
 

 

1 

 

 

Supplementary Information 
 

Reconfigurable soft body trajectories using unidirectionally 

stretchable composite laminae 

 

Sang Yup Kim1†, Robert Baines1†, Joran Booth1, Nikolaos Vasios2, Katia Bertoldi2,3, Rebecca 

Kramer-Bottiglio1* 

 

1Mechanical Engineering and Material Science, School of Engineering and Applied Science, 

Yale University, 9 Hillhouse Ave, New Haven, CT 06511, USA. 

2School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, 

USA. 

3Kavli Institute, Harvard University, Cambridge, MA 02138, USA. 
 

Correspondence to: rebecca.kramer@yale.edu 

 

 

 

 

 

Contents 

 

Supplementary Movies 1 to 10  ……………………………… 2 

Supplementary Methods   ……………………………… 3 

Supplementary Figures 1 to 5   ……………………………… 14 

Supplementary Tables 1 and 2   ……………………..……..… 18 

 

 

 

 

  

mailto:rebecca.kramer@yale.edu


 

 

2 

 

Supplementary Movies 

 

Movie 1: Strain-limiting behavior of STAUD-prepreg 

Movie 2: Contraction of pneumatic cylinder 

Movie 3: Elongation of pneumatic cylinder 

Movie 4: Rotation of pneumatic cylinder 

Movie 5: Thin planar actuator bending 

Movie 6: Bending of pneumatic cylinder 

Movie 7: Octopus-like tentacle movement with localized patches 

Movie 8: Planar octopus-inspired actuator 

Movie 9: Balloon trajectory programming 

Movie 10: Membrane-actuated tensegrity 

 

 

  



 

 

3 

 

Supplementary Methods   

 We built a fiber-winding machine to fabricate STAUD-prepreg with tunable properties in 

a scalable fashion. The fiber winder consists of a spool holster, a linearly-translating fiber 

distributor, a rotating winding mandrel. The fiber distributor was prepared using a ball screw 

(Model #: MTF06011, THK) attached to a stepper motor (Product #: 324, Adafruit) and a metal 

eye through which the fiber travels. The winding mandrel is an aluminum drum of 175 mm (ϕ) × 

225 mm (h) attached to another stepper motor.   The metal eye holds the fiber in constant tension 

as it spools from its holster onto the drum. Both motors are controlled via an Arduino with an 

attached Adafruit V2 motor shield. Precise inter-fiber spacing of composite lamina is 

accomplished by varying the rotation rate of the shaft and drum relative to one another.   

To conduct uniaxial pull-to-failure tension tests, we fabricated rectangular laminae samples 

with three distinct inter-fiber spacings, (  = 1, 2, and 6 mm), as well as three fiber angles, ( 0  

, 45 , and 90 ), by laser-cutting the bulk laminae into discrete units (VLS 3.50, Universal Laser 

Systems). 12.7 mm-long tabs served as grip interfaces on the samples. The width of the tabs on a 

particular sample matched the sample’s width w . Lengths, L  (the distance between the tabs), 

across all angle/spacing combinations remained fixed at 101.6 mm. Sample widths for the 45  

and 0    cases were 12.7 mm, but for 90   , was 25.4 mm. Sample average thicknesses, t , 

were individually characterized using a Zeiss Smartzoom 5 digital microscope. Later, we consider 

individual thicknesses to calculate stress-strain curves for each sample.  

We performed unidirectional quasi-static tensile tests using a servo-hydraulic test machine 

(Model 3345, Instron). We considered a total of forty-five samples—five of each fiber 

orientation/spacing combination—to account for inter-sample variance. Pneumatic grips set to 40 

psi provided sufficient force to hold 0  samples without allowing slip. Standard set-screw grippers 

were used for the 90  and 45  samples. We marked test samples with equidistant fiducials 

(Product#: 846, MG chemicals) about the midpoint of their longitudinal axes, and extracted true 

strains by tracking the fiducials in high-definition camera footage taken during each trial. For the 

90  and 45  lamina, uniaxial tensile loading was applied at 50 mm/min until failure. In the 0  

case, we slowed the loading speed to 25 mm/min.  

