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SUPPLEMENTARY FIGURES 

 

Supplementary Figure 1. Standardized workflow for phenotyping of the adult 
mouse brain (a) The experimental procedure consists of five main steps. Each brain 
is fixed in 10% buffered formalin for at least 48 hours and trimmed for paraffin 
embedding (step 1). Careful and precise sectioning is a prerequisite in this protocol, 
sections must be symmetrical and match well defined anatomical features (step 2). 
Then, each section is double-stained using Nissl (violet) for neurons and Luxol (blue) 
for myelin, generating a color contrast between white and grey matter (step 3). Whole 
slides are scanned using a digital slide Hamamatsu Nanozoomer scanner (2.0HT 
C9600 series), producing whole brain images at cell-level resolution (step 4). Finally, 
the data is collected using a set of 85 experimental co-variates (Supplementary Data 
3) and 118 brain parameters (Supplementary Data 4; Supplementary Fig. 2), and 
extensive quality control checks and critical evaluation of the entire dataset are carried 
out (step 5). (b) Classification of affected structures based on percentage change 
(absolute value) relative to WTs as mild, moderate, severe or very severe. For more 
details, see Supplementary Notes. 
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Supplementary Figure 2. Assessed neuroanatomical parameters A total of 118 
brain parameters were quantified across three stereotactically defined coronal sections 
and one sagittal section (descriptive statistics in Supplementary Data 4). 40, 22, 41, 
and 15 parameters are measured at Lateral 0.60mm, Bregma +0.98mm, Bregma -
1.34mm, and Bregma -5.80mm, respectively. Numbers correspond to established 
neuroanatomical structures and are occasionally broken down in several 
measurements, for example, the hippocampus is characterized by 8 independent 
measurements at Lateral 0.6mm. 
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Supplementary Figure 3. Database (a) 
Relational database design and quality control 
interface. The general design of the database 
(dark grey box) consists of nine tables each 
containing a primary key. Only the main 
relationships are indicated using E-R diagram 
conventions (O: zero, -: one, <: many). A 
navigation bar on each layout and table was 
designed according to the workflow (dotted 
arrows) of the histological pipeline to enhance 
the user interface. The database is able to 
interact with its environment through a 
combination of FileMaker and other software 
(ImageJ and R) scripts. (b) As part of the 
quality control tools for management purposes, 
this screen capture shows the percentage of 
critical sectioning achieved by batches of brain 
sections. Similar graphs are produced for other 
quality control checks such as staining quality, 
brain symmetry and image quality. The list of 
lab members who have prepared the samples 
may be listed on screen (but not shown here) 
allowing troubleshooting if quality falls below 
acceptable standards. (c) A screen shot of a 
data curation process. A FileMaker Pro script 
detects all data points falling outside the 1.2 
interquartile range (IQR) for a given batch or 
project (user definable) for all or a subset of 
parameters and flags the suspicious measures 
unless it has been manually validated 
previously. The user may then validate each 
flagged outlier by the click of a button, which 
activates an ImageJ macro opening the picture 
analyzed and the ROIs (regions of interest), 
which need verification. If changes are made to 
the ROI, the new ROI coordinates are saved 
together with new measures in the database. 
(d) Implementation of Student’s t-tests within 
the FileMaker Pro relational database	
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Supplementary Figure 4. Neuroanatomical correlation matrices and t-SNE (a) T-
SNE clusters: t-Distributed Stochastic Neighbor Embedding 2D-map based on 
phenotypic similarities in WTs. (b-d) Pearson correlations between brain parameters 
in WTs. (b) Difference matrix of TBA normalized Pearson correlation coefficients 
subtracted from non-normalized WTs (upper triangle), and Pearson correlation 
coefficients from non-normalized WTs (lower triangle). Parameters are from coronal 
sections only (largest data set) at Bregma +0.98mm and -1.34mm. (c) Top one 
hundred correlations between brain parameters in WTs shown on a chord diagram. 
Parameters are displayed around the circle, separated into 2 sections (green indicates 
section 1 at Bregma +0.98mm and orange section 2 at Bregma -1.34mm). (d) Top one 
hundred correlations from TBA normalized Pearson correlation coefficients subtracted 
from non-normalized WTs. Blue and red arcs/boxes denote positive or negative 
correlations, respectively. The strength of the correlation is color-coded. Acronyms are 
described in Supplementary Data 4. 
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Supplementary Figure 5. Quality control, statistical pipeline and model 
validation (a) Image quality control. Top: Brain image that matches perfectly the 
defined position at Bregma -1.34mm and is symmetrical. Middle: Brain image that is 
not critical at a distance of 120µm posterior to the critical section. Bottom: Brain image 
that is critical on the right hemisphere, but not on the left hemisphere revealing a small 
asymmetry of about 60µm anterior to the critical section. (b) Data quality control was 
performed using a standardized framework. Data were first checked for outliers falling 
outside a 1.2 IQR rule. For each gene and parameter, data distribution was then 
manually checked against batch and colony matched controls. Focusing on NAP 
genes, a new experimenter (always the same person) systematically re-measured 
each parameter in an effort to identify any potential experimenter biases. (c) The 
statistical framework consisted of four steps. 1) Pre-processing: To analyze all genes 
with respect of their genotype and construction, a variable collating gene, genotype 
and construct information was created from the raw data. 2) Choice of model: A linear 
mixed model was fitted in R (PhenStat package1) using the necropsy date as a random 
temporal variablet. 3) Multiple correction testing was applied using the Benjamini 
Hochberg method in an effort to control the false positive rate. 4) Imputation: a 
Bayesian multiple-phenotype mixed model method	was used to overcome the problem 
of missing data in the downstream analyses. (d) Co-variate structure was tested for 
effect and the resulting Maximum Likelihood Estimate (MLE) was plotted against the 
MLE of mixed models without co-variates. Each point corresponds to a pair of allele 
and phenotype combination where X corresponding to the MLE of Equation 1 and Y to 
MLE of tested equation. The use of a logarithm scale was chosen to allow enough 
place to indicate the names of parameters affected by co-variates. For more details, 
see Supplementary Notes. 
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Supplementary Figure 6. Imputation and human disease gene lists (a) 
Assessment of genes and parameters in the imputed dataset. The overlap is shown 
for both NAP genes and parameters between imputed versus non-imputed for adjusted 
p-value threshold of less than 0.1. (b) Assessment boxplots of brain size distribution in 
the imputed versus non-imputed data across the various subprojects. (c) Enrichment 
analysis of mouse NAP genes (this study) with various studies of neurological 
disorders: SysID2 (June 2018 download), Epi4K (https://www.epi4k.org/), SFARI 
(https://www.sfari.org/) and congenital cardiac malformatitons used as negative 
control3.  
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Supplementary Figure 7. GO enrichment analysis GO enrichment analyses for 
mouse NAP genes and their human 1:1 orthologues. Left: GO terms, relating to 
neuronal functions, over-represented among mouse NAP genes compared to all 
remaining genes annotated in the GO (a) and non-NAP genes (b). Right: Similar 
analysis using human 1:1 orthologues. Significance was derived using right-tailed 
hypergeometric tests. The x-axes depict the p-values adjusted for the number of GO 
categories tested using the Benjamini-Hochberg method.  
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Supplementary Figure 8. Overlap between mouse and human gene modules (a) 
Overlap between the mouse gene modules (identified using a gene co-expression 
network, derived from mouse developing CNS and adult brain expression data) and 
human PLN modules. Shared node and border colours depict common memberships 
to mouse and human modules, respectively; the thickness of the edge is proportional 
to the co-expression coefficient of the respective genes. (b) Gene overlaps between 
mouse and human modules tested using right-tailed Fisher tests. Corrections for 
multiple testing performed using the BH method to control for the numbers of modules 
tested. (c) Neuroanatomical study of Fmr1-/Y in sagital plane (n=6 WT and n=6 Fmr1-

