

421 times. Relative rarefaction curves were visualized using R software (v3.3.2).

422

423 Calculation of gene relative abundance in RMGC

- 424 Filtered reads of metagenomics data from each sample were aligned to the RMGC
- 425 using BWA (BWA, RRID:SCR_010910, v0.7.13, default parameters, except for the
- 426 mem and identity \geq 95%). Alignments meeting the following two criteria were
- 427 accepted: i) paired-end reads mapped onto the same gene with the correct insert size;
- 428 and ii) one end of a paired-reads was mapped onto the end of a gene, while the other
- 429 was located outside of the gene.
- 430 If the number of genes in a given sample was n, the relative abundance was
- 431 calculated using the following steps:
- 432 1. The copy number of the gene i(c(i)) was calculated as:
- 433 $c(i) = \frac{t(i)}{l(i)}$

434 where t(i) is the total number of mapped reads of gene *i* in a given sample, and l(i) is

the length of the gene *i*.

436 2. The relative abundance of gene $i (Ab_g(i))$ was defined as:

437
$$Ab_g(i) = \frac{c(i)}{\overset{n}{\underset{1}{\overset{n}{\bigcirc}}}c(i)}$$

438 3. If m genes can be assigned to the phylogenetic assignment s, the abundance of

439 this phylogenetic assignment $(Ab_p(s))$ was calculated using the following equation:

440
$$Ab_p(s) = \overset{m}{\overset{m}{\stackrel{}}{\stackrel{}}{a}} Ab_g(j)$$

441

442 **Phylogenetic and functional profile of the OP microbiome**

All filtered reads of the OP microbiota were aligned to the RMGC using BWA with
same parameters as described above. The relative abundance of each phylogenetic
assignment was calculated as shown above, while the abundance of KOs in the
functional profiling table was determined as described in a previous report [59].

448 Identification of core OP microbial species in healthy children

452 described using ggplot2 in R.

453

454 Comparison of the OP microbiota between healthy children and children with 455 MPP 456 Thirty-three healthy children were chosen, with a similar age distribution to that of 457 the 34 children with MPP (data size ≥650 Mbp). Genes in the OP microbiota of 458 selected microbial samples were clustered into co-abundance gene groups (CAGs) via 459 Capony-based algorithms [72] (default parameters). Selected CAGs containing more 460 than 700 genes were regarded as being derived from the same bacterial genome and 461 were selected to construct a correlation network using Spearman's rank coefficient 462 (\leq -0.6 or \geq 0.6). The co-occurrence network was visualized using Cytoscape (v3.4.0) 463 [73]. If \geq 50% of the included genes had consensus phylogenetic annotations, the 464 corresponding CAG was assigned to a related microbial taxonomic assignment. 465 The relative abundance of each CAG in our microbial samples was calculated as 466 previously reported [60]. Intergroup comparisons between CAGs and KEGG

467 functions were performed using the two-tailed Wilcoxon rank-sum test and corrected

468	via the Benjamini-Hochberg method (adjusted <i>P</i> -value ≤ 0.05). Confounding factors
469	including pneumonia, sex, age, delivery mode and feed pattern were also assessed
470	using permutational analysis of variance (PERMANOVA) by vegan package (v2.3-4)
471	in R.
472	
473	Single microbial genome assembly from OP metagenomic data
474	OP metagenomic data were aligned to the filtered CAGs (those containing ≥700 genes)
475	by BWA (v0.7.13, identity \geq 95%). The mapped reads of each CAG were extracted for
476	microbial genome assembly with Velvet [74] (Velvet, RRID:SCR_010755, kmer:
477	from 45 to 75, cov_cutoff: auto, exp_cov: auto). The assembled sequences with the
478	longest contig N50 were selected as representative draft genomes. Assembly quality
479	was assessed using the following six criteria [24]: (i) 90% of the genome assembly
480	included in contigs >500 bp; (ii) 90% of the assembled bases at >5× read coverage;
481	(iii) contig N50 >5 kb; (iv) scaffold N50 >20 kb; (v) average contig length >5 kb; and
482	(vi) >90% of core genes present in the assembly. Fourteen draft microbial genomes
483	passed five or six of these criteria (Supplementary Table 3). The assembly quality