Stress is found by dividing the pull force by the cross-sectional area of the midpoint of the 

sample: 
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To account for changing cross sectional area of the samples we apply a differential form of 

Poisson’s law.  
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Here, d  is the induced contraction normal to the direction of applied strain. Thus, we calculate true 

stress and observe true strain.   

 Experimental stress strain curves are summarized in Supplementary Figure 1c, and 

expanded in more detail in Fig. 2a of the main manuscript. Initial Young’s moduli for lamina 

principal directions 1 and 2, as well shear direction 6 (Supplementary Figure 1), were calculated 

via averaged linear fit of sample the stress-strain curves from 0.02-0.03 strain (linear region). Off-

axis tensile testing of a 45    sample, as recommended in previous work [1], allowed us to 

determine the shear modulus of the lamina. Applying a rotation to the tensile stress, x , to 

transform it about the material axes and obtain laminate coordinate shear stress is simply:  

 
6 sin cosx       (3) 

where 45    . We acquired shear modulus, 6G , in a similar fashion as the principal lamina 

moduli, but instead of purely longitudinal strain, we considered the difference between 

longitudinal and transverse strain (which is in-plane shear strain for 45° off-axis case) [2].  We 

compare experimentally calculated moduli to theoretical moduli arising from the rule of mixtures 

(4) and inverse rule of mixtures (5), (6), respectively [2]. We assume the fibers and matrix are each 

isotropic. 

 1 f f m mE V E V E    (4) 
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Here, 1E  and 2E  are the elastic moduli of the composite in the 1 or 2 lamina coordinate system 

directions, respectively, fE  is the elastic modulus of the fibers, fG  is the shear modulus of the 

fibers, mE  is the elastic modulus of the matrix, mG  is the shear modulus of the matrix, mV is the 

volume fraction of the matrix, and fV  is the volume fraction of fibers. We used 68 kPa for the 

elastic modulus of the matrix material. This value was as determined through tensile tests of a pure 

Ecoflex 030 sample.  

Spun polyester yarn fiber has a range of reported elastic moduli depending on degree of 

twist [3], tensile conditions during integration to another structure (in our case, spooling on drum 

for composite manufacture) [4], and a host of other factors, including temperature and humidity 

[5]. In fact, twisting of individual filaments into bundle can decrease Young’s modulus by nearly 

33 % [5]. We opted to use a modulus of 1.3 GPa, as discerned from previous work [6]. Following 

the assumption of fiber isotropy, the shear modulus for the polyester fibers was assumed to be 1.3 
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GPa as well. The shear modulus of Ecoflex 030, by assuming incompressibility and evoking the 

isotropic material relation is given as:  

 
2(1 )

E
G





  (7) 

was found to be 22 kPa. This shear modulus is consistent with previously reported values [7].  

Theoretically and experimentally calculated initial elastic moduli lie in Supplementary 

Table S1. From the table, it is clear that a larger volume fraction of fibers, corresponding to a 

smaller inter-fiber spacing, , make a lamina stiffer. We see this trend for both 1 and 2 material 

axes. Expectantly, 1E  is greater than 2E , because the fibers dominate laminae mechanical 

responses at 0  .   

The rule of mixtures tends to overestimate elastic modulus, as it does not take into account 

micro-voids and geometrical imperfections present in real material samples. This fact helps explain 

why theoretical elastic moduli values are for the most part above the experimental ones reported 

above. Imperfect sample alignment during testing could have also contributed to the discrepancy 

between experimental and theoretical values. The mechanical properties of highly anisotropic 

composites are very sensitive to fiber alignment, and slightly offset angles can impact behavior 

substantially [5]. Perhaps this is why we see higher experimental in-plane shear moduli.   