/Y, male, 8 week old). Top: Schematic representation of the affected brain structures at 
Lateral 0.72mm. Bottom: Histograms showing the percentage of increase or decrease 
of brain structures compared to matched controls. (d) A representative image is shown 
for Fmr1-/Y and matched wildtype, illustrating the enlarged length of the dentate gyrus 
and total pyramidal layer of the hippocampus. Unique sagittal regions and their 
associated parameters are listed accordingly to their reference number in 
Supplementary Figure 2a. 
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Supplementary Figure 9. Association of mouse neuroanatomical defects with 
whole body phenotypes (a) Association of NAP genes with 26 general categories of 
whole body traits versus 1) non-NAP genes and 2) all annotated genes in the database 
(data downloaded from MGI, July 2017). (b) Association of NAP genes after removal 
of the 30 known ID associated genes. (c) Whole body mouse phenotypes for 30 ID-
associated genes among unique human NAP orthologues. 
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SUPPLEMENTARY NOTES 

Supplementary notes are described in details below. 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Animals, housing and husbandry 

To ensure high comparability between mouse models, the mice used in this study 

came from a number of similar genetic background strains, a complete list of which 

can be found in Supplementary Data 1. We maintained most of the mice on a pure 

inbred C57BL/6N background (representing 80% of the lines tested in this study), or 

for early lines on mixed C57BL/6 backgrounds (18%; e.g., C57BL/6N;C57BL/6Brd-

Tyrc-Brd), to minimize variation in screening results due to strain differences. Lines 

with other genetic backgrounds (2%; e.g., 129, CBA, C3Fe) were used at the start of 

the project to initiate the pipeline, and were always analyzed alongside strain-matched 

controls. For our main C57BL/6N background, a core colony was set up using mice 

from external providers (Taconic Biosciences), and the core colony nucleus was 

actively refreshed at set generational points (typically 10 generations) and 

cryopreserved to avoid genetic drift.  

Most lines were initially phenotyped to produce data as part of the standardized 

pipelines from the Mouse Genetics Project (MGP) at the Wellcome Trust Sanger 

Institute (WTSI). Over the lifetime of the project, brains from 3 pipelines were collected, 

i.e. Brain (Necropsy dates May 2008 to October 2010), Mouse GP (April 2009 to 

February 2012) and MGP Select (February 2012-Current) pipelines. At the end of a 

pipeline, the mice were killed and brains collected for screening of brain histological 
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phenotypes. Brains from 3 male mice per mutant genotype were collected, which was 

estimated based on power calculation, limited throughput of both the necropsy 

collections and histological workflows and 3Rs in regards to animal use. In addition, 

up to 3 male control brains were collected weekly to form a WT baseline population for 

analysis. Formal randomization was not used to select mice for phenotyping; rather, 

each week mice were selected for phenotyping by identifying the age-correct mice from 

the breeding colonies supplying mutants. For WTs, usually 2 cages per sex were used 

for both the Mouse GP and MGP Select pipelines, normally from the largest breeding 

colony at that time point. For the Brain pipeline, 3 wild type brains were collected 

alongside mutant mice each week. 

Mice phenotyped by the Mouse GP pipeline were given a HFD (high fat diet) 

from 4 weeks of age (Western RD, 829100, 21.4% crude fat content, 42% kcal as 

fat,~0.2% cholesterol Special Diet Services, Witham, UK)4. Mice phenotyped by the 

Brain and MGP Select pipelines were given a breeders chow (Mouse Breeder Diet 

5021, 9% crude fat content, 21% kcal as fat, 0.276ppm cholesterol, Labdiet, London, 

UK) from weaning. All mice were given water and diet ad libitum, except during the 

fasting prior to either the intra-peritoneal glucose tolerance test (IPGTT) or, rarely, 

necropsy sessions, where access to diet was removed. Mice were maintained in a 

specific pathogen free unit with sentinel mouse monitoring on a 12hr light: 12hr dark 

cycle with lights off at 7:30pm and no twilight period. The ambient temperature was 

21±2oC and the humidity was 55±10%. All animals were regularly monitored for health 

and welfare concerns and were additionally checked prior to and after procedures. 

Mice were typically housed for phenotyping using a stocking density of 3-5 mice per 

cage (overall dimensions of caging: (LxWxH) 365x207x140mm, floor area 530cm2) in 

individually ventilated caging (Tecniplast Seal Safe1284L) receiving 60 air changes 
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per hour. In addition to Aspen bedding substrate, standard environmental enrichment 

of 1-2 nestlets, a cardboard tunnel and, with HFD, three wooden chew blocks were 

provided.  

The care and use of mice in the study was carried out in accordance with UK 

Home Office regulations, UK Animals (Scientific Procedures) Act of 1986 under 3 UK 

Home Office licenses that approved this work, which were reviewed regularly by the 

WTSI Animal Welfare and Ethical Review Body.  

 

Study samples  

Most mouse mutants reported here were generated using the “Knockout-first allele” 

method producing four types of alleles (tm1a, tm1b, tm1c and tm1d)5. The strategy 

relies on the identification of an exon common to all transcript variants, upstream of 

which a LacZ cassette was inserted to make a constitutive knockout named targeting 

mutation 1a (tm1a). Unlike the tm1a allele, tm1b creates a frame-shift mutation upon 

deletion of the selected exon. Tm1c is a functional wild-type allele used to make 

conditional variants named tm1d. In this study, the vast majority of alleles were 

constructed based on the tm1a and tm1b strategies (see sections below), with three 

occurrences of a tm1c allele (for Fundc1, Secisbp2 and Slc25a21 genes) used in the 

control set (see main text; Supplementary Data 2), and only one occurrence of tm1d 

(for Slc25a21 gene).  

A subset of mutants were generated using CRISPR/Cas9 methodology, similar 

to previously reported6. Alleles generated by CRISPR/Cas9 are noted by the 

superscript “em” in Supplementary Data 1. Briefly, the critical exon (CE) was deleted 

using four gRNAs (two gRNAs 5’ and two gRNAs 3’ to the CE region). Cas9 mRNA 

(Trilink, San Diego, CA) together with the four gRNAs was injected into the cytoplasm 
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of 1-cell C57BL/6NTac zygotes. Injected embryos were briefly cultured and oviductal 

embryo transfer performed in 0.5 days post-coital pseudopregnant female recipients 

(CBA/C57BL/6J). F0 mice were screened for the exon deletion by a combination of 

end-point PCR and loss of WT allele qPCR. Positive F0 mice were further bred with 

C57BL/6NTac mice. F1 mice were re-screened by PCR and breakpoints confirmed by 

Sanger sequencing. A single genotype-confirmed F1 mouse was used to establish the 

colony used to generate mice for phenotyping. Of note, four mutants were generated 

using CRISPR/Cas9 to make point mutations, for Pcdh15, Prss53, Tgm3, Herc1 and 

Vrk1 genes (Supplementary Data 1). 

