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Supplemental Notes 

Note 1: Promoter openness and gene transcription 

Using the MeSMLR-seq data, we generated the nucleosome occupancy profiles 
surrounding the TSSs of all protein-coding genes. Consistent with previous studies (Yuan 
et al. 2005; Hughes and Rando 2014), MeSMLR-seq data showed that highly-expressed 
genes had more pronounced nucleosome-depletion region in the upstream of TSS and 
well-positioned nucleosome array across gene body (Supplemental Fig. S5A, B). 
Nucleosome occupancy of the genes with high expression levels showed an obvious drop 
at TSS and distinct peaks within gene body, while such tendency was mild for the genes 
with the lower 25th percentile expression level (Supplemental Fig. S5B).  

In addition to nucleosome occupancy, the chromatin accessibility profiles by MeSMLR-
seq showed that the promoter regions of the highly-expressed genes were more 
accessible than the lowly-expressed genes (Supplemental Fig. S5C). It indicates the 
critical role of promoter accessibility on gene transcription regulation. We further examined 
the chromatin statuses of the binding regions of several important transcriptional 
regulators, including RNA polymerase II (Pol2), five general regulatory factors (Abf1, Cbf1, 
Mcm1, Rap1 and Reb1) and two mediators (Med8 and Med17) (Supplemental Methods) 
(Park et al. 2013; Grunberg et al. 2016; Rossi et al. 2018). The enrichment signal of Pol2 
in gene body was positively correlated with chromatin accessibility of gene promoter 
(Supplemental Fig. S6A). The binding regions of the other regulatory factors and 
mediators were relatively accessible and nucleosome-evicted, which allows the assembly 
of transcription initiation complex (Supplemental Fig. S6B-E). 

Note 2: Dynamic change of chromatin status in response to different carbon 
sources 

We next sought to investigate the dynamics of chromatin status during transcription 
changes in response to different nutrition conditions. Carbon source is the basic nutrition 
and is essential for yeast growth (Paulo et al. 2015). In addition to glucose (Glu), which is 
the preferred carbon source for S. cerevisiae, we grew yeast cells separately using 
galactose (Gal) and raffinose (Raf) carbon sources, and generated both MeSMLR-seq 
and RNA-seq data. Compared to those under Gal and Raf conditions, yeast cells under 
Glu showed more accessible promoter (Supplemental Fig. S7A). 21.62% (1,384 of 6,713) 
of protein-coding genes were differentially expressed between Glu and Gal, and 20% 
(1,332 of 6,713) between Glu and Raf, which indicated significant transcription 
reprogramming in response to different carbon sources (Supplemental Fig. S7B). The up-
regulated genes in Glu compared to Gal or Raf were mainly located in cytoplasm and 
involved in the biogenesis of ribosomes (Supplemental Fig. S7C). In contrast, the up-
regulated genes in both Gal and Raf conditions compared to Glu were significantly related 
to the oxidation-reduction process and carbon metabolism, and were located in 
mitochondrion. Those significantly up-regulated genes in Glu underwent more difference 
of chromatin accessibility in their promoters (P-value=1.2 × 10-14 for Glu vs. Gal, P-
value=3.6 × 10-11 for Glu vs. Raf, Wilcoxon rank sum test, Supplemental Fig. S7D), which 
contributed the overall high chromatin accessibility in the preferred carbon source (Glu) 
over Gal and Raf (Supplemental Fig. S7A). 
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Supplemental Methods 

Analyses of ATAC-seq, DNase-seq, MNase-seq, ChIP-seq, ChIP-exo and ChEC-seq 
data 

The information (including yeast strain, growth condition, GEO accession number, data 
format and reference) of public sequencing data used in this study was summarized in 
Supplemental Table S6. 

Quality control of raw sequencing data (FASTQ format) was performed using FastQC and 
cutadapt; and alignment was performed using Bowtie2 software (version 2.2.5) 
(Langmead and Salzberg 2012) with default parameters. 

For ATAC-seq (Schep et al. 2015) and ChIP-seq (Pol2) (Park et al. 2013) data, MACS2 
software (version 2.2.1) (Zhang et al. 2008) with default parameters was used to call 
significantly-enriched peaks (q-value <0.05). 