Laminae lengths and widths are much greater than their respective thicknesses, so we abide 

by the assumption posited for in-plane stress-strain relations for thin laminae. Traditionally, the 

stiffness or compliance matrix constructed for laminae uses fixed moduli and consequently is a 

linear mapping between strain and stress [2]. We account for the non-linear material behavior of 

the lamina under plane stress, in addition to the geometric non-linearity of the lamina in its 

deformed state through a moving Eulerian coordinate system in the fashion of Chou [5], based on 

work by Hahn and Tsai [8]. Neglecting shear-coupling terms to simplify the expression, the stress-

energy per unit area of a deformed lamina can be written as:  
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Here, 
 
S

ij
, 
 
S

ijk
, and 

 
S

ijkl
 are compliance terms. Chou constructs the simplified compliance matrix 

following the derivative of the complementary strain energy function   

 * ij ijW e    (9) 

To obtain:  
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Note the e  and   are Eulerian terms referring to the current principal material coordinates. We 

can relate engineering strain   to Eulerian strain e  with the following relation [9]:  
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The simplified compliance matrix which relates in-plane stresses to in-plane strains along the 

principal material axes 1 and 2 and shear direction 6 is constructed as such:  
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G
, respectively, and were obtained 

based on initial experimental moduli tabulated in Supplementary Table S1.  Higher order terms 

 
S

ijk
 and 

 
S

ijkl
were determined by fitting experimental stress strain curves according to steps 

outlined in previous work [5]. MATLAB least squares functions were used for the fitting. Off-axis 

laminae may be rotated about principal axes to a local loading orientation   by applying a 

transformation matrix. 
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The stress-strain relations for a lamina can now be written as:  

 1[ ] [ ] [ ][ ][ ]e T S T σ   (14) 

To account for strain relaxation of elastomers as a result of cyclic loading, also known as 

the Mullins effect [10], we adjust predicted strains arising from our analytical model. A polynomial 

damage function was constructed based on the stress-strain behavior of the fibrous composite that 

was un-stretched, and then stretched up to 70% strain 10 times in succession. Tests were conducted 

up to 20 cycles, and it was determined that there is negligible (< 5 %) stress-strain change after the 

10 cycles threshold. This finding is consistent with other work [10-12]. The damage function 

relates an un-stretched strain to a cycled strain at the same stress value. We chose 
 
G

c  
to be a cycle-

depending scaling factor such that for cycle c:  
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Here, 
 
b

i
 are coefficients for the third-order polynomial fit of the average un-cycled curve, 

while ¢b are those for the average cycled curve. We can write our final formulation for predicting 

lamina strain as a function of input stress and cycle number:    

 
1[ ] [ ] [ ][ ][ ]c

 e T S T σ   (16) 

For n layered-laminate, where each layer k has thickness 
  
z

k
- z

k-1
 and its mid-plane is a 

distance zk from the mid-plane of the total laminate [2]: 
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Q is the stiffness matrix. As we are interested in the continuous strains through the thickness of 

the laminate, we must consider the inversion of the above relation. Note that:  

    
1

Q S   (18) 

Having accounted for material non-linearity (not present in assumptions in classical 

laminate theory) according to third order polynomial modeling based off the complementary stress 

energy density function, geometric non linearity with an Eulerian coordinate system, as well as 

cyclic stress-strain behavior of our matrix material with a Mullins damage function, we can model 

the creation of STAUD-prepreg laminates. We dub this adaptation Augmented Classical laminate 

theory (ACLT). We express it mathematically as:  
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Using our adapted formulation of classical laminate theory, we predicted the engineering 

strain of cylindrical actuators as a function of applied input stress. We conducted tests on three 

baseline cases of actuators (n = 1): 90°, 0°, and 45° fiber orientation. We also explored creation of 

laminate actuators (n = 2): 90°+0° and 90°+45°. We cycled the cylinders 10 times before 

conducting each test, breaking them in to a repeatable range. We adjusted analytical results with 

the strain relaxation damage function detailed above. We acquired stress by transforming input 

pressure read from a pressure sensor (Model#: 015PGAA5, Honeywell) using thin-walled pressure 

vessel equations.  