A set of genes (validation set) was studied multiple times for an additional 120 

allelic constructions (see Supplementary Data 2 for details). In summary, 43 were 

studied using a different Tm1 allelic construction, for example two mouse models were 

generated for Rnf10, one using a Tm1a construction and the other was a Tm1b (both 

were associated with major impacts on brain morphology). 29 were studied both at 

heterozygous and homozygous state, for example the perturbation of Aff3 at the 

heterozygous state was not associated with neuroanatomical defects whereas at the 

homozygous state it had severe defects (corpus callosum dysgenesis and enlarged 

ventricles). 19 were tested at various age points, for example the inactivation of Sytl1 

altered brain morphology at 16 weeks of age but not at 6 weeks. 7 genes were used 

as controls to assess drift that could occur over time, for example the knockout of St18 

was studied in 2009 and again in 2013, showing consistent results (no phenotype). 2 

genes were studied to control for the experimental procedure (Arpc1b and mir96), and 

1 gene was engineered on a different genetic background (Cenpj). The remaining 19 

were a mixture of these. 
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 Three datasets representing a total of 6,214 mice were analyzed with the main 

difference being the age of the mice or the histological orientation of the sectioning. 

The first consisted of 801 (13%) mice made of 579 mutants and 222-matched WTs at 

six weeks of age. The second was composed of 4,488 (72%) mice of 3,464 mutants 

and 1,024-matched WTs, and the third of 925 mice (15%) of 753 mutants and 172-

matched WTs, both assessed at sixteen weeks of age. The first and the second 

datasets were analyzed using the coronal plane7, while the third dataset the sagittal 

plane which offers certain benefits for large-scale neuroanatomical screens, as 

previously discussed8. Together, these samples corresponded to 1,566 allelic 

constructions for 1,446 unique genes. Information related to the construction of the 

mutant line such as allele, genotype, promoter, cassette, diet and background strain, 

are provided in Supplementary Data 5 for each of the datasets. 

 

Brain collections and quality control 

The brains were taken from mice on a high-throughput phenotyping project, where a 

mouse is characterized by a series of standardized and validated set of tests 

underpinned by standard operating procedures (www.mousephenotype.org/impress), 

covering a variety of disease-related and biological systems. For mouse management 

purposes, the cages have both genotype and allele information and hence in-life 

testing are run unblinded. However, as a high-throughput screen where genes are 

selected for study without hypothesis, mice are typically studied in multiple batches 

with multiple genotypes being tested at each occasion, so there is limited room for 

personal bias to influence the results. The collection of brains was performed blind with 

prosectors not knowing the genotype of the mouse. Factors thought to affect the 

variables were standardized as far as possible. Where standardization was not 
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possible, steps were taken to reduce potential bias. For example, the MGP uses a 

“minimized operator” defined in the Mouse Experimental Design Ontology as “The 

process by which steps are taken to minimize the potential differences in the effector 

by training and monitoring of operator”9. The data captured with the MEDO ontology 

can be accessed at http://www.mousephenotype.org/about-impc/arrive-guidelines. 

For analysis purposes, the individual mouse was the experimental unit. Mice were 

housed where possible with typical caging density of 3-5 mice per cage. 

The Mouse GP and MGP Select phenotyping pipelines were identical 

(dysmorphology, grip strength, ip-GTT, DEXA, x-rays, ABR, eye morphology & 

necropsy) with the exception that the Mouse GP pipeline had 4 additional screens (hair 

phenotyping, open field, hot plate & stress induced hypothermia tests). The Brain 

pipeline, on the other hand, had no testing. All collections were performed during the 

first part of the light cycle (08:00-11:00am) under random-fed conditions. Cages were 

randomly processed as part of a larger necropsy collection. 

Mouse GP and MGP Select Pipelines: 16 week-old mice were anaesthetized 

using either Ketamine (100 mg/kg, intraperitoneally) and Xylazine (10 mg/kg, i.p.), or 

with Avertin (20ml/kg of a 1.25% solution, i.p.) and blood was collected using the retro-

orbital route, followed by heart removal for confirmation of death. The brains were then 

dissected out and drop fixed in 10% neutral buffered formalin. 

Brain Pipeline: Perfusions were performed under terminal anesthesia on 6 

weeks old mice. Brains were perfused in situ using 4% paraformaldehyde (PFA, pH 8) 

before the brain was collected and further fixed by immersion in cold 4% PFA for either 

4 hours or 48 hours. Finally, brains were transferred to a 30% sucrose-phosphate 

buffered saline (PBS) solution. 
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Coronal six-week old dataset 

The tm1a allele was the most prevalent (78.9%). 36.4% of the six-week dataset were 

made of homozygous (HOM), 35.8% of heterozygous (HET) and the remaining were 

matched WT. The majority had promoter-less constructs (57.5%). The main 

background strain was B6JTyr;B6N (70%). The subproject name given to brain 

samples of the six-week old dataset was (“Sanger_WTCHG_6w”) and processed from 

May 2008 to October 2010. 

 

Coronal sixteen-week old dataset 

Tm1a was also the most prevalent allele (62%) in the sixteen-week old dataset with 

18% tm1b. 51% of the samples were HOM, 23% HET, 3.2% hemizygous (HEMI) and 

the remaining were matched WT. 48.8% had promoter containing cassette. The main 

background inbred strain was C57BL/6N (84%). 

Brain samples belonging to this dataset was structured into four subprojects, 

reflecting geographical processing of the brain samples and experimental 

improvements to the protocol. The subproject “Sanger_WTCHG_14-16w” was 

processed from October 2009 to June 2011 and contained 610 samples (representing 

14% of the sixteen-week old samples), “Sanger_WTCHG_ICS” from December 2009 

to September 2011 composed of 424 samples (that is 9.5%), “Sanger_ICS” from 

September 2011 to June 2012 (689 samples that is 15%), and “Sanger_HistologiX” 

from June 2012 to August 2016 (freeze date of the study). The latter was the largest 

in size and was composed of 2,765 samples (61.5%). Acronyms such as Sanger, 

WTCHG, ICS and HistologiX refer to the geographical location (Sanger for Wellcome 

Trust Sanger Institute, Cambridge, UK; WTCHG for Wellcome Trust Centre for Human 
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Genetics, Oxford, UK; ICS for Institute Clinique de la Souris, Illkirch, France; and 

HistologiX for a service provider in Nottingham, UK). 	

 

Sagittal sixteen-week old dataset 

In this most recent dataset, the em allele was the most common (51.8%), followed by 

tm1b (23.5%) and tm1a (11.2%). 60% were made of homozygous (HOM), 18% of 

heterozygous (HET), 4% of hemizygous (HEMI) and the remaining were matched WT. 

The background strain for all the lines belonging to this dataset was B6N (100%). The 

subproject names given to brain samples were (“Sanger_CBI_106”) and 

(“Sanger_CBI_107”) where CBI stands for the Centre for Integrative Biology, 106 

refers to the adult mouse brain at Lateral +0.60mm and 107 at Lateral +0.72mm. These 

samples were processed from August 9th 2016 to January 31st 2018.  

	

Fmr1-/Y mouse model 

Young adult 8-week-old Fmr1+/y or Fmr1-/y (C57BL/6J x FVB/N) F1 male litter mice 

were bred at the Mouse Clinical Institute (Illkirch, France) and obtained from crossing 

female Fmr1-/yC57BL/6J10 with male FVB/N to constitute two experimental groups. 

After weaning, animals were housed with two to three littermates per cage, 

independently of their genotype, in specific-pathogen-free environment in individually 

ventilated cages under 12/12 light/dark cycle with temperature-controlled conditions 

and free access to food and water with hardwood bedding. Fmr1 animal procedures 

were conducted according to relevant national ethics committee (Comité National de 

Réflexion Ethique en Expérimentation Animale) and international guidelines 

(86/609/CEE). 
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Data collection  

Supplementary Figure 1 shows the overall experimental workflow. All standard 

operating procedures are described in more details elsewhere7,8. In general, brain 

samples were immersion-fixed in 10% formalin for at least 48 hours, before paraffin 

embedding and sectioning at 5μm thickness. Three coronal and one sagittal sections 

were stereostatically defined and named as critical sections (Supplementary Fig. 1). 