For MNase-seq data (Weiner et al. 2015), iNPS (Chen et al. 2014)with default parameters 
was used for nucleosome calling. 

For DNase-seq data (Zhong et al. 2016), F-Seq software (version 1.85) (Boyle et al. 2008) 
with default parameters was used to call significantly-enriched peaks (peak length ≥100 
bp).  

For ChIP-exo (Abf1, Cbf1, Mcm1, Rap1 and Reb1) data, the called peak files were directly 
downloaded from the original study (Rossi et al. 2018). 

For ChEC-seq (Med8 and Med17) data (Grunberg et al. 2016), chec-seq script 
(https://github.com/zentnerlab/chec-seq) was used to call significantly-enriched peaks 
(signal-noise ratio ≥10 and peak length ≥100 bp). 

Correlation and overlapping analyses between MeSMLR-seq and MNase-seq 

For correlation analysis of the bulk-cell level nucleosome occupancy results, we used 
iNPS to generate nucleosome occupancy profiles (BigWig format) for MNase-seq and 
MeSMLR-seq, respectively. Pearson correlation coefficient of nucleosome occupancy 
profiles (across whole genome and bin size as 10 bp) was calculated between two 
methods (Fig. 3A). 

For overlapping analysis of nucleosomes, we only considered the two nucleosome peaks 
(from MeSMLR-seq and MNase-seq, respectively) as overlapped if ≥50% region of one 
peak was covered by another peak (Fig. 3C). 

Correlation and overlapping analyses among MeSMLR-seq, ATAC-seq and DNase-
seq 

For correlation analysis of the bulk-cell level chromatin accessibility results, we generated 
genome-wide chromatin accessibility profiles (BigWig format) for three methods, 
separately. Pearson correlation coefficients of chromatin accessibility profiles (across the 
whole genome and bin size of 10 bp) were calculated among three methods (Fig. 5A). 

For MeSMLR-seq data, we separately called significantly-enriched peaks for molecules 
aligned to forward and reverse strands. Only the overlapped peaks between the forward 



 

 

4 

 

and reverse strands for MeSMLR-seq data, and the overlapped peaks between two 
biological replicates for ATAC-seq and DNase-seq were used for overlapping analysis (Fig. 
5C). 

Single-cell RNA-seq experiment and data analysis 

Yeast cells growing in YPD (1% yeast extract, 2% peptone and 2% glucose) medium were 
collected and spheroplasts were prepared as described above. Cell viability was 
measured using Trypan blue exclusion method and cell number was counted by 
hemocytometer. Of note, considering the fragility of spheroplasts, we modified the loading 
strategy of buffer before running the 10X ChromiumTM Controler (10X Genomics). Firstly, 
Single Cell Master Mix (10X Single Cell 3’ Reagent Kit v2) was prepared and added into 
Single Cell A Chip. Next, instead of nuclease-free water, sorbitol was added (final conc. = 
1 M) and mixed well. Finally, spheroplasts suspended in 1 M sorbitol were added. In total, 
318 million read pairs (2 x 150 bp) were generated by Illumina HiSeq 4000 platform.  

The quality of single-cell RNA-seq (scRNA-seq) data was evaluated by FastQC software. 
Cellranger software (version 2.1.1) with default parameters was used to process scRNA-
seq data and generate the gene-cell matrix. For quality control of scRNA-seq data, we 
excluded the cells with >10,000 UMI (unique molecular identifier) counts as they were 
potentially from artificial cell or cell duplets (Stegle et al. 2015). After quality control, 2,812 
single cells with 4,335 UMI counts (median value) per cell and 103,002 read pairs (median 
value) per cell were used in the following analyses. The number of expressed genes (≥1 
UMI) per cell was 1,572 (median value). DESeq2 package (Anders and Huber 2010) was 
used to normalize scRNA-seq UMI count data for 2,812 cells. 