Our model assumes gravitational forces acting on the cylinder are negligible. We ignore 

inter-layer adhesive layer thicknesses as well. We model an inflating pneumatic cylinder as a thin 
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wall pressure vessel (Supplementary Figure 2) because its wall thickness is much smaller than its 

radius [13]. Circumferential hoop and axial stresses are the only forces acting on a thin-walled 

pressure vessel and are purely planar forces that give a mapping between applied pressure and 

stresses experienced in the laminate coordinates. 

 
2

axial
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pr

t

pr

t









  (20) 

where p  is the known input pressure, r is the radius of the cylinder, and t is the thickness of the 

wall.  

In the 0° cylindrical actuator case, inflation causes transverse expansion, which 

subsequently induces contraction as fibers pull the bottom of the actuator up. We modeled the fiber 

deformation to have constant curvature, and applied the geometrical constraints detailed in 

Supplementary Figure 3 to calculate theoretical contraction based on theoretical transverse strain. 

In Supplementary Figure 3, l  is the resulting length of the cylinder after it has contracted some 

distance l  from an original length 0l . The induced arc of deformation is approximated by a secant 

line of length 0

2

l
, as pictured. The instantaneous radius,  r , is updated based on the theoretical 

transverse strain: 0 0r r r  . Note the relation depicted by Supplementary Figure 3 holds only 

when 

 0
0( )

2

l
r r    (21) 

Finally, we must consider the thickness change of the vessel walls as a function of 

expansion to get an accurate representation of the stress states. In line with our planar stress 

assumption, out-of-plane stresses are not considered, and we can express the instantaneous 

thickness of the pneumatic actuator as   

 0 0zt t t    (22) 

Since  

 z x y       (23) 

Fig. 2a and 3a in the main manuscript show good agreement between experimentally 

observed and analytically predicted deformation of the various lamina-wrapped cylindrical 

actuators. For the 0° case, the model reliably predicts up to a certain value of strain, usually around 

20 %, after which geometric effects not considered by our model, including fiber anchoring to the 

end caps of the inflating cylinder, begin to govern the stiffness of the system so we see significant 

deviation. Additional differences between theoretical and experimental strain values may have 
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arisen since we inflated the cylinders at a greater rate (× 20) than quasi-static conditions on of 

which the material moduli were derived. As such, our experimental curves may reflect hyper-

viscoelastic effects. Overall, we achieve reliable prediction of deformation of soft bodies clad in 

sequences of angle-ply laminates in a range of strains suited to soft robotic applications.  

 In an effort to validate our experimental and analytical findings using ACLT but also to 

enable the modelling of more complex geometries and multi-layered STAUD-prepeg laminate 

actuators, we performed finite element analysis (FEA) simulations using Abaqus (SIMULIA, 

Providence RI) commercial software. FEA allowed us to fully resolve the strain and stress 

distributions of each laminae and further account for boundary effects in the various cylindrically 

shaped actuators. All models were generated using shell elements (S4R) using the composite shell 

section formulation that enables numerical integration of composite shells consisting of several 

laminae in various orientations. We performed nonlinear quasi-static analyses using 

Abaqus/Explicit to simulate the deformation of cylindrically shaped actuators upon inflation. To 

ensure quasi-static conditions in the simulations, we verified that the kinetic energy associated 

with the finite loading and deformation rate of the actuators was at all times negligible compared 

to the strain energy in each model. All cylindrically shaped actuators were assumed to have strain-

free caps, one of which was held fixed to eliminate rigid body translations and rotations. The 

actuators were inflated using the fluid-filled cavity interaction, corresponding to volume-

controlled loading conditions. Each STAUD-prepreg lamina was modelled as an anisotropic 

continuum 3D shell whose constitutive behavior is governed by the Holzapfel-Gasser-Ogden 