These critical sections were double-stained (Luxol Fast Blue for myelin and Cresyl 

violet for neurons) and scanned at cell-level resolution using the Nanozoomer whole-

slide scanner 2.0HT C9600 series (Hamamatsu Photonics, Shizuoka, Japan). A total 

of 85 co-variates, for example sample processing dates and usernames were collected 

at every step of the procedure (Supplementary Data 3), as well as 118 brain 

morphological parameters of 77 area and 39 length measurements, and the number 

of cerebellar folia (Supplementary Data 4 and Supplementary Fig. 2). All samples 

were also systematically assessed for cellular ectopia (misplaced neurons). Of note, 

amongst all the mouse mutant lines assessed, we found three occurrences of ectopia 

specifically in the hippocampus (Eml1-/-, Fig. 2a; Rnf10-/- and Dcx-/Y) and one case of 

cortical convolutions (Lamc3-/-). 

 

Development of a relational database 

We designed an in-house relational database using the FileMaker (FM) Pro database 

system for easy access from different geographical sites and better data management. 

Every aspect of the procedure is managed through this database, for example 

generating image scan names and directory architecture for 20TB of image data, 

image quality control, measurements and statistical pipelines using FM build in 
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scripting capabilities and an interface with R (version 3.4.0, https://www.r-project.org/) 

and ImageJ (Fiji, version 1.51e) scripts. Within this database, co-variate and 

measurement data for more than 10,000 brain images were collected and QCed 

entirely blind to the genotype. The general design of the database is shown in 

Supplementary Figure 3 and consists of nine main tables each containing a unique 

primary key (explained below). 

Database tables 

1) The “Mice” table relates to a unique mouse sample identified using a barcode 

that starts with the letter “M” for “Mouse” followed by 8 digits, for example 

“M02386649”.  The information that is associated to each unique barcode includes 

sex, genotype, genetic background strain, allele and the subproject identification. 

2) The “Batch” table incorporates batch information (defined as a group of brains 

received and processed together) with quality control emanating from both the “Quality 

control” and “Measures” tables in order to assess, on a per batch basis, the evolution 

of data acquisition and section quality. Supplementary Figure 3 is a screenshot of an 

automatically generated graph allowing for quality control of the critical section. Batch-

related information, such as the name of the experimenter or equipment, is then easily 

accessed if substandard sectioning quality is noticed and needs troubleshooting. 

3) The “Histology” table incorporates general information about sectioning, 

staining and storage of individual paraffin blocks and slides. The original mouse 

barcode is preceded by a code corresponding to each critical section. 

4) The “Brain scan” table lists all images scanned and slides pending scanning 

with relevant information such as date of scan, users and server location of the images.  

5) The “Users” table lists all users and usernames, and lists access privileges. 
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6) The “Quality control” table contains quality control information for each 

analyzed image. When the user analyses an image, they call a FileMaker Pro script, 

which interacts with an ImageJ Macro and the table “Measures”. The user is prompted 

to score the picture, assess if the section is critical and symmetrical, the results of 

which are stored in the “Quality Control” table. Analysis is performed through a series 

of ImageJ prompts for each parameter, asking whether the parameter is analyzable 

and if not, giving the user a list of reasons to choose from (NC, not critical; NS, not 

symmetrical; NM, not measurable; NV, not visible; NA, not applicable). The measure 

name, the numerical measure, or if not available, the reason for failing the measure, 

are then imported in three separate fields of the “Measures” table. Regions Of Interests 

(ROI) coordinates are also saved during the ImageJ Macro within the image 

repositories. This offers the possibility for FM to call images and associated ROIs at 

any moment using on screen buttons.  

7) The “Measures” table is designed to hold the name of a measurement in a 

single field and a second field containing the value associated to it or, as stated above, 

a third field containing a reason for not taking the measurement instead. Hence, the 

primary key corresponds to a specific brain and a specific measure. This design allows 

flexibility and the implementation of new measurements without affecting the structure 

of the database itself. After analysis, the database checks the number of imported 

measurements and the original image is replaced by the rotated image on which the 

analysis has been performed.  

8) The “Outliers” table stores data flagged as extreme measures. The data is 

mostly accessed via the “Measures” table using relationships, where data points are 

grouped in sub layouts and are analyzed for outliers or compared to corresponding WT 

datasets. FM has limited statistical capability (mean, standard deviation, min, max) but 
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scripting within FM was used to automatically identify outliers based on a 1.2 

interquartile rule when measurements are grouped by a set of search criteria 

(Supplementary Figure 3). An interlinked series of FM and ImageJ scripts allows for 

these outliers to be either validated or changed in the database and the eventual 

changes made to the corresponding ROIs are updated accordingly. Student’s t-tests 

were also implemented (Supplementary Figure 3) offering a quick check option but 

a FM script was used to run the statistical test in R and retrieve the output associated 

with the current record selection. T-tests were typically done for a given gene, 

genotype, sex and measure against matched WTs the results of which are listed in 

graphs showing individual data points. 

9) The “Genes” table contains curated information about gene function and is 

accessed via a web portal on FileMaker Pro. It queries UniProt and OMIM databases 

to extract human orthologous gene, human diseases, and disease subcategories. 

Integration with database environment  

The database was designed to interact with its environment at multiple levels. 

1) In order to speed up scanning and avoid human errors in data entry during 

brain section scanning, the creation of worklists, folder repositories and filenames is 

entirely scripted using the FM build in language and command line functions. 

2) Once scanned, electronic images of brain sections are sent to the repository 

and an ImageJ Macro is used to automatically resize (if images are >1.5 Gb), rotate 

and crop the images. An unmodified duplicate of the picture is kept until quality control 

and analysis is completed. 

3) Images are analyzed using a combination of FM and ImageJ scripts (see 

above “table 6”). As the image analysis is done blind of genotype information, a 

“deblind request” is subsequently send to the Wellcome Trust Sanger Institute (once 
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data collection and quality control is complete) and the genotypes updated in our 

database under the “Mice” table. 

4) Student’s t-tests are computed in R using FM scripting and output is retrieved 

by FM Pro database. 

5) Data export is scripted to allow for the concatenation of data subsets from 

almost every table of the database and the creation of a formatted dataset directly 

usable for linear mixed model analysis using the R software through an in-house 

statistical pipeline. 

 

Image quality control 

High quality brain images were routinely assessed to keep track of potential drifts and 

recorded within the relational database as described above. Each image was 

independently assessed and based on four criteria: 1) suitability for analysis, 2) 

adequacy of the intensity and contrast of the staining to properly delineate brain 

structures, 3) sectioning precision and 4) symmetry.  

Damaged sections 

The quality of the brain images depends mostly on the quality of the dissection. 

Structures at the extremities of the brain such as the cerebellum are typically more 

prone to damage when compared to the rest of the brain. As a consequence, critical 

section 3 (cerebellum) was the most vulnerable to distortions and only 2,177 images 

(41%) of section 3 could be analyzed, by contrast to 5,086 images of section 2 (96%) 

and 3,869 of section 1 (73%). Critical section 4 gave maximum recovery with 925 

images being analyzed (100%). 

Staining quality 
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Because we used a standardized procedure, staining of only very few images (n=20) 

were too dark or too light preventing sufficient contrast to visually distinguish brain 

regions. 

