# Effect of immunosuppression in miRNAs from extracellular vesicles of colorectal cancer and their influence on the pre-metastatic niche

#### **Scientific Reports**

Valeria Tubita, Joan Segui-Barber, Juan José Lozano, Elisenda Banon-Maneus, Jordi Rovira, David Cucchiari, Daniel Moya-Rull, Federico Oppenheimer, Hernando Del Portillo, Josep M Campistol, Fritz Diekmann, Maria José Ramirez-Bajo and Ignacio Revuelta.

Corresponding authors: Ignacio Revuelta, MD, PhD and María José Ramírez-Bajo, PhD, Department of Nephrology and Renal Transplantation, Hospital Clinic de Barcelona, Villarroel 170 (Escala 10 – Planta 5), 08036 Barcelona, Spain, Tel.: +34-932274410/3474, Email: irevuelt@clinic.cat, mramire1@clinic.cat.

# SUPPLEMENTARY MATERIAL

- Supplemental methods
- Supplemental table
- Supplemental figures
- MISEV2018 checklist

#### Supplemental methods

#### Viability and proliferation assays

SW480 and HCT116 cells were seeded in a 96-well plate and treated with CsA (2, 5 and 10  $\mu$ M) and RAPA (10, 20, 50 nM) or untreated for 24h. Viability and proliferation assays were performed with MTT assay (Sigma-Aldrich) and CyQuant assay kit (Molecular Probes, Invitrogen), respectively according to the manufacturer's instructions. (n=3 per group).

#### Annexin V/PI staining

Late and early apoptosis were evaluated through Annexin V and propidium iodide (PI). Briefly, HCT116 and SW480 were treated with CsA (2, 5 and 10  $\mu$ M) and RAPA (10, 20, 50 nM) or untreated for 24h. Cells were pelleted by centrifugation (300g, 5 min) and re-suspended in annexin V binding buffer (10 mM HEPES, 140 mM NaCl, 2.5 mM CaCl<sub>2</sub>), containing 1  $\mu$ g/ml CY5.5-annexin V (BD Biosciences,) and 10 $\mu$ g/ml propidium iodide (Sigma-Aldrich) for 15 min at room temperature in the dark. Subsequently, cells were analyzed by flow cytometry, using CANTO II (BD Biosciences). A total of 10,000 beads/events were acquired for each sample. All data were analyzed with FlowJo software (Tree Star).

#### Flow cytometry analysis for cancer stem cells markers

For surface marker staining, cell preparations were incubated with antibodies anti-CD133-PE-conjugated (AC133, Milteny Biotec), CD24-APC (SN3 A5-2H10, eBioscience), CD29-APC-conjugated (MAR4, BD Pharmingen), CD44-PE-conjugated (515, BD Pharmingen), CD73-PE-conjugated (AD2, Milteny Biotec), and CD105APC-conjugated (43A4E1, Milteny Biotec) at 4°C for 15 min. The labeled cells were washed in MACS buffer (2 mM EDTA, 1% (w/v) BSA in PBS), and then acquired with with CANTO II (BD Biosciences). A total of 10,000 beads/events were acquired for each sample. (n=2-6 per group). All data were analyzed with FlowJo software (Tree Star) to calculate the percentage of positive cells and Mean fluorescence intensity (FMI).

# • Supplemental table

Table S1 Primers for RT-PCR

| miR-ID      | Primer Sequence         |
|-------------|-------------------------|
| miR-6127    | UGAGGGAGUGGGUGGGAGG     |
| miR-6746-5p | UGGCGGGGGGUAGAGCUGGCUGC |
| miR-6787-5p | UGGCGGGGGGUAGAGCUGGCUGC |
| RNU6B       | CGC AAG GAT GAC ACG CAA |

# • Supplemental figures



Suppl Fig. S1 Cell viability and proliferation assay for HCT116 and SW480 incubated with 2, 5 and 10  $\mu$ M of CsA and 10, 20 and 50 nM of RAPA for 24 h (n=3 per group).



**Suppl Fig. S2** Early apoptotic cells (Annexin V<sup>+</sup> / PI<sup>-</sup>) and late apoptotic cells (Annexin V<sup>+</sup> / PI<sup>+</sup>) were analyzed by annexin V/propidium iodide (PI) staining in HCT116 and SW480. Both cell lines were incubated with and without 2, 5 and 10  $\mu$ M of CsA and 10, 20 and 50 nM of RAPA for 24 h (n=1 per group).



Untr RAPA 10 RAPA 20 RAPA 50 CSA 2 CSA 5 CSA 10

**Suppl Fig. S3** Cancer stem cell markers (CD133, CD24, CD29, CD44 and CD73) expression were analyzed by flow cytometry in HTC116 incubated with and without 2, 5 and 10  $\mu$ M of CsA and 10, 20 and 50 nM of RAPA for 24 h (n=2-6 per group). The data obtained are represented as percentage of positive cells and Mean fluorescence intensity (FMI).



**Suppl Fig. S4** Cancer stem cell markers (CD133, CD24, CD29, CD44, CD73 and CD105) expression were analyzed by flow cytometry in SW480 incubated with and without 2, 5 and 10  $\mu$ M of CsA and 10, 20 and 50 nM of RAPA for 24 h (n=2-6 per group).