(HGO) anisotropic hyper-elastic continuum model [14]. The strain energy density function 

associated with the HGO model takes the form, 

𝒲 = 𝐶10(𝐼1 − 3) +
𝑘1

2𝑘2
(𝑒𝑘2(𝐼4−1)2

− 1)                                      (24)  

where, 

𝐼1 = tr[𝐵]                                                             (25) 

𝐼4 = (𝐹 ⋅ 𝐌) ⋅ (𝐹 ⋅ 𝐌)                                                 (26) 

and 𝐵 = 𝐹 ⋅ 𝐹T is the left Cauchy-Green deformation tensor and M is the unit vector along the 

fiber direction in the reference configuration. The material parameters of the constitutive model, 

namely 𝐶10, 𝑘1, and 𝑘2 are determined by fitting the model to experimental data, preferably 

containing information for the behavior of the sample in various fiber orientations. Here, we used 

nominal stress-nominal strain data corresponding to uniaxial extension experiments along 0o, 45o, 

and 90o orientations, and we performed non-linear least square fits against the corresponding 

stress-strain expressions for the HGO model. In the following section, we determine the nominal 

stress-strain relationships for the uniaxial extension of a thin film obeying the HGO model.  

The nominal stress tensor can be determined from the strain energy function, 

𝑆 =
∂𝒲

∂𝐹
= det𝐹 ⋅ 𝐹−1 ⋅ σ                                                  (27) 
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where σ is the Cauchy stress tensor, which from an HGO anisotropic solid takes the form, 

σ = −𝑝𝐼 + 2
∂𝒲

∂𝐼1
𝐹 ⋅ 𝐹𝑇 + 2

∂𝒲

∂𝐼4
𝑚 ⊗ 𝑚                                         (28) 

where p is a hydrostatic stress and 𝑚 = 𝐹 ⋅ 𝑀 is the unit vector along the fiber direction in the 

current (deformed) configuration.  The deformation gradient tensor for an incompressible HGO 

anisotropic hyper-elastic material subjected to uniaxial extension has the form, 

𝐹 = λ𝑥𝑒1𝑒1 + λ𝑒2𝒆𝟐 + λ𝑧𝑒3𝒆𝟑                                               (29) 

and incompressibility implies that, 

𝛌𝒙 =
𝟏

𝛌𝛌𝒛
                                                                  (30) 

The corresponding left Cauchy-Green deformation tensor 𝐁 = 𝐅 ⋅ 𝐅T follows, 

𝐁 =
𝟏

𝛌𝟐𝛌𝒛
𝟐 𝑒1𝑒1 + 𝛌𝟐𝒆𝟐𝒆𝟐 + 𝛌𝒛

𝟐𝒆𝟑𝒆𝟑                                           (31) 

Given that the loading (extension) direction is along the 𝒆𝟐 unit vector, we can further define θ 

as the angle between the fiber direction 𝒔 and the loading direction. The fiber direction in the 

reference configuration can thus be expressed as 

𝐌 = 𝒔𝒊𝒏 𝛉 𝒆𝟏 + 𝒄𝒐𝒔 𝛉 𝒆𝟐                                                 (32) 

The fourth pseudo-invariant 𝐼4 of the left Cauchy-Green tensor 𝐵 is given by, 

𝐼4 = (𝐹 ⋅ 𝐌) ⋅ (𝐹 ⋅ 𝐌) = λ−2λ𝑧
−2 𝑠𝑖𝑛2 θ + λ2 cos2 θ                       (33) 

Furthermore, we have that, 

∂𝒲

∂𝐼1
= 𝐶10 

𝜕𝒲

𝜕𝐼4
= 𝑘1(𝐼4 − 1)𝑒𝑘2(𝐼4−1)2

                                                 (34) 