Sectioning precision  

By contrast to more conventional histo-pathological screens that often rely on 

qualitative assessment, we used a quantitative approach where each section had to 

pass well defined stereotaxic coordinates defined accordingly to the Mouse Brain 

Atlas11 before image analysis. To do this, we recorded how close the image to be 

analyzed was to the critical section (that is at the precise stereotaxic position) 

(Supplementary Fig. 5). On average, 69.4% of all images were exactly critical: 66% 

for section 1, 73.7% for section 2, 59.3% for section 3 and 78.7% for section 4. If the 

images were not critical, the position in μm relative to the Atlas11 was recorded. 28.3% 

of section 1 images, 20.6% of section 2, 30.3% of section 3 and 16.2% of section 4 

were within an interval of 120μm either posterior or anterior to the critical plane. We 

evaluated the impact of such interval on the variability of each of the 78 brain 

parameters, and determined that most parameters did not differ at the exception of the 

genu of the corpus callosum for section 1, the hippocampus for section 2, the fourth 

ventricle for section 3 and the caudate putamen for section 4. To minimize unwanted 

variation, the measurements related to the corpus callosum, the hippocampus, the 

fourth ventricle and the caudate putamen were thus systematically failed when the 

section was not at the critical plane. 

Symmetry  

For coronal sectioning, the symmetry of each image was easily assessed in an effort 

to control for perfect symmetry between right and left hemispheres as well as between 

rostral and caudal parts for both coronal and sagittal sectioning (Supplementary Fig. 
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5). 66.3% of section 1 images, 54.2% of section 2, 62% of section 3 and 39.1% of 

section 4 were perfectly symmetrical. If the images were not perfectly symmetrical, the 

distance in μm relative to the other hemisphere was recorded. 28% of section 1 

images, 37.1% of critical section 2, 26.7% of critical section 3 and 29.2% of critical 

section 4 images were asymmetric within an interval of 120μm. Sections not 

symmetrical were failed to limit any experimental variation. 164 samples (3.1%) across 

the three coronal sections and 5 samples across the sagittal section (0.5%) were failed, 

either of bad quality, severe asymmetry or away from the critical section.  

 

Data quality control 

Data quality being crucial for the interpretation of large-scale projects, a thorough 

quality control process was designed and implemented at multiple steps of the 

experimental procedure. A lot of care was given to control human errors and false-

positive findings using an in-house quality control pipeline within the FileMaker Pro 

framework (Supplementary Fig. 5). A semi-manual stepwise approach was 

implemented to standardize and facilitate the cleaning process. All the steps listed 

below were performed within each subproject.  

1) Data was divided into two groups: WTs and mutants. Outliers, typos and 

erroneous measures were identified using boxplots for each brain parameter 

measured within the database. Once the data were considered as final, the minimum 

and the maximum values for each of the 118 brain parameters were recorded for future 

reference (Supplementary Data 4). 

2) For each gene and parameter, data distribution versus matched WTs was 

checked for any errors missed in the previous step using boxplots. For example A, B 

and C are samples from a mutant line of interest, and sample A has a value of 0.3cm2 
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for the total brain area. Sample A will not be flagged in the first step because it will 

segregate in the normal range when compared to all other mutant samples. However, 

when compared to samples corresponding to the same gene, for example if sample B 

has a value of 0.62cm2 and C has 0.59cm2, A will be flagged. 

3) Focusing on mouse NAP genes and their associated WTs, the same 

experimenter systematically re-measured each parameter. Ambiguities between 

associated parameters were also systematically checked for any mistakes. For 

example, when both height and width were taken for a given region but only one gave 

significant differences, both parameters were re-measured and checked. Once all of 

these steps were completed, we considered the data as final, and performed a final 

run of statistical analysis (Supplementary Fig. 5), explained in the next section. 

 

 

 

 

 

 

 

 

 



	 30	

QUANTIFICATION AND STATISTICAL METHODS 

Statistical framework for gene identification 

A total of 6,011 samples were analyzed, corresponding to 1,566 alleles from 1,446 

unique genes (164 samples were failed due to poor quality) using scripts in R 

implemented with the Phenstat package1. 

Assessment of co-variates  

A full description of the 85 project’s co-variates is provided in Supplementary Data 3, 

composed of: 

1) 8 variables providing information about the mouse itself and its husbandry 

including mouse core strain, promoter status, type of the targeting cassette, diet and 

phenotyping pipeline underwent by the living animal used by the Wellcome Trust 

Sanger Institute Mouse Genetics Project (MGP). 

2) 55 categorical variables about the histo-morphological procedure, for 

example the name of the experimenter, equipment, fixative or stain used, and the 

qualitative assessment of each image such as the symmetry, the quality of the 

sectioning. One of these variables included the subproject that reflects the 

geographical localization of the samples. 

3) 22 temporal variables, for example necropsy date, the date of the histology 

or the date of image analysis. 

To assess the impact of each co-variate (independent variable) on phenotypic 

variation (dependent variable), a linear model was fitted and the adjusted multiple-R2 

was calculated. The subproject (reflecting experimental improvements and location of 

the study) explained the highest phenotypic variance (averaged adjusted multiple-

R2=0.125). Therefore, data were analyzed within each of the subprojects and results 

merged subsequently. By contrast, the co-variates corresponding to the stereotactic 
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position of the analyzed brain image and its symmetry score, explained the least 

variation (average R2 of 0.0006 and 0.0002, respectively), demonstrating the accuracy 

of the study. In addition, to account for temporal variation, especially true in large-scale 

datasets collected over a long period of time12, the necropsy date of the animal was 

used as a random variable (batch effect) in the statistical algorithm as it explained most 

of the temporal variation (averaged adjusted multiple-R2=0.21). 

It is worth mentioning that many technicians have been involved in the study 

since 2009 and the prerequisite was always good training before starting. To verify 

this, the same experimenter reanalyzed a set of 26 genes spread throughout the study 

and their corresponding controls (162 samples), showing highly consistent results13. 

Combining left and right hemispheres 

Out of the 78 coronal brain parameters analyzed, 30 were measured on both the left 

and the right hemispheres including 8 in the striatum, 16 in the hippocampus and 6 in 

the cerebellum sections. Since our histo-morphological procedure does not allow 

interhemispheric comparisons for certain (sometimes sections can turn upside down 

during the histological procedure)7, we combined measurements of left and right 

hemispheres, reducing the number of coronal parameters to 48. Of note, the parameter 

corresponding to the number of folia (3_Folia) was filtered out due to high variability.  

Normality tests 

To assess whether assumptions for statistical tests were met, the normality of the 

residuals was calculated for each of the brain parameters in WT (column X “Gp1 

residuals normality test” Supplementary Data 7) and KO (column Z “Gp2 residuals 

normality test” Supplementary Data 7). The residuals of the majority of the brain 

parameters were normally distributed (33 out of 48 coronal parameters and 36 out of 

40 sagittal parameters, p-value>0.01). However, when the normality test failed, Q-Q 
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plots for each non-normally distributed parameter were built instead. This was notably 

true for parameters pertaining to the ventricles. The comparison of Q-Q plots of 

normally versus non-normally distributed parameters showed that non-normally 

distributed parameters did not significantly deviate from the normal distribution. 

Moreover, the results of non-transformed versus transformed data (the Box-Cox 

transformation) were compared and no significant difference was found. Hence, we 

proceeded in the statistical tests without data transformation for all coronal and sagittal 

parameters. 

Linear mixed model and data processing 

To account for temporal variation that may have occurred since the start of the study 

in 2009, we used a linear mixed model framework computing the necropsy date of the 

animal as a random variable. The model was fitted in R using a parallelized version of 

PhenStat (version 2.2.4), a package developed for statistical analysis of large-scale 

phenotypic data from the International Mouse Phenotyping Consortium1, available at 

https://www.bioconductor.org/packages/devel/bioc/html/PhenStat.html.  