484	estimation standard published by the Genomic Standards Consortium (GSC) was then
485	applied (Supplementary Table 3) [75]. The microbial species designation of 14
486	assembled genome sequences followed these standards: 1) concordance with
487	taxonomical assignment of CAGs [72]; 2) aligned to the genome sequences published
488	by IMG, NCBI and PATRIC via BLASTN (v2.5.0, default parameters except –e 0.01),
489	with \geq 95% nucleotide identity and \geq 95% genome coverage; and 3) assigned by
490	CheckM (CheckM, RRID:SCR_016646, v1.0.12, default parameters) from the
491	Genome Taxonomy database [76]. Furthermore, gene prediction was executed with
492	Glimmer3.02 (Glimmer, RRID:SCR_011931), while related annotations of antibiotic
493	resistance and virulence genes were acquired through CARD [77] and VFDB [78].
494	The SNP mutation associated with macrolide resistance of <i>M. pneumoniae</i> was
495	identified by mapping sequencing reads against 23S rRNA genes [79] using BWA.
496	
497	Correlations between reassembled microbial genomes and disease severity in
498	MPP patients

499 The correlation between reconstructed microbial genomes and hospitalization

500	duration and fever peak was assessed using R software, a well as serum CRP, PCT
501	and eosinophil levels at 24 hours after hospitalization. The distributions of relative
502	abundance of 14 reassembled genomes in children ith MPP and healthy children were
503	showed via scatter plot.
504	
505	Availability of supporting data and materials
506	The BioProject ID for this study is PRJNA413615. The sequencing data supporting
507	the results of this article are available in the GenBank repository under accession
508	number SRP119571. The gene profiles are freely accessible on RMGC database [20].
509	All supporting data and materials are available in the GigaScience GigaDB database
510	[80].
511	
512	Declarations
513	List of abbreviations
514	AdV, Adenovirus; ARI, Acute respiratory infection; BALF, Broncho-alveolar lavage
515	fluid; CAG, Co-abundance gene group; CMV, Cytomegalovirus; EBV, Epstein-Barr

516	virus; GM, Gut microbiome; KEGG: Kyoto Encyclopedia of Genes and Genomes;
517	KO, KEGG orthologous group; MCL, Markov cluster algorithm; NP, Nasopharynx;
518	OP, Oropharynx; ORF, Open reading frame; PCA, Principal component analysis; PCR,
519	Polymerase chain reaction; PERMANOVA, Permutational multivariate analysis of
520	variance analysis; PP, Paediatric pneumonia; RM, Respiratory microbiome; RMGC,
521	Respiratory microbial gene catalogue; RSV, Respiratory syncytial virus.
522	
523	Ethics approval
524	Ethical approval for this study was obtained from the Ethical Committee of Shenzhen
525	Children's Hospital (Shenzhen, Guangdong Province, China) under registration
526	number 2016013. All experiments were performed under the relevant guidelines and
527	regulations. Guardians of all children included in this study provided their informed
528	consent to participate.
529	
530	Consent for publication

All authors have given their consent to publish the manuscript.
533 **Competing interests**

534 The authors declare no that they have no competing interests.

535

536 Funding

- 537 This study was supported by grants from the Key Medical Disciplines Building
- 538 Project of Shenzhen (grant number SZXJ2017005), the Sanming Project of Medicine
- in Shenzhen (grant number SZSM201512030), the Shenzhen Science and Technology
- 540 Project (grant numbers JCYJ20170303155012371 and JCYJ20170816170527583),
- and the Guangdong Medical Research Fund (grant number A2017213).

542

543 Author contributions

- 544 Y.Z., Y.Y. and K.Z. managed the project. Z.L., G.X. and Y.B. collected samples and
- 545 information. W.W. and Q.Y. prepared the DNA extraction. D.L., Q.Z., X.F. and Z.Y.
- 546 performed the bioinformatics analysis. C.Q., Y.L. and Y.L. optimized the graphs. X.X.
- 547 and M.L. optimized the data curation. S.L. and Y.Y. guided data interpretation. X.F.