𝑚 = 𝐹 ⋅ 𝐌 = λ−1λ𝑧
−1 𝑠𝑖𝑛 θ 𝑒1 + λ 𝑐𝑜𝑠 θ 𝑒2 

𝑚 ⊗ 𝑚 = λ−2λ𝑧
−2𝑒1𝑒1 + λ𝑧

−1 𝑠𝑖𝑛 θ 𝑐𝑜𝑠 θ (𝑒1𝑒2 + 𝑒2𝑒1) + λ2 𝑐𝑜𝑠2 θ 𝑒2𝑒2 

Therefore, combining the expressions above, the components of the Cauchy stress tensor σ𝑖𝑗 may 

be calculated as follows, 

σ11 = −𝑝 + 2𝐶10λ−2λ𝑧
−2 + 2𝑘1λ−2λ𝑧

−2 𝑠𝑖𝑛2 θ (𝐼4 − 1)𝑒𝑘2(𝐼4−1)2
 

𝜎12 = 2𝑘1λ𝑧
−1 𝑠𝑖𝑛 θ 𝑐𝑜𝑠 θ (𝐼4 − 1) 𝑒𝑘2(𝐼4−1)2

 

𝜎13 = 0 

𝜎21 = 2𝑘1𝜆𝑧
−1 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 (𝐼4 − 1) 𝑒𝑘2(𝐼4−1)2

                                   (35) 

σ22 = −𝑝 + 2𝐶10λ2 + 2𝑘1λ2 𝑐𝑜𝑠2 θ (𝐼4 − 1)𝑒𝑘2(𝐼4−1)2
 



 

 

11 

 

𝜎23 = 0 

σ31 = 0 

σ32 = 0 

𝜎33 = −𝑝 + 2𝐶10λ𝑧
2 

Finally, the nominal stress tensor components are determined as 

𝑆11 = 𝐹11
−1σ11 = −𝑝λλ𝑧 + 2𝐶10λ−1λ𝑧

−1 + 2𝑘1λ−1λ𝑧
−1 𝑠𝑖𝑛2 θ (𝐼4 − 1)𝑒𝑘2(𝐼4−1)2

 

𝑆12 = 𝐹11
−1σ12 = 2𝑘1λ 𝑠𝑖𝑛 θ 𝑐𝑜𝑠 θ (𝐼4 − 1) 𝑒𝑘2(𝐼4−1)2

 

𝑆13 = 𝐹11
−1σ13 = 0 

𝑆21 = 𝐹22
−1σ21 = 2𝑘1λ−1𝜆𝑧

−1 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 (𝐼4 − 1) 𝑒𝑘2(𝐼4−1)2
 

𝑆22 = 𝐹22
−1σ22 = −𝑝λ−1 + 2𝐶10λ + 2𝑘1λ 𝑐𝑜𝑠2 θ (𝐼4 − 1)𝑒𝑘2(𝐼4−1)2

                 (36) 

𝑆23 = 𝐹22
−1σ23 = 0 

𝑆31 = 𝐹33
−1σ31 = 0 

𝑆32 = 𝐹33
−1σ32 = 0 

𝑆33 = 𝐹33
−1σ33 = −𝑝λ𝑧

−1 + 2𝐶10λ𝑧 

Since the sample is extended along 𝑒2, the traction free conditions on faces 𝑒1 and 𝑒3 suggest that 

𝑆11 = 0 ⇒ −𝑝λλ𝑧 + 2𝐶10λ−1λ𝑧
−1 + 2𝑘1λ−1λ𝑧

−1 𝑠𝑖𝑛2 θ (𝐼4 − 1)𝑒𝑘2(𝐼4−1)2
 =  0      (37) 

𝑆33 = 0 ⇒ −𝑝λ𝑧
−1 + 2𝐶10λ𝑧 = 0 ⇒ 𝑝 = 2𝐶10λ𝑧

2                       (38) 

Combining the last two equations, leads to the following non-linear equation 

λ𝑧
4 = λ−2 [1 +

𝑘1

𝐶10
𝑠𝑖𝑛2 θ (𝐼4(λ𝑧) − 1)𝑒𝑘2(𝐼4(λ𝑧)−1)2

]                         (39) 

where 

𝐼4(λ𝑧) = λ−2λ𝑧
−2 𝑠𝑖𝑛2 θ + λ2 cos2 θ                                          (40) 