**Suppl Fig. S5** Bioanalyzer analysis of EVs total RNA from HCT116Exos and SW480Exos without and with RAPA, and CsA treatment. EVs-RNA isolated was analyzed using Agilent 2100 Bioanalyzer. (n=3 per group). The electropherograms show the size distribution in nucleotides (nt) and fluorescence intensity (FU) of total RNA.

# • MISEV2018 checklist

Done

### **1-Nomenclature**

#### Mandatory

- Generic term extracellular vesicle (EV): With demonstration of extracellular (no intact cells) and vesicular nature per these characterization (Section 4) and function (Section 5) guidelines OR
- Generic term, e.g., extracellular particle (EP): no intact cells but MISEV guidelines not satisfied

#### Encouraged (choose one)

- Generic term extracellular vesicle (EV) + specification (size, density, other)
- Specific term for subcellular origin: e.g., ectosome, microparticle, microvesicle (from plasma membrane), exosome (from endosomes), with demonstration of the subcellular origin
- Other specific term: with definition of specific criteria

#### 2-Collection and pre-processing

#### Tissue Culture Conditioned medium (CCM, Section 2-a)

General cell characterization (identity, passage, mycoplasma check...). Medium used before and during collection (additives, serum, other)

- exact protocol for depletion of EVs/EPs from additives in collection medium
- Nature and size of culture vessels, and volume of medium during conditioning <u>A T175 flask with 15ml of medium was used during conditioning</u>
- specific culture conditions (treatment, % O2, coating, polarization...) before and during collection
- Number of cells/ml or /surface area and % of live/dead cells at time of collection (or at time of seeding with estimation at time of collection)
   5x10<sup>6</sup> cells/15ml were seeded in a T175 per condition with estimation at time of collection of ± 25x10<sup>6</sup> cells and ±97% of live cells.
- Frequency and interval of CM harvest <u>24 h.</u>

#### Storage and recovery (Section 2-d)

- Storage and recovery (e.g., thawing) of CCM, biofluid, or tissue before EV isolation (storage temperature, vessel, time; method of thawing or other sample preparation)
   <u>The CCM was stored at 4°C before starting the experiments. After 24 h, the recovered CCM was used at 4°C during sequential centrifugations.</u>
- Storage and recovery of EVs after isolation (temperature, vessel, time, additive(s)...) After EVs isolation, samples were used immediately or stored during only one night at 4°C for the following applications.

# **3-EV separation and concentration**

# Experimental details of the method

• Centrifugation: reference number of tube(s), rotor(s), adjusted k factor(s) of each centrifugation step (= time+ speed+ rotor, volume/density of centrifugation conditions), temperature, brake settings

Reference number of tubes: Polypropylene Centrifuge Tubes, Beckman Coulter 337986. Each tube contained 30ml of CCM. Rotor: SW32Ti

Centrifugation steps:

- <u>800 g for 7 min at 4°C</u>
- <u>2,000 g for 12 min at 4°C</u>
- <u>Supernatants filtered through 0.1 μm pore filter</u>
- Samples ultracentrifuged (Optima L100XP, Beckman) at 100,000 g for 2 h at 4°C
- PBS washing step
- <u>Samples ultracentrifuged (Optima L100XP, Beckman) at 100,000 g for 2 h at 4°C</u>

# 4-EV characterization

# Quantification (Table 2a, Section 4-a)

- Volume of fluid, and/or cell number, and/or tissue mass used to isolate EVs NTA 30 ml of CCM were used to isolate EVs for NTA
- Global quantification by at least 2 methods: protein amount, particle number, lipid amount, expressed per volume of initial fluid or number of producing cells/mass of tissue
- Ratio of the 2 quantification figures It has already been shown in the Figure 1 (f,g).

#### Global characterization (Section 4-b, Table 3)Citometria y los marcadores

- Transmembrane or GPI-anchored protein localized in cells at plasma membrane or endosomes <u>The CD63 marker was observed by Flow Cytometry</u>
- Cytosolic protein with membrane-binding or -association capacity The CD9 and CD81 markers were observed by Flow Cytometry
- Assessment of presence/absence of expected contaminants <u>A total absence of contaminants was observed by Electron Microscopy</u>

# (At least one each of the three categories above)

- Presence of proteins associated with compartments other than plasma membrane or endosomes <u>No presence of proteins was observed.</u>
- Presence of soluble secreted proteins and their likely transmembrane ligands
- Topology of the relevant functional components (Section 4-d)

# Single EV characterization (Section 4-c)

• Images of single EVs **by wide-field and close-up**: e.g. electron microscopy, scanning probe microscopy, super-resolution fluorescence microscopy

• Non-image-based method analyzing large numbers of single EVs: NTA, TRPS, FCS, high-resolution flow cytometry, multi-angle light-scattering, Raman spectroscopy, etc.

# Reporting

- Submission of methodologic details to EV-TRACK (evtrack.org) with EV-TRACK number provided (strongly encouraged)
- Submission of data (proteomic, sequencing, other) to relevant public, curated databases or openaccess repositories
   <u>Microarray raw data [.cel files] and processed data have been deposited in the National Center</u> for Biotechnology Information [NCBI] 's Gene Expression Omnibus and are accessible through <u>GEO Series accession number GSE123710.</u>
- Data submission to EV-specific databases (e.g., EVpedia, Vesiclepedia, exRNA atlas)
- Temper EV-specific claims when MISEV requirements cannot be entirely satisfied (Section 6-b)