548	developed the website. H.W. and W.D. mined the data and wrote the paper. K.S. and
549	K.Y. polished the article. All authors read and approved the final version of the
550	manuscript.
551	
552	Acknowledgements
553	We thank members of the Collaborating Group of Pediatric Respiratory Microbiome,
554	Chinese Pediatric Society and Chinese Medical Association, for their suggestions.
555	
556	Author information
557	Y.Y. is a Russian academician of paediatric and vaccine research. Y.Z is Director of
558	the Respiratory Disease Department at Shenzhen Children's Hospital, China. S.L is a
559	professor in the Department of Computer Science at the City University of Computer
560	Science, Hong Kong. K.Z is a professor at Wuhan National Laboratory for
561	Optoelectronics, Huazhong University of Science and Technology, China.
562	

References

564	1.	Stearns JC, Davidson CJ, McKeon S, Whelan FJ, Fontes ME, Schryvers AB,
565		et al. Culture and molecular-based profiles show shifts in bacterial
566		communities of the upper respiratory tract that occur with age. ISME J. 2015;
567		9: 1268.
568	2.	Biesbroek G, Tsivtsivadze E, Sanders EA, Montijn R, Veenhoven RH, Keijser
569		BJ, et al. Early respiratory microbiota composition determines bacterial
570		succession patterns and respiratory health in children. Am J Respir Crit Care
571		Med. 2014; 190: 1283-92.
572	3.	Biesbroek G, Bosch AA, Wang X, Keijser BJ, Veenhoven RH, Sanders EA, et
573		al. The impact of breastfeeding on nasopharyngeal microbial communities in
574		infants. Am J Respir Crit Care Med. 2014; 190: 298-308.
575	4.	Bosch AA, de Steenhuijsen Piters WA, van Houten MA, Chu M, Biesbroek G,
576		Kool J, et al. Maturation of the infant respiratory microbiota, environmental
577		drivers and health consequences: a prospective cohort study. Am J Respir Crit
578		Care Med. 2017; 196: 1582-90.
579	5.	Charlson ES, Bittinger K, Haas AR, Fitzgerald AS, Frank I, Yadav A, et al.

580		Topographical continuity of bacterial populations in the healthy human
581		respiratory tract. Am J Respir Crit Care Med. 2011; 184: 957-63.
582	6.	de Steenhuijsen Piters WA, Huijskens EG, Wyllie AL, Biesbroek G, van den
583		Bergh MR, Veenhoven RH, et al. Dysbiosis of upper respiratory tract
584		microbiota in elderly pneumonia patients. ISME J. 2016; 10: 97-108.
585	7.	Sakwinska O, Bastic Schmid V, Berger B, Bruttin A, Keitel K, Lepage M, et al.
586		Nasopharyngeal microbiota in healthy children and pneumonia patients. J Clin
587		Microbiol. 2014; 52: 1590-4.
588	8.	Prina E, Ranzani OT, Torres A. Community-acquired pneumonia. Lancet.
589		2015; 386: 1097-108.
590	9.	Musher DM, Thorner AR. Community-acquired pneumonia. N Engl J Med.
591		2014; 371 : 1619-28.
592	10.	Liu L, Oza S, Hogan D, Perin J, Rudan I, Lawn JE, et al. Global, regional, and
593		national causes of child mortality in 2000-13, with projections to inform
594		post-2015 priorities: an updated systematic analysis. Lancet. 2015; 385:
595		430-40.

- 596 11. Dagan R, Bhutta ZA, de Quadros CA, Garau J, Klugman KP, Khuri-Bulos N,
- 597 *et al.* The remaining challenge of pneumonia: the leading killer of children.
- 598 Pediatr Infect Dis J. 2011; 30: 1-2.
- 599 12. Qin Q, Baoping Xu, Liu X, Shen K. Status of Mycoplasma pneumoniae
- 600 pneumonia in chinese children: a systematic review. Advances in
- 601 Microbiology. 2014; 4: 704-11.
- 602 13. Lu Z, Dai W, Liu Y, Zhou Q, Wang H, Li D, et al. The alteration of
- nasopharyngeal and oropharyngeal microbiota in children with MPP and
 non-MPP. Genes (Basel). 2017; 8.
- 605 14. Dai W, Wang H, Zhou Q, Feng X, Lu Z, Li D, *et al.* The concordance between
- 606 upper and lower respiratory microbiota in children with Mycoplasma
- 607 pneumoniae pneumonia. Emerg Microbes Infect. 2018; 7: 92.
- 608 15. Hasegawa K, Mansbach JM, Ajami NJ, Espinola JA, Henke DM, Petrosino JF,
- 609 *et al.* Association of nasopharyngeal microbiota profiles with bronchiolitis
- 610 severity in infants hospitalised for bronchiolitis. Eur Respir J. 2016; 48:
- 611 1329-39.