The parallelization was essential to improve processing speed. 

Phenstat is described as a top-down methodology involving 6 steps: 

• Fitting a loaded model 

• Test for batch effect 

• Test of covariance structure 

• Reduction of model by removing non-significant effects 

• Testing the explanatory variable (genotype effect) 

• Model diagnosis 

Several models incorporating co-variates (Equation 2 to 4 below) were tested against 

batch effect alone (Equation 1) using the Maximum Likelihood Estimate (MLE) method. 
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The dependent variables were the brain parameters (either the 48 left and right 

combined for coronal or the 40 sagittal parameters), the explanatory variable was the 

gene name (fixed variable), the random variable accounting for Batch effect was the 

necropsy date and co-variates tested were body weight, total brain area and brain 

weight: 

Equation 1: depVariable~Genotype | Batch effect  

Equation 2: depVariable~Genotype | Batch effect + TBA 

Equation 3: depVariable~Genotype | Batch effect + Body Weight 

Equation 4: depVariable~Genotype | Batch effect + Brain weight 

Phenstat excludes factors when the effect of the covariance structure is not significant. 

A significant number of parameters and genes were thus analyzed using Equation 1 

regardless of the model fed into Phenstat. When covariance structure has an impact 

on the dependent variableequations 2 to 4 were used instead and the maximum 

likelihood was plotted against Equation 1, pairwise for each gene and phenotype 

combination (Supplementary Fig. 5). In all cases, were covariance structure had an 

effect, the fitness of Equation 1 yielded higher MLE than Equation 2 to Equation 4, 

justifying the use of a model with only the random variable. 

The variances were computed as equal. When the model failed to fit due to a lack of 

variation between samples for any of the brain parameters, jitter noise was added 

randomly at 1000th of the signal difference for the parameter of interest, as 

recommended by PhenStat1. To enable comparisons within equivalent groups, only 

samples with C57BL/6 background and similar age (12-17 weeks old) were used in the 

linear mixed model within each of the subprojects (Supplementary Fig. 5). In addition, 

39 samples defined as singletons, when only one sample was available for any given 

mutant gene, were failed and not processed any further.  
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 Gene association was considered as significant when the adjusted p-value was 

below 0.1 (see section below). The quantile-quantile plots (Q-Q plots) of observed p-

values for each of the subprojects versus the expected null distribution provided further 

support for the adequacy of this threshold, because the most significant deviation of 

adjusted p-values from the expected distribution was at the threshold below 0.1. The 

percentage change of affected structures was also calculated as following:  

Genotype % change = ((average mutant – average WT)/average WT)*100. 

Supplementary Data 10 provides association and percentage change data for 1,566 

assessed alleles across 48 left and right combined for coronal and 40 for sagittal 

parameters. Relevant Mammalian Phenotype (MP) terms were used to describe 

neuroanatomical defects and when needed, new MP terms were created specifically 

for this project through collaboration with the Jackson Laboratory 

(http://www.informatics.jax.org/) (Supplementary Data 8). 

Student’s t-test 

For a small subset of data (about 2%) representing 34 genes (Supplementary Data 

6), that did not pass the filters due to different age and/or background, a two-tailed 

distribution Student’s t-test with equal variances was fitted instead of the linear mixed 

model. The mutant samples were analyzed using their colony controls (the same 

mouse line). 	

Multiple testing corrections and permutations 

Multiple testing corrections were performed using the Benjamini-Hochberg (BH) 

method. From this, five gene lists were generated based on 1%, 5%, 10%, 15% and 

20% false discovery rate (FDR) (see column C in Supplementary Data 10). To control 

for the false discovery rate, a set of 100 permutations was run within each subproject. 
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The average number of significant genes in a set of 100 permutations was compared 

to the results of the true data.  

 

Data imputation and imputed datasets 

A newly developed highly performing imputation tool (PHENIX version 1.014), which is 

based on a Bayesian multiple-phenotype mixed model method,	was used to overcome 

the problem of missing data in downstream analyses that relied on full datasets. 

Because imputation best boosts signals when the missing data rate is less than 10%14, 

imputation was computed on section 1 (Bregma +0.98mm), section 2 (Bregma -

1.34mm), and section 4 (Lateral 0.60mm) parameters of the sixteen-week old dataset 

(39 brain parameters for coronal and 40 for sagittal) but not section 3 that had a higher 

rate of missing data (Supplementary Data 11). More specifically, the imputation was 

performed within each subproject using samples with C57BL/6 background and at 

similar age (12-17 weeks old). Two matrices were used: one constituting the 

phenotypic data and a positive kinship matrix describing the genetic covariance. The 

kinship matrix was created assuming 1-to-1 relatedness between the mice within each 

subproject. This resulted in a new imputed dataset made of 1,380 alleles from 1,306 

unique genes, totaling 5,281 mouse samples (Supplementary Data 12). The same 

statistical pipeline as the one applied to non-imputed data was used (Supplementary 

Data 13), producing a new gene-association list (Supplementary Data 14).  

To assess the quality of the imputation, we compared the overlap between NAP 

genes identified through imputed versus non-imputed datasets (Supplementary Fig. 

6). The overlap between imputed versus non-imputed data for gene identification was 

84% with the imputed data resulting in 30 additional genes, whereas the non-imputed 

data had 32 genes that did not overlap with the imputed results. We manually verified 
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each of the additional 30 genes potentiated by imputation by checking the raw data for 

any associated brain parameter. 27 genes were literally borderline significant in the 

non-imputed dataset (just below the threshold of BH-p<0.1) suggesting that these 

genes are likely to be true positives. Two genes (Kifap3 and Ren1) had missing data 

for their corresponding affected parameter in the non-imputed data, and one gene 

(Tsks) was not significant in the non-imputed data. Amongst the 32 genes that did not 

overlap with the imputed results, 16 did not undergo imputation for various reasons 

such as younger age or different genetic background (see Supplementary Fig. 6), 13 

were borderline significant in the imputed dataset and 3 genes (Anp32e, Raph1 and 

Tmem127) not significant in the imputed data. 

We complemented this analysis by comparing the overlap between affected 

parameters in imputed versus non-imputed data, and found an overlap of 91% 

(Supplementary Fig. 6). In a similar way to NAP genes, the majority of the newly 

identified brain parameters through imputation (from a total of 51) were borderline 

significant in the non-imputed data. In addition, the distribution of the brain parameters 

within the WT group in imputed versus non-imputed data was checked. The imputation 

did not affect the distribution of the brain parameters and occurred within the expected 

range (an example is provided in Supplementary Fig. 6). 

Both the number of genes detected and the hit rate were consistent between 

imputed versus non-imputed gene lists, acting as a proof that imputation is not 

distorting the genetic data, but unanimously increasing detection power. All 

downstream analyses were thus performed on the imputed dataset unless otherwise 

stated. 
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Inter-regional brain relations 

Robust Pearson correlations 

Relations between the 39 imputed coronal brain parameters were calculated within 

each subproject for WT samples (n=991), mutant samples associated to 

neuroanatomical defects (n=158 genes that corresponds to 487 samples; BH-p<0.1) 

and mutant samples not associated to neuroanatomical defects (n=411 genes that 

corresponds to 1,247 samples, BH-p>0.5). The minimum number of data points per 

pairwise correlation was set to 25. For normalization purposes, the square root of area 

measurements was calculated to be comparable with length measurements. To reduce 

the impact of noise, the Stahel-Donoho estimator was calculated as a robust 

correlation estimator (an example of robust estimator would be the median, which is 

the robust equivalent of the mean) using “robust” (R package version 3.2.3). Pairwise 

correlations were then performed using the Pearson method within each subproject. 