Bulk-cell RNA-seq experiment and data analysis 

Total RNA was extracted using Quick-RNA Fungal/Bacterial Miniprep Kit (Zymo 
Research). Sequencing library was prepared using TruSeq Stranded mRNA Library Prep 
Kit and 10 million read pairs (2 x 150 bp) on average per sample were generated using 
Illumina HiSeq 4000 platform. Three biological replicates per biological condition were 
performed. 

The quality of bulk-cell RNA-seq data was evaluated by FastQC software (version 0.11.3, 
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and sequencing adaptors 
were trimmed by Cutadapt software (version 1.8.1) (Marcel 2011). Processed reads were 
aligned to reference genome (version UCSC sacCer3) by Hisat2 software (version 2.0.0-
beta) (Kim et al. 2015) with default parameters. Cufflinks (version 2.2.1) (Trapnell et al. 
2010) with default settings were separately used for quantifying gene expression, 
normalizing gene expression and analyzing differential gene expression. The FPKM 
(Fragments Per Kilobase Million) value was calculated as the expression level of genes. 
The cutoff of statistical significance for differential gene expression analysis was q-value 
< 0.01. 

The bulk-cell RNA-seq data was summarized in the Supplemental Table S7. 
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Supplemental Figures 

Figure S1 

Fig. S1 5mC methylation calling at GpC sites and distribution of methylation scores. 
(A) An example showing the difference on event level distribution of a 6-mer with 
unmethylated cytosine or 5mC at GpC site (right panel). Among all 6-mers covering a GpC 
site, the one with the largest degree of difference was chosen for methylation detection 
(left panel). (B) The probability distribution of methylation scores for negative and positive 
control data. The figure was drawn based on the data that were used for 5mC detection 
test. 

Figure S2 

Fig. S2 Heterogeneity of nucleosome positioning and uniformity of nucleosome 
spacing. (A) Heterogeneity of nucleosome positioning for five growth conditions. The 
heterogeneity of nucleosome positioning was measured by the standard deviation of the 
distances between +1 nucleosome and TSS. SD, standard deviation. The P-value was 
calculated by Wilcoxon rank sum test. (B) Uniformity of nucleosome spacing for five 
growth conditions. The P-value was calculated by Wilcoxon rank sum test. 
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Figure S3 

Fig. S3 Differential nucleosome organization between silent (AUA1) and active 
(EMW1) genes. (A, B) Q-Q plot illustration of the heterogeneity of nucleosome positioning. 
Each cross mark represents a molecule/cell. The x-axis is the distance between +1 
nucleosome and TSS. The y-axis is the equant under the assumption that all distance 
values are evenly distributed. (C, D) Uniformity of nucleosome spacing. Smaller variation 
(x-axis) indicates that nucleosomes are more likely to be uniformly spaced. 
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Figure S4 

 

Fig. S4 Consistent profiles of chromatin accessibility among MeSMLR, ATAC-seq 
and DNase-seq. (A) MeSMLR-seq signal distribution surrounding the peak summits 
called by ATAC-seq. (B) MeSMLR-seq signal distribution surrounding the peak summits 
called by DNase-seq. (C) ATAC-seq signal distribution surrounding the peak centers 
called by MeSMLR-seq. (D) DNase-seq signal distribution surrounding the peak centers 
called by MeSMLR-seq. 
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Figure S5 

Fig. S5 Relationship between nucleosome occupancy, chromatin accessibility and 
gene expression. (A) Nucleosome occupancy profiles across all protein-coding genes 
with the ascending order of gene expression level from top to bottom. (B) Nucleosome 
occupancy profiles at the bulk-cell level for protein-coding genes with different expression 
levels. (C) Chromatin accessibility profiles at the bulk-cell level for protein-coding genes 
with different expression levels. 
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Figure S6 

Fig. S6 Chromatin accessibility and nucleosome occupancy profiles at the binding 
sites of transcription-related factors. (A) Correlation between chromatin accessibility in 
promoter and Pol2 binding signal in gene body. Each point represents one gene. (B, D) 
Chromatin accessibility (B) and nucleosome occupancy (D) profiles at the binding sites of 
five general regulatory factors. (C, E) Chromatin accessibility (C) and nucleosome 
occupancy (E) profiles at the binding sites of two mediators. 
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Figure S7 