612	16.	de Steenhuijsen Piters WA, Heinonen S, Hasrat R, Bunsow E, Smith B,
613		Suarez-Arrabal MC, et al. Nasopharyngeal microbiota, host transcriptome,
614		and disease severity in children with respiratory syncytial virus infection. Am
615		J Respir Crit Care Med. 2016; 194: 1104-15.
616	17.	Pettigrew MM, Gent JF, Kong Y, Wade M, Gansebom S, Bramley AM, et al.
617		Association of sputum microbiota profiles with severity of
618		community-acquired pneumonia in children. BMC Infect Dis. 2016; 16: 317.
619	18.	Vissing NH, Chawes BL, Bisgaard H. Increased risk of pneumonia and
620		bronchiolitis after bacterial colonization of the airways as neonates. Am J
621		Respir Crit Care Med. 2013; 188: 1246-52.
622	19.	Mika M, Mack I, Korten I, Qi W, Aebi S, Frey U, et al. Dynamics of the nasal
623		microbiota in infancy: a prospective cohort study. J Allergy Clin Immunol.
624		2015; 135 : 905-12.e11.
625	20.	The Respiratory Microbial Gene Catalogue database.
626		https://rmgc.deepomics.org. Accessed 2017
627	21.	Zhang R, Wang H, Deng J. A 4-Year-Old Girl With Progressive Cough and

628		Abnormal Blood Smear. Clinical Infectious Diseases. 2017; 64: 1630–31.
629	22.	Li J, Jia H, Cai X, Zhong H, Feng Q, Sunagawa S, et al. An integrated catalog
630		of reference genes in the human gut microbiome. Nat Biotechnol. 2014; 32:
631		834-41.
632	23.	Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, et al. A metagenome-wide association
633		study of gut microbiota in type 2 diabetes. Nature. 2012; 490: 55-60.
634	24.	Zhang C, Yin A, Li H, Wang R, Wu G, Shen J, et al. Dietary modulation of gut
635		microbiota contributes to alleviation of both genetic and simple obesity in
636		children. EBioMedicine. 2015; 2: 968-84.
637	25.	Rosas-Salazar C, Shilts MH, Tovchigrechko A, Schobel S, Chappell JD,
638		Larkin EK, et al. Differences in the nasopharyngeal microbiome during acute
639		respiratory tract infection with human rhinovirus and respiratory syncytial
640		virus in infancy. J Infect Dis. 2016; 214: 1924-28.
641	26.	Stewart CJ, Mansbach JM, Wong MC, Ajami NJ, Petrosino JF, Camargo CAJ,
642		et al. Associations of nasopharyngeal metabolome and microbiome with
643		severity among infants with bronchiolitis: a multi-omic analysis. Am J Respir

644 Crit Care Med. 2017; 196: 882-91.

645	27.	Quinn RA. Integrating microbiome and metabolome data to understand
646		infectious airway disease. Am J Respir Crit Care Med. 2017; 196: 806-07.
647	28.	Yang J, Hooper WC, Phillips DJ, Talkington DF. Cytokines in Mycoplasma
648		pneumoniae infections. Cytokine Growth Factor Rev. 2004; 15: 157-68.
649	29.	Peteranderl C, Sznajder JI, Herold S, Lecuona E. Inflammatory responses
650		regulating alveolar ion transport during pulmonary infections. Front Immunol.
651		2017; 8 : 446.
652	30.	Miller SI, Ernst RK, Bader MW. LPS, TLR4 and infectious disease diversity.
653		Nat Rev Microbiol. 2005; 3: 36-46.
654	31.	Patkee WR, Carr G, Baker EH, Baines DL, Garnett JP. Metformin prevents the
655		effects of Pseudomonas aeruginosa on airway epithelial tight junctions and
656		restricts hyperglycaemia-induced bacterial growth. J Cell Mol Med. 2016; 20:
657		758-64.
658	32.	Hewitt R, Webber J, Farne H, Trujillo-Torralbo M-B, Footitt J, Molyneaux PL,
659		et al. Airway glucose in virus-induced COPD exacerbations. Am J Respir Crit

660 Care Med. 2016; 192: A6323.

- 661 33. Garnett JP, Nguyen TT, Moffatt JD, Pelham ER, Kalsi KK, Baker EH, et al.
- 662 Proinflammatory mediators disrupt glucose homeostasis in airway surface
- 663 liquid. J Immunol. 2012; 189: 373-80.
- 664 34. Kalsi KK, Baker EH, Fraser O, Chung YL, Mace OJ, Tarelli E, et al. Glucose
- homeostasis across human airway epithelial cell monolayers: role of diffusion,

transport and metabolism. Pflugers Arch. 2009; 457: 1061-70.