The Olkin-Pratt estimator was applied to combine all correlations between the 

subprojects15. The top one hundred correlations with r2 coefficient higher than 0.3 were 

selected for further analysis. A chord diagram was used for the visualization of 

correlation analyses (Supplementary Fig. 4). We found brain morphological 

parameters either pertaining to the same region (for example, the height and area of 

the retrosplenial cortex), or at close proximity or directly adjacent in the topographic 

map (for example, the primary motor and cingulate cortices) to be positively correlated 

in WTs. 

 

t-Distributed Stochastic Neighbor Embedding 

t-Distributed Stochastic Neighbor Embedding (https://github.com/jkrijthe/Rtsne) or t-

SNE, a dimensionality reduction technique, was used as an alternative way to study 
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the relations between brain parameters. This approach allowed us to build a 2D-map 

of the 39 imputed coronal brain parameters based on their similarities followed by a 

clustering analysis. Brain parameters were first normalized in both WT samples and 

samples corresponding to the NAP genes, and a matrix built and center scaled within 

each subproject. Distances between brain parameters were computed using the 

Euclidean method. The weighted mean was calculated to combine distances between 

brain parameters. Using Rtsne (R package version 3.2.3), t-SNE was applied, 

projecting our dataset into 2 dimensions while preserving short distances and 

accepting a distortion of long distances. The clusters were found using single-linkage 

clustering (Supplementary Fig. 4). 

 

Gene lists enrichment 

Gene lists (and associated references) used in this study are summarized in 

Supplementary Data 19. 

Mouse to human orthology 

Homology information regarding 18,926 human and 20,015 mouse genes was 

downloaded from Ensembl Biomart16. Considering 16,377 human-mouse gene pairs 

orthologous at a 1:1 ratio, we identified unique human orthologues for 960 mouse 

mutant genes. 

Functional gene lists 

We downloaded a set of 410 genes associated with mouse embryonic lethality 

(Dickinson et al., 2016). By mining the literature, we downloaded 152 and 1,080 mouse 

synaptosome and postsynaptic density genes, respectively (Genes2Cognition 

database)17. We also retrieved a list of 842 mouse FMRP target genes and their human 

orthologues (n=842) from 18. Moreover, we downloaded a set of 1,223 human brain-
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specific genes from the Human Protein Atlas, with at least five-fold higher mRNA levels 

in the cerebral cortex compared to the average expression across all 32 tissues 

analyzed 19.  

Gene haploinsufficiency (HIS) scores 

We downloaded probabilities of HIS for 11,448 protein-coding genes with Ensembl Ids, 

from 20. Probabilities were estimated using various gene features including genomic 

(e.g. gene length), functional (expression patterns) and evolutionary properties20. 

Gene intolerance scores 

Mutational constraint scores were downloaded for 17,047 and 17,816 protein-coding 

genes from 21 and 22, respectively. These scores are entitled residual variation 

intolerance score (RVIS) and probability of being loss of function intolerant (pLI), 

respectively. RVIS evaluates the rate of common functional gene variation using data 

from the National Heart, Lung and Blood Institute (NHLBI) GO Exome Sequencing 

Project, such that genes with lower RVIS are more likely to be under purifying selection 

and thus intolerant to mutations21. Conversely, the pLI score assesses the depletion of 

penetrant loss of function rare gene variants, defined as nonsense, splice-site and 

frameshift mutations, based on data from the Exome Aggregation Consortium (ExAC; 

22).  

Moreover, selection coefficients (shet) (measure of the reduction in fitness 

associated with the loss of heterozygosity across gene alleles) for 15,999 human 

genes were downloaded from 23. These scores have been estimated based on the 

expected gene mutation rates, number of observed heterozygous protein-truncating 

variants in individuals from ExAC and the number of chromosomes sampled23. Finally, 

we downloaded the rate of synonymous (dS) and non-synonymous (dN) gene 
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substitutions between mouse and human for 23,147 mouse genes from Ensembl 

Biomart16 and quantified selection pressures as the dN/dS ratio.  

High confidence disease gene lists 

We downloaded a list of 6,116 disease genes annotated in the OMIM database from 

Ensembl Biomart (MIM Morbid list)16. Additionally, we extracted three non-exclusive 

lists of ID genes, consisting of 292, 429, 603 and 959 genes from 24, 25, 26 and 2, 

respectively.  

Genes and phenotypes from patients with neurodevelopmental disorders 

We downloaded a list of 421 genes disrupted by de novo nonsense mutations in 2,508 

ASD patients from the Simons Simplex Collection (SSC), for who extensive clinical 

data – including the presence of physical and morphological abnormalities – is 

available27.  

We retrieved CNV data for patients presenting with developmental delay, ID 

and/or congenital abnormalities. We only considered the 260 patients de novo CNVs 

of sizes <5mb28,29. Patients were systematically phenotyped using terms from the 

Human Phenotype Ontology30,31. 

As whole-exome sequencing studies of ID involve relatively small cohorts (< 

200 patients), we considered de novo missense, nonsense, splice-site and frameshift 

variants. We retrieved 58 and 76 genes affected by such mutations in patients with 

severe and moderate/severe ID (32 and 33, respectively).  

Gene ontology (GO) annotations 

We downloaded GO biological process (GO-BP), molecular function (GO-MF) and 

cellular compartment (GO-CC) annotations for 18,469 mouse and 20,165 human 

genes from the GO database34. To reduce uninformative results, we considered GO 
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terms annotated with >100 and <4,000 genes, resulting in 1,659 and 1,761 GO 

pathways annotated with 17,968 mouse and 19,435 human genes, respectively.  

Statistical tests 

The excess of genes from particular lists was tested using one-sided right-tailed 

Fisher’s tests. HIS, gene intolerance scores and phenotypic similarities were compared 

between two sets using one-sided right-tailed Mann-Whitney U tests. Comparisons 

were made between values for the top 10% NAP versus bottom 10% NAP; lethal 

versus bottom 10% NAP and permutations versus bottom 10% NAP (see set 

descriptions above). While differences were observed between the features of the top 

10% and bottom 10% NAP genes, nothing was observed when compared to the 

permuted gene sets (Figure 3). The correlation between gene deleteriousness 

measures and strength of neuroanatomical abnormalities was assessed using linear 

regression. The strength of neuroanatomical abnormalities was defined as the 

maximum absolute z-score deviation from wildtype mice across all features examined. 

The over-representation of GO terms was assessed using one-sided right-tailed 

hypergeometric tests, and a BH correction for multiple testing was applied to control 

for the number of terms tested in each category (i.e. 1,188 mouse GO-BP, 265 mouse 

GO-MF and 206 mouse GO-CC terms; and 1,288, 265 and 208 human terms, 

respectively). The over-representation of mouse whole body traits downloaded from 

MGI was assessed using one-side right-tailed Fisher’s test. BH correction for multiple 

testing was applied to control for the number of categories tested (i.e. 26). 

 

Gene expression datasets 

Gene expression datasets (and associated references) used in this study are 

summarized in Supplementary Data 20. We downloaded mouse RNA sequencing 
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data, generated by the Encode project35,36. Focusing on 21,680 protein-coding genes, 

we formed a mouse gene expression datasets by calculating the mean FPKM value 

for each gene and tissue or developmental point, across the relevant replicates. 