Fig. S7 Differential chromatin accessibility and gene expression under different 
carbon sources. (A) Differential chromatin accessibility patterns under glucose, 
galactose and raffinose. (B) Differential gene expression patterns under different growth 
conditions. Fold change = (the FPKM value of the sample)/(the averaged FPKM under 
glucose condition). (C) Gene enrichment analyses for differentially-expressed genes. (D) 
Difference of chromatin accessibility between up- and down-regulated genes under 
different carbon sources. The P-value was calculated by Wilcoxon rank sum test. Glu, 
glucose; Gal, galactose; and Raf, raffinose. 
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Supplemental Tables 
 
 

Table S1. Statistics of MeSMLR-seq data generated in this study 

 

 
 
 
 
 
 
 
 
 

Sample
Aligned 

strand

Number 

of 

aligned 

reads

Alignment 

rate of 

bases (%)

Error 

rate of 

reads 

(%)

Genome 

coverage 

( )

Length of sequencing reads

(kb)

Max Median Mean
Standard 

derivation

Positive 

control

Forward 456833 96.99 20.48 278.90 55.92 7.45 7.37 3.18

Reverse 455786 97.01 20.44 278.18 42.88 7.44 7.37 3.17

Forward+Reverse 912619 97.00 20.46 557.08 55.92 7.45 7.37 3.17

Negative 

control

Forward 619320 97.03 15.33 371.09 59.30 7.37 7.23 2.96

Reverse 619326 97.04 15.33 371.00 46.87 7.36 7.23 2.96

Forward+Reverse 1238646 97.04 15.33 742.09 59.30 7.37 7.23 2.96

2% Glu

Forward 711608 97.95 15.47 410.10 42.97 7.18 6.96 3.23

Reverse 713840 97.99 15.50 411.01 38.45 7.17 6.95 3.23

Forward+Reverse 1425448 97.97 15.49 821.11 42.97 7.18 6.95 3.23

1% Glu

Forward 640276 97.52 17.29 360.59 45.75 7.11 6.80 3.52

Reverse 642098 97.57 17.32 361.89 35.52 7.12 6.80 3.51

Forward+Reverse 1282374 97.54 17.30 722.48 45.75 7.12 6.80 3.52

0.5% Glu

Forward 597399 97.60 13.95 331.82 43.48 6.95 6.70 3.31

Reverse 599093 97.70 13.99 332.73 34.26 6.95 6.70 3.32

Forward+Reverse 1196492 97.65 13.97 664.55 43.48 6.95 6.70 3.31

0.125% Glu

Forward 734748 97.86 13.22 417.95 50.80 7.02 6.87 3.15

Reverse 733380 97.94 13.26 417.04 52.60 7.01 6.86 3.15

Forward+Reverse 1468128 97.90 13.24 835.00 52.60 7.02 6.87 3.15

2% Gal

Forward 527214 97.76 15.55 272.92 63.14 6.42 6.25 2.83

Reverse 528143 97.86 15.59 273.48 59.10 6.43 6.25 2.82

Forward+Reverse 1055357 97.81 15.57 546.40 63.14 6.43 6.25 2.83

2% Raf

Forward 697945 97.33 16.66 308.83 40.11 5.19 5.34 3.35

Reverse 698648 97.42 16.66 309.81 36.33 5.22 5.35 3.35

Forward+Reverse 1396593 97.37 16.66 618.64 40.11 5.20 5.35 3.35



 

 

12 

 

Table S2. Number of nucleosomes phased by single molecules of  
MeSMLR-seq data 

 