- 667 35. Philips BJ, Redman J, Brennan A, Wood D, Holliman R, Baines D, et al.
- 668 Glucose in bronchial aspirates increases the risk of respiratory MRSA in
- intubated patients. Thorax. 2005; 60: 761-4.
- 670 36. Man WH, de Steenhuijsen Piters WA, Bogaert D. The microbiota of the
- 671 respiratory tract: gatekeeper to respiratory health. Nat Rev Microbiol. 2017;
- 672 15**:** 259-70.
- 673 37. Ji P, Zhang Y, Wang J, Zhao F. MetaSort untangles metagenome assembly by
- 674 reducing microbial community complexity. Nat Commun. 2017; 8: 14306.
- 675 38. Olm MR, Brown CA-O, Brooks B, Banfield JF. dRep: a tool for fast and

676		accurate genomic comparisons that enables improved genome recovery from
677		metagenomes through de-replication. ISME J. 2017; 11: 2864-68.
678	39.	Saraya T, Kurai D, Nakagaki K, Sasaki Y, Niwa S, Tsukagoshi H, et al. Novel
679		aspects on the pathogenesis of Mycoplasma pneumoniae pneumonia and
680		therapeutic implications. Front Microbiol. 2014; 5: 410.
681	40.	Floss HG, Yu TW. Rifamycin-mode of action, resistance, and biosynthesis.
682		Chem Rev. 2005; 105: 621-32.
683	41.	Nesar S, MH. S, Rahim N, Rehman R. Emergence of resistance to
684		fluoroquinolones among gram positive and gram negative clinical isolates.
685		Pak J Pharm Sci. 2012; 25: 877-81.
686	42.	Axelsen PH. A chaotic pore model of polypeptide antibiotic action. Biophys J.
687		2008; 94 : 1549-50.
688	43.	Harris M, Clark J, Coote N, Fletcher P, Harnden A, McKean M, et al. British
689		Thoracic Society guidelines for the management of community acquired
690		pneumonia in children: update 2011. Thorax. 2011; 66 Suppl 2: ii1-23.
691	44.	Bradley JS, Byington CL, Shah SS, Alverson B, Carter ER, Harrison C, et al.

692		The management of community-acquired pneumonia in infants and children
693		older than 3 months of age: clinical practice guidelines by the Pediatric
694		Infectious Diseases Society and the Infectious Diseases Society of America.
695		Clin Infect Dis. 2011; 53: e25-76.
696	45.	Lee H, Yun KW, Lee HJ, Choi EH. Antimicrobial therapy of
697		macrolide-resistant Mycoplasma pneumoniae pneumonia in children. Expert
698		Rev Anti Infect Ther. 2018; 16: 23-34.
699	46.	Hasegawa K, Mansbach JM, Ajami NJ, Espinola JA, Henke DM, Petrosino JF,
700		et al. Association of nasopharyngeal microbiota profiles with bronchiolitis
701		severity in infants hospitalised for bronchiolitis. Eur Respir J. 2016; 48:
702		1329-39.
703	47.	Hasegawa K, Linnemann RW, Mansbach JM, Ajami NJ, Espinola JA,
704		Petrosino JF, et al. Nasal airway microbiota profile and severe bronchiolitis in
705		infants: a case-control study. Pediatr Infect Dis J. 2017; 36: 1044-51.
706	48.	Citti C, Dordet-Frisoni E, Nouvel LX, Kuo CH, Baranowski E. Horizontal
707		gene transfers in Mycoplasmas (Mollicutes). Curr Issues Mol Biol. 2018; 29:

708	3-22.
-----	-------

709	49.	Xiao L, Ptacek T, Osborne JD, Crabb DM, Simmons WL, Lefkowitz EJ, et al.
710		Comparative genome analysis of Mycoplasma pneumoniae. BMC Genomics.
711		2015; 16: 610.
712	50.	Rohde H, Qin J, Cui Y, Li D, Loman NJ, Hentschke M, et al. Open-source
713		genomic analysis of Shiga-toxin-producing E. coli O104:H4. N Engl J Med.
714		2011; 365 : 718-24.
715	51.	Davies MR, Holden MT, Coupland P, Chen JH, Venturini C, Barnett TC, et al.
716		Emergence of scarlet fever Streptococcus pyogenes emm12 clones in Hong
717		Kong is associated with toxin acquisition and multidrug resistance. Nat Genet.
718		2015; 47: 84-7.
719	52.	Kutty PK, Jain S, Taylor TH, Bramley AM, Diaz MH, Ampofo K, et al.
720		Mycoplasma pneumoniae among children hospitalized with
721		community-acquired pneumonia. Clin Infect Dis. 2019; 68: 5-12.
722	53.	Blyth CC, Gerber JS. Macrolides in children with community-acquired
723		pneumonia: panacea or placebo? J Pediatric Infect Dis Soc. 2018; 7: 71-77.

724	54.	Yang D, Chen L, Chen ZA-O. The timing of azithromycin treatment is not
725		associated with the clinical prognosis of childhood Mycoplasma pneumoniae
726		pneumonia in high macrolide-resistant prevalence settings. PLoS One. 2018;
727		13 : e0191951.
728	55.	Larsen JM, Musavian HS, Butt TM, Ingvorsen C, Thysen AH, Brix S. Chronic
729		obstructive pulmonary disease and asthma-associated Proteobacteria, but not
730		commensal Prevotella spp., promote Toll-like receptor 2-independent lung
731		inflammation and pathology. Immunology. 2015; 144: 333-42.
732	56.	Segal LN, Clemente JC, Tsay JC, Koralov SB, Keller BC, Wu BG, et al.
733		Enrichment of the lung microbiome with oral taxa is associated with lung
734		inflammation of a Th17 phenotype. Nat Microbiol. 2016; 1: 16031.
735	57.	de Dios Caballero J, Vida R, Cobo M, Maiz L, Suarez L, Galeano J, et al.
736		Individual patterns of complexity in cystic fibrosis lung microbiota, including
737		predator bacteria, over a 1-year period. MBio. 2017; 8: e00959-17.
738	58.	Maier L, Pruteanu M, Kuhn M, Zeller G, Telzerow A, Anderson EE, et al.
739		Extensive impact of non-antibiotic drugs on human gut bacteria. Nature. 2018;

740555: 623-28.

741	59.	Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A
742		human gut microbial gene catalogue established by metagenomic sequencing.
743		Nature. 2010; 464: 59-65.
744	60.	Lloyd-Price J, Mahurkar A, Rahnavard G, Crabtree J, Orvis J, Hall AB, et al.
745		Strains, functions and dynamics in the expanded Human Microbiome Project.
746		Nature. 2017; 550: 61-66.
747	61.	Yan L, Yang M, Guo H, Yang L, Wu J, Li R, et al. Single-cell RNA-Seq
748		profiling of human preimplantation embryos and embryonic stem cells. Nat
749		Struct Mol Biol. 2013; 20: 1131-9.
750	62.	Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, et al. SOAPdenovo2: an
751		empirically improved memory-efficient short-read de novo assembler.
752		Gigascience. 2012; 1: 18.
753	63.	Zhu W, Lomsadze A, Borodovsky M. Ab initio gene identification in
754		metagenomic sequences. Nucleic Acids Res. 2010; 38: e132.
755	64.	Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes

756		and endosymbiont DNA with Glimmer. Bioinformatics. 2007; 23: 673-9.
757	65.	Integrated Microbial Genomes and Microbiomes (IMG) database.
758		https://img.jgi.doe.gov/. Accessed 21 Dec 2016.
759	66.	Pathosystems Resource Integration Center (PATRIC) database.
760		https://www.patricbrc.org/. Accessed 25 Mar 2017.
761	67.	Human Microbiome Project (HMP). <u>https://portal.hmpdacc.org/</u> . Accessed 20
762		Oct 2016.
763	68.	Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets
764		of protein or nucleotide sequences. Bioinformatics. 2006; 22: 1658-9.
765	69.	National Center for Biotechnology Information (NCBI) NT database.
766		ftp://ftp.ncbi.nlm.nih.gov/. Accessed 17 Aug 2016.
767	70.	Enright AJ, Van Dongen S, Ouzounis CA. An efficient algorithm for
768		large-scale detection of protein families. Nucleic Acids Res. 2002; 30:
769		1575-84.
770	71.	Chao A. Estimating the population size for capture-recapture data with
771		unequal catchability. Biometrics. 1987; 43: 783-91.