Specifically, we constructed a brain developmental dataset by considering gene 

expression levels in the CNS at embryonic stages E11.5, E14 and E18 and in the adult 

brain. As transcriptomic data were not available for the adult CNS, we considered the 

average expression level across cerebellum, cortical plate and frontal cortex tissues 

collected from eight-week-old mice. Given the discrepancy in temporal brain regions 

considered, observations made using this dataset require further validation.   

We downloaded RNA sequencing gene expression data for 16,611 protein-

coding human genes across 51 bodily tissues from the GTEx project37. For each gene, 

tissue expression was calculated as the mean FPKM value across all samples 

mapping to a given tissue (average of 83.70 samples per gene). The 51 tissues were 

assembled into 30 structures, by considering the average gene expression levels 

across relevant tissues (Supplementary Data 20). 

We downloaded normalized RNA sequencing expression data for 19,672 

protein-coding human genes across 27 brain tissues spanning twelve developmental 

stages from Brainspan38. To evaluate temporal brain expression patterns, we defined 

six developmental stages, as suggested by the experimental protocols of Brainspan 

(Supplementary Data 20-21). For each gene, we calculated the overall brain 

expression level at each developmental point as the median RPKM value across all 

tissues and samples mapping to the given stage. To evaluate spatial brain expression 

patterns, we assembled the 27 brain tissues into six brain regions (Supplementary 

Data 20). For each gene, the brain region expression level was defined as the median 

RPKM value across all samples mapping to the given region, independently of the 
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sample’s time point during development. By calculating the median RPKM value 

across gene samples mapping to all combinations of brain regions and developmental 

points, we identified 13,306 brain-expressed genes, with RPKM values >1 in at least 

one brain region during one developmental stage (Supplementary Data 19). 

Expression datasets were normalized, such that expression levels were scaled 

between 0 and 1 for each body structure, brain region or developmental stage. The 

expression of each gene was then normalized across tissues, regions or stages, using 

Euclidean distances, to provide specificity.  

Gene expression specificity was examined using a permutation-based 

approach, wherein the cumulative expression level of genes from a set of interest was 

compared to that of 1,000 permuted gene sets, formed by randomly sampling the same 

number of genes from the genome, matched for CDS. Empirical p-values were derived, 

reflecting the fraction of permutations, during which randomized sets have a higher 

cumulative expression level than the set of interest. BH corrections for multiple testing 

were applied to control for the number of tissues, regions or stages tested (n=4 for 

developmental CNS expression dataset, n=30 for GTEx and n=6 for Brainspan 

datasets). 

Gene expression levels in the neocortex, amygdala, hippocampus and striatum, 

as given by the Brainspan regional dataset, were normalized between 0 and 1 against 

the mean RPKM value of all genome genes in the corresponding region. We derived 

each gene’s expression level in critical section 1 (Bregma +0.98mm) and section 2 

(Bregma -1.34mm) as the maximum expression value across the striatum and 

neocortex or across the amygdala, hippocampus and neocortex, respectively. For 

each module, we calculated the mean of the expression ratio between Bregma 
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sections 1 and 2 across the corresponding genes. Notably, the mean expression level 

across Bregma section-associated tissues generates comparable results (not shown). 

 

Gene networks  

The mouse and human gene networks downloaded or constructed (and associated 

references) are summarized in Supplementary Data 21. We downloaded MouseNet 

v2, a functional mouse gene network incorporating various mouse -omics resources 

(i.e PPI, gene expression data, functional annotations and homology data)39.  

We constructed human body-wide and brain spatiotemporal gene co-

expression networks, using GTEx37 and Brainspan38 RNA sequencing data across 51 

bodily tissues and across 27 brain tissues spanning twelve developmental, 

respectively. Genes with FPKM or RPKM values <1 in >95% of samples were excluded 

and gene co-expression networks were derived by estimating the correlation of 

expression patterns of pairs of protein-coding gene across all associated samples, 

using Pearson’s coefficients40. Human PPI networks were downloaded from String41. 

Lastly, by combining various human genomic datasets (i.e. PPIs, GO, MGI, KEGG, 

Reactome, and gene expression data), we constructed an integrated gene network, 

termed phenotypic linkage network (PLN), wherein pairs of gene are assigned scores, 

reflecting their likelihood of functional interaction, based on multiple lines of evidence42. 

 

Network clustering 

To examine the network interconnectedness of a set of genes, we compared the sum 

of their network links to that of permuted gene sets, constructed by randomly sampling 

the same number of human genes, matched for CDS and network connectivity42. By 

running 1,000 permutations, we derived an empirical p-value, reflecting the fraction of 
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randomized gene sets, which are more interconnected in the evaluated network, than 

the set of interest.  

 

Module identification 

We identified modules of strongly interconnected genes by partitioning gene networks 

using the Louvain algorithm43. This greedy optimization method attempts to maximize 

the modularity of a network division (strength of connections inside modules as 

compared to between modules). The algorithm was implemented in Gephi using a 

resolution parameter of 1.  
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SUMMARY OF KEY RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Biological Samples   
Brain samples of mutant mouse lines derived from 
Sanger Mouse Genetics Project (Hinxton, UK) 

IMPC, 
https://www.mousephe
notype.org/ 

Supplementary 
Data 1 

Chemicals, Peptides, and Recombinant Proteins 
Cresyl violet acetate Sigma-Aldrich Cat#C5042-106 
Solvent Blue 38 Sigma-Aldrich Cat#S3382-25G 
Lithium carbonate  Sigma-Aldrich Cat#13010-100G-R 
Oxalic acid  Sigma-Aldrich Cat#241172-50G 
   
Deposited Data 
Assessed brain parameters and co-variates This paper Supplementary 

Data 3,4 
Non-imputed data and their analysis This paper  Supplementary 

Data 5,7,10 
Imputed data and their analysis  This paper  Supplementary 

Data 12-14 
Comprehensive atlas of neuroanatomical defects This paper  Supplementary  

Data 9 
Annotated brain images  This paper https://www.mousep

henotype.org/ 
Experimental Models: Organisms/Strains 
Mouse: Fmr1+/y and Fmr1-/y (C57BL/6J x FVB/N) Mientjes et al., 2006 N/A 
Software and Algorithms 
FileMakerPro version 14.0.6 FileMaker Inc. https://www.filemake

r.com/ 
ImageJ/Fiji version 1.51e Schneider et al., 2012 http://imagej.nih.gov/

ij/ 
R version 3.4.0 R Core Team https://www.r-

project.org/ 
PhenStat version 2.2.4 Kurbatova et al., 2016 https://www.biocond

uctor.org/packages/d
evel/bioc/html/Phen
Stat.html 

Phenix version 1.0 Dahl et al., 2016 https://mathgen.stats
.ox.ac.uk/genetics_s
oftware/phenix/pheni
x.html 

Robust: Port of the S+ "Robust Library" 

 

Maintainer: K. Konis https://cran.r-
project.org/web/pack
ages/robust/index.ht
ml 

Rtsne: T-Distributed Stochastic Neighbor Embedding  Maintainer: J. Krijthe https://cran.r-
project.org/web/pack
ages/Rtsne/index.ht
ml 

Integrative R statistical pipeline for the identification of 
genes 

This paper available upon 
request 

R Script for production of a color-coded heat map of 
neuroanatomical defects 

This paper available upon 
request 

R script for inter-regional brain relations This paper available upon 
request 
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R script to build a 2D-map of brain parameters This paper available upon 
request 

Other 
Public gene lists  Supplementary 

Data 19 
Expression datasets  Supplementary 

Data 20 
Gene networks  Supplementary 

Data 21 
Mouse whole body phenotypes The Jackson 

Laboratory 
http://www.informatic
s.jax.org/downloads/
reports/index.html#p
heno 
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