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Sample Aligned strand

Number of genes covered by single molecules

Maximal Median Mean
Standard 

derivation

2% Glu

Forward 244 37 35 18

Reverse 226 37 36 18

Forward+Reverse 244 37 35 18

1% Glu

Forward 271 36 34 19

Reverse 207 36 34 19

Forward+Reverse 271 36 34 19

0.5% Glu

Forward 256 36 34 19

Reverse 177 36 34 19

Forward+Reverse 256 36 34 19

0.125% Glu

Forward 294 37 36 18

Reverse 258 37 36 18

Forward+Reverse 294 37 36 18

2% Gal

Forward 306 32 31 16

Reverse 356 32 31 16

Forward+Reverse 356 32 31 16

2% Raf

Forward 208 26 27 18

Reverse 199 26 28 18

Forward+Reverse 208 26 27 18
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Table S3. Number of genes covered by single molecules of  
MeSMLR-seq data 

 

 
 
 
 
 

Table S4. Statistics of biological samples and sequencing data generated 
in this study 

 

 
 

Sample Aligned strand

Number of genes covered by single molecules

Maximal Median Mean
Standard 

derivation

2% Glu

Forward 29 4 3 2

Reverse 24 4 3 2

Forward+Reverse 29 4 3 2

1% Glu

Forward 22 4 4 2

Reverse 20 4 4 2

Forward+Reverse 22 4 4 2

0.5% Glu

Forward 20 4 3 2

Reverse 20 4 3 2

Forward+Reverse 20 4 3 2

0.125% Glu

Forward 29 4 3 2

Reverse 34 4 3 2

Forward+Reverse 34 4 3 2

2% Gal

Forward 38 3 3 2

Reverse 40 3 3 2

Forward+Reverse 40 3 3 2

2% Raf

Forward 26 3 3 2

Reverse 29 3 3 2

Forward+Reverse 29 3 3 2

Sample

Growth medium Sequencing data

Yeast extract Peptone Carbon source MeSMLR-seq
Bulk-cell 

RNA-seq

Single-cell

RNA-seq

2% Glu 1% 2% 2% Glucose √ √ √

1% Glu 1% 2% 1% Glucose + 
1% Galactose √ √

0.5% Glu 1% 2%
0.5% Glucose +
1.5% Galactose √ √

0.125% Glu 1% 2% 0.125% Glucose +
1.875% Galactose √ √

2% Gal 1% 2% 2% Galactose √ √

2% Raf 1% 2% 2% Raffinose √ √
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Table S6. Statistics of public sequencing data used in this study 
 

 
 

 
 

Table S7. Statistics of bulk-cell RNA-seq data generated in this study 

 

 

Public data Yeast strain Growth condition
GEO accession 

No.
Data format Reference

ATAC-seq BY4741 YPD
GSE66386

SRR1822155 (rep1)
SRR1822156 (rep2)

FASTQ Schep et al. 2015

DNase-seq W303 YPD
GSE69651

GSM1705337(rep1)
GSM1705338(rep2)

CSV Zhong et al. 2016

MNase-seq BY4741 YPD

GSE61888
SRR1593252(rep1)
SRR1593214(rep2)
SRR1593251(rep3)

FASTQ Weiner et al. 2015

ChIP-seq (Pol2) BY4741 YPD
GSE51251

SRR1003615(input)
SRR1003615(IP)

FASTQ Park et al. 2013

ChIP-exo (Abf1, Cbf1, 

Mcm1, Rap1 and Reb1)
BY4741 YPD GSE93662 GFF Rossi et al. 2018

ChEC-seq (Med8 and 

Med17)
BY4705 YPD GSE81289 BED Grunberg et al. 2016

Sample
Biological 

replicate

Total number of 

read pairs
Alignment rate (%)

2% Glu

Replicate 1 11462015 98.42

Replicate 2 9091690 98.43

Replicate 3 8459098 97.56

1% Glu

Replicate 1 9066796 98.38

Replicate 2 10611557 98.29

Replicate 3 10746015 98.32

0.5% Glu

Replicate 1 9691923 97.88

Replicate 2 10111610 98.33

Replicate 3 9994920 98.39

0.125% Glu

Replicate 1 11210531 98.15

Replicate 2 9751364 98.20

Replicate 3 9615422 97.70

2% Gal

Replicate 1 9614336 98.16

Replicate 2 10500154 98.65

Replicate 3 10784979 98.60

2% Raf

Replicate 1 10677473 98.70

Replicate 2 10395431 98.62

Replicate 3 9721105 98.50
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