772	72.	Nielsen HB, Almeida M, Juncker AS, Rasmussen S, Li J, Sunagawa S, et al.
773		Identification and assembly of genomes and genetic elements in complex
774		metagenomic samples without using reference genomes. Nat Biotechnol. 2014;
775		32: 822-8.
776	73.	Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al.
777		Cytoscape: a software environment for integrated models of biomolecular
778		interaction networks. Genome Res. 2003; 13: 2498-504.
779	74.	Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly
780		using de Bruijn graphs. Genome Res. 2008; 18: 821-9.
781	75.	Bowers RM, Kyrpides NC, Stepanauskas R. Minimum information about a
782		single amplified genome (MISAG) and a metagenome-assembled genome
783		(MIMAG) of bacteria and archaea. 2017; 35: 725-31.
784	76.	Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil PA,
785		et al. A standardized bacterial taxonomy based on genome phylogeny
786		substantially revises the tree of life. Nat Biotechnol. 2018; 36: 996-1004.
787	77.	Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P, Tsang KK, et al. CARD

788		2017: expansion and model-centric curation of the comprehensive antibiotic
789		resistance database. Nucleic Acids Res. 2017; 45: D566-D73.
790	78.	Chen L, Zheng D, Liu B, Yang J, Jin Q. VFDB 2016: hierarchical and refined
791		dataset for big data analysis10 years on. Nucleic Acids Res. 2016; 44:
792		D694-7.
793	79.	Ji M, Lee NS, Oh JM, Jo JY, Choi EH, Yoo SJ, et al. Single-nucleotide
794		polymorphism PCR for the detection of Mycoplasma pneumoniae and
795		determination of macrolide resistance in respiratory samples. J Microbiol
796		Methods. 2014; 102: 32-6.
797	80.	Dai W; Wang H; Li D; Zhou Q; Feng X; Yang Z; Wang W; Qiu C; Lu Z; Xu X;
798		Lyu M; Xie G; Li Y; Bao Y; Liu Y; Shen K; Yao K; Feng X; Yang Y; Li S;
799		Zhou K; Zheng Y (2019): Supporting data for "The integrated respiratory
800		microbial gene catalogue facilitate the understanding of microbial aetiology in
801		Mycoplasma pneumoniae pneumonia" GigaScience Database.
802		http://dx.doi.org/10.5524/100620

804 Tables

Table 1. Sample information

	Pneumonia patients	Healthy children	
	(n=76)	(n=171)	
Gender			
Female	24	87	
Male	52	84	
Age (years)	2.9 (0.2–12.7)	4.3 (0.1–8.9)	
Sampling site			
OP	75	171	
NP	42	-	
Lung	46	-	
Delivery mode			
Vaginally born	46	102	
Caesarean section	30	69	
Feeding pattern			
Breast	48	84	
Breast + milk	12	66	
Milk	16	21	
Family history of allergy	1	-	
History of pneumonia	14	-	
Asthma	-	-	
Clinical symptoms			
Lung consolidation,	76	NIA	
atelectasis, infiltration	/0	NA	
Fever	44	-	
Cough	72	-	
Wheezing	20	-	
Hospitalization time (days)	9 (2–37)	-	
CRP (<0.499 mg/l)	22	NA	

PCT (<0.5 ng/ml)	73	NA
Eosinophils (0.5–5%)	44	NA

-, no detection result; NA, not available; CRP, C-response protein; PCT, procalcitonin
807

808 Figure Legends

809	Figure 1. Construction of the human Respiratory Microbial Gene Catalogue.
810	Genome assembly was performed for each sample with \geq 650 Mbp of data. For
811	samples with <650 Mbp of data, data from the same respiratory site (NP, OP or lung)
812	were mixed and assembled. Gene predictions were conducted for all assembled
813	contigs with \geq 500 bp and respiratory bacterial genomes in the Integrated Microbial
814	Genomes and Microbiomes (IMG) database. Genes with ≥ 100 bp were retained.
815	Respiratory gene sets from the Human Microbiome Project (HMP) and Pathosystems
816	Resource Integration Center (PATRIC) were combined to construct the
817	non-redundant Respiratory Microbial Gene Catalogue (RMGC) containing 2,245,343
818	genes.
819	

820 Figure 2. Rarefaction curves for genes and KEGG orthologous groups/gene
821 families.

822 **a**) Rarefaction curve for gene count.

