β-amyloid pathology and hippocampal atrophy are independently associated with memory function in cognitively healthy elderly

Anna L. Svenningsson, MD,^{1,2}* Erik Stomrud, MD, PhD,^{1,2} Philip S. Insel, MS,¹ Niklas Mattsson, MD, PhD,^{1,3} Sebastian Palmqvist, MD, PhD,^{1,3}⁺ Oskar Hansson, MD, PhD^{1,2}⁺.

¹ Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund/Malmö, Sweden. ² Memory Clinic, Skåne University Hospital, Malmö, Sweden. ³ Department of Neurology, Skåne University Hospital, Lund University, Lund, Sweden. *Corresponding author. †Both contributed as senior authors.

Supplementary information

	A β negative, n (%)	A β positive, n (%)
Cognitively unimpaired (n=325)	266 (82)	59 (18)
Subjective cognitive decline (n=204)	144 (71)	60 (29)
Mild cognitive impairment (n=276)	137 (50)	139 (50)
Dementia (n=84)	8 (10)	76 (90)

Supplementary table 1. Proportion of A β negative and positive subjects. Number and proportion of A β negative and positive subjects in the in the sample used for mixture modelling. Abbreviations: A β , amyloid- β .

Included variables	Aβ pathology	HV	Temporal cx	Frontal cx	Adjusted R ²
All variables	-0.14	0.25	0.044	0.042	0.119
included	(p=0.010)	(p<0.001)	(p=0.72)	(p=0.71)	
A β , HV and	-0.14	0.25	0.082	-	0.122
temporal cx	(p=0.010)	(p=0.001)	(p=0.22)		
A β , HV and frontal	-0.14	0.25	-	0.076	0.122
сх	(p=0.010)	(p<0.001)		(p=0.22)	
$A\beta$ and frontal and	-0.14	-	0.14 (p=0.25)	0.019	0.089
temporal cx	(p=0.015)			(p=0.87)	
HV and frontal and	-	0.24	0.051	0.040	0.102
temporal cx		(p=0.001)	(p=0.68)	(p=0.72)	
$A\beta$ and HV	-0.14	0.28	-	-	0.121
	(p=0.009)	(p<0.001)			
A β and temporal cx	-0.14	-	0.16	-	0.092
	(p=0.014)		(p=0.016)		
A β and frontal cx	-0.14	-	-	0.13	0.088
	(p=0.014)			(p=0.033)	
HV and temporal cx	-	0.24	0.087	-	0.105
		(p=0.001)	(p=0.20)		
HV and frontal cx	-	0.25	-	0.080	0.105
		(p<0.001)		(p=0.21)	
Temporal and	-	-	0.15 (p=0.24)	0.018	0.073
frontal cx				(p=0.88)	
Αβ	-0.14	-	-	-	0.077
	(p=0.013)				
HV	-	0.27	-	-	0.103
		(p<0.001)			
Temporal cx	-	-	0.16	-	0.076
			(p=0.014)		
Frontal cx	-	-	-	0.13	0.072
				(p=0.031)	

Supplementary table 2. Multiple linear regressions. Multivariable linear regression models, with ADAS-Cog delayed recall as dependent variable, including all or subsets of the different independent variables (A β , HV, and temporal and frontal cortical thickness), controlling for age, sex, education, and ICV. Standardized beta coefficients with p values as well as adjusted R² values for each model are presented. Abbreviations: A β , amyloid- β ; HV, hippocampal volume; cx, cortex.

	All		Younger		Older	
	β	р	β	р	β	р
Age	-0.082	0.20	-0.037	0.64	0.071	0.43
Sex	0.12	0.090	0.20	0.031	0.047	0.66
Education	0.086	0.12	0.22	0.004	-0.033	0.68
Intracranial volume	-0.19	0.014	-0.16	0.098	-0.24	0.046
Aβ positivity	-0.14	0.009	-0.23	0.003	-0.069	0.38
Hippocampal volume	0.28	<0.001	0.16	0.066	0.40	<0.001
\mathbb{R}^2	0.138		0.189		0.131	

Supplementary table 3. Age-dependent effects of amyloid pathology and hippocampal volume on memory function. Multivariable linear regression models, with ADAS-Cog delayed recall as dependent variable. Standardized beta coefficients with p values as well as R^2 values for each model are presented. Results are presented for the entire group and the younger and older half, respectively. Abbreviations: A β , amyloid- β .

	β	р
Age	-0.052	0.50
Sex	0.26	<0.001
Education	0.22	0.004
Aβ positivity	-0.15	0.079
P-tau	-0.17	0.045
R^2	0.184	

Supplementary table 4. P-tau is associated with memory in the younger group.

Multivariable linear regression in only the younger half of the subjects (n=150), with ADAS-Cog delayed recall as dependent variable. Standardized beta coefficients with p values as well as the R^2 value for the whole model are presented. Abbreviations: A β , amyloid- β .

			_
	β	р	
Age	0.073	0.34	
Sex	0.032	0.67	
Aβ positivity	0.39	<0.001	
\mathbb{R}^2	0.161		

Supplementary table 5. Aβ positivity is associated with higher p-tau in the younger

group. Multivariable linear regression in only the younger half of the subjects (n=150), with p-tau as dependent variable. Standardized beta coefficients with p values as well as the R^2 for the whole model are presented. Abbreviations: A β , amyloid- β .

Supplementary Figure 1. Age distribution in the study sample. Histogram displaying the age distribution in the study sample (n=300).

Supplementary Figure 2. Distribution the A β 42/40 ratio for defining the A β 42/40 cutoff. Histogram displaying the distribution of A β 42/40 ratio in the sample used for the mixture modelling (n=889). Dashed line showing the calculated cut-off for the A β 42/40 ratio.