The non-linear equation needs to be solved with respect to λ𝑧 for each value of  λ. Once λ𝑧 is 

known, the nominal stress 𝑆22 along the extension direction can be determined using, 

𝑆22 = 2𝐶10(λ −  λ𝑧
2λ−1) + 2𝑘1λ 𝑐𝑜𝑠2 θ (𝐼4 − 1)𝑒𝑘2(𝐼4−1)2

                     (41) 

Having determined an expression for the nominal stress component along the uniaxial extension 

direction, we fit the analytical expression to experimental data of uniaxial extension of samples at 

θ =  0°, 45° and 90°. We did this for each STAUD-prepreg inter-fiber spacing. The fitted material 

properties for each inter-fiber spacing are summarized in Supplementary Table S2.  
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Supplementary Figures  

 

Supplementary Figure 1. Schematic defining lamina principal directions. (1) represents 

stresses and strains in the direction of embedded fibers, while (2) is transverse to the direction of 

the fibers. (6) is the in-plane shear component.  

 

 

 

Supplementary Figure 2. Cross section a of thin-wall cylindrical pressure vessel illustrating 

the distribution of planar stresses. We model our pneumatic actuators under this assumption. 

Left: tangential hoop stress from cutting the cylinder along its height.  Right: axial planar stress 

observed by cutting the cylinder through its width.  
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Supplementary Figure 3. Geometric model to account for the contraction of cylindrical 

pneumatic actuators wrapped with 0° STAUD-prepreg. When inflating, an initial radius 
  
r

0  

increases to  r . Meanwhile, an initial length 
  
l
0
 shortens by  Dl  due to fibers “pulling up” the 

bottom of the cylinder. Approximating the deformed arc as two equivalent right triangles, the 

induced arc of deformation can be written as 
  

l
0

2
 by the Pythagorean theorem.  
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Supplementary Figure 4. Schematic of a fiber-reinforced hyper-elastic material subjected to 

uniaxial extension. a) 𝐌 is the unit vector along the fiber direction in the reference configuration 

and 𝛉 is the angle between the fiber and loading directions. b) 𝒎 is the unit vector along the fiber 

direction in the current configuration after applying a uniaxial stretch equal to 𝛌. 
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Supplementary Figure 5. FEA results for the quasi-static inflation of cylindrical actuators 

consisting of a single STAUD-prepreg, with three different inter-fiber spacings, wrapped at 

three different orientations. a) STAUD-prepreg wrapped at 90° produces an actuator that extends 
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upon inflation. b) STAUD-prepreg wrapped at 0° elicits an actuator that contracts upon inflation. 

c) STAUD-prepreg wrapped at 45° creates an actuator that twists upon inflation. 
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Supplementary Tables 

 

Supplementary Table 1. Tabulation of collected initial moduli data for the various fiber 

spacings. Decreasing inter-fiber spacing leads to stiffer laminae. The rule of mixtures tends to 

overestimate the modulus compared to experimental values.  

 

 

 

 

Inter-Fiber Spacing 𝒎𝒎 

𝑙1 = 0.1 𝑙2 = 0.2 𝑙3 = 0.6 

HGO 

Fitted 

Material 

Parameter 

𝐶10 [𝑀𝑃𝑎] 0.0204 0.0119 0.006918 

𝑘1  [𝑀𝑃𝑎] 24.3745 11.797 5.1578 

𝑘2 2.98e-8 2.1062e-8 2.1062e-8 

 

 Supplementary Table 2. Fitted Holzapfel-Gasser-Ogden (HGO) material parameters for the 

three different inter-fiber spacings. The values were determined through a non-linear least 

squares fit of the experimental data for the uniaxial extension of each sample along 𝜽 =  𝟎°, 𝟒𝟓°, 

and 90°. 

 