823 **b**) Rarefaction curve for Chao2. The Respiratory Microbial Gene Catalogue (RMGC) 824 captured 90.52% of the prevalent genes. 825 c) Rarefaction curve for KEGG (Kyoto Encyclopedia of Genes and Genomes) 826 orthologous groups/gene families. Known functions saturate quickly to 6,346 groups. 827 After including novel gene families, the rarefaction curve plateaus when 12,924 828 groups are detected. Boxes represent the interquartile ranges (IQRs) between the first 829 and third quartiles and the line inside the box represents the median value. Whiskers 830 represent the lowest or highest values within values 1.5 times the IQR from the first 831 or third quartiles. Circles represent data points located outside of the whiskers. 832 833 Figure 3. Core microbial species in healthy OP microbiota. 834 Upper bar plot represents the prevalence of each core species; lower box plot shows 835 the relative abundance of each core species. Different colours refer to different phyla. 836

837 Figure 4. Differentiation of oropharyngeal microbial samples between healthy

838 children and children with *Mycoplasma pneumoniae* pneumonia.

- a) Gene counts in the oropharyngeal (OP) microbiotas of healthy children and
- 840 children with *Mycoplasma pneumoniae* pneumonia (MPP).
- b) Alpha diversity of the OP microbiota in healthy children and children with MPP.
- 842 Boxes represent the interquartile ranges (IQRs) between the first and third quartiles
- and the line inside the box represents the median. Whiskers represent the lowest or
- highest values within values 1.5 times the IQR from the first or third quartiles. Points
- represent data located outside of the whiskers. *** $P \le 0.001$.
- 846

Figure 5. Phylogenetic and functional alterations in children with pneumonia.

b) X-axis represents level 2 functional categories in the Kyoto Encyclopedia of Genes

854	and Genomes (KEGG); colours of the characters represent level 1 functional
855	categories (listed on the right) Y-axis shows the relative abundance of level 2
856	functional categories. Adjusted P-values at *, ≤ 0.05 ; **, ≤ 0.01 ; and ***, ≤ 0.001 ,
857	respectively.
858	
859	Figure 6. Virulence factor genes and antibiotic resistance genes on the
860	Mycoplasma pneumoniae genome.
861	Tracks from outside to inside represent antibiotic resistance genes (ARGs), genes on
862	the plus strand, genes on the negative strand and GC skew, respectively. Virulence
863	factor genes (VFGs) painted with different colours refer to the different types of
864	VFGs.
865	
866	Figure 7. Comparison of relative abundance of 14 re-assembled genomes
867	between healthy children and children with Mycoplasma pneumoniae pneumonia.
868	Blue circles and red triangles represent the microbial relative abundance of healthy
869	children and children with Mycoplasma pneumoniae pneumonia (MPP). Solid dot and

- 870 paired whiskers represent the mean and SD of each microbial relative abundance.
- P-values at *, ≤ 0.05 ; **, ≤ 0.01 ; and ***, ≤ 0.001 , respectively. NS, not significant.

Figure 2

Click here to access/download;Figure;Figure 3.pdf ±

Prevalence

Relative

abundance

Figure 7

Click here to access/download;Figure;Figure 7.pdf ±

Supplemental Material Legends

Click here to access/download Supplementary Material Supplemental material legends.docx Supplementary Figure 1

Click here to access/download Supplementary Material Supplementary Figure 1.pdf Supplementary Figure 2

Click here to access/download Supplementary Material Supplementary Figure 2.pdf Supplementary Figure 3

Click here to access/download Supplementary Material Supplementary Figure 3.pdf Supplementary Table 1

Click here to access/download Supplementary Material Supplementary Table 1.xlsx Supplementary Table 2

Click here to access/download Supplementary Material Supplementary Table 2.xlsx
Click here to access/download Supplementary Material Supplementary Table 3.xlsx

Click here to access/download Supplementary Material Supplementary Table 4.xlsx

Click here to access/download Supplementary Material Supplementary Table 5.xlsx

Click here to access/download Supplementary Material Supplementary Table 6.xlsx