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Details of the LASSIE model

Poisson Random Field model

LASSIE employs the Poisson Random Field (PRF) model to calculate the probability distribution

of derived allele frequencies in the presence of natural selection, genetic drift, and new mutations

(Sawyer and Hartl, 1992; Hartl et al., 1994; Williamson et al., 2005; Boyko et al., 2008; Evans et al.,

2007). These calculations rely on an infinite sites assumption, which implies at most one mutation

per site on the time scale of human population genetics (Kimura, 1969), thereby avoiding the

complication of modeling multiple derived alleles per site. (Any sites with more than two alleles

are removed from the input data; these sites are rare and only responsible for 0.3% segregating

sties in the 1000 Genomes Project Yoruba data set.)

Let f (y|S, ψ, θ, t) be the probability density function for the derived allele frequency y at time

t. Time is defined over the interval from t = 0, representing a deep ancestral population (prior

to the emergence of any segregating polymorphisms), to the present, t = tcurrent. S represents the

population-scaled selection coefficient, S = 2N(0)s, where N(0) is the effective population at t = 0

and s is the genic selection coefficient associated with the derived mutation in question (see Evans

et al. 2007). The genic selection model assumes that the fitnesses of heterozygous and homozygous

carriers of the derived allele are equal to 1 + s and 1 + 2s, respectively, relative to a fitness of 1 for

homozygous carriers of the ancestral allele. ψ is a vector of demographic parameters that defines

the relative effective population size at time t, which is denoted ρ(t, ψ) (as detailed below). Finally,

θ = 4N(0)µ is the population-scaled mutation rate, where µ is the mutation rate per generation

per nucleotide site.

To ease numerical computation, we additionally apply a transformation of the allele frequen-

cies, g(y|S, ψ, θ, t) = y(1− y) f (y|S, ψ, θ, t). As demonstrated by Evans et al. (2007), g(y|S, ψ, θ, t)

can therefore be calculated by solving the partial differential equation,

∂

∂t
g(y|S, ψ, θ, t) = − Sy(1− y)︸ ︷︷ ︸

strength of selection

∂

∂y
g(y|S, ψ, θ, t) +

y(1− y)
2ρ(t, ψ)︸ ︷︷ ︸

strength of drift

∂2

∂y2 g(y|S, ψ, θ, t), (1)

with boundary conditions limy↓0 = θρ(t, ψ) and limy↑1 = 0.
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Equation 1 describes how allele frequencies change stochastically over time, in response to the

population genetic parameters associated with natural selection (S), genetic drift (ψ), and muta-

tion (θ). To calculate the distribution of allele frequencies in the modern population, f (y|S, ψ, θ, tcurrent),

LASSIE solves Equation 1 numerically using the Crank-Nicolson algorithm (Crank and Nicolson,

1947). More specifically, LASSIE discretizes the transformed allele frequency g(y|S, ψ, θ, t) into

1000 equal-size bins to form a discrete approximation of allele-frequencies. Similarly, it discretizes

the scaled time t with a bin size of 0.0001. Then, it applies the Crank-Nicolson algorithm to solve

Equation 1 iteratively, forward over time, to calculate g(y|S, ψ, θ, tcurrent). Finally, the discretized

density function of allele frequency in the modern population, f (y|S, ψ, θ, tcurrent), is calculated

using the inverse transformation, f (y|S, ψ, θ, tcurrent) =
g(y|S,ψ,θ,tcurrent)

y(1−y) .

Sampling distribution of derived allele frequencies

The function f (y|S, ψ, θ, tcurrent) represents the population-level distribution of derived allele fre-

quencies, but in practice, we can only obtain a finite number of samples from the population.

Therefore, it is essential to specify the sampling distribution of derived allele frequencies. Let Mi

be the (haploid) sample size at site i. For example, the high-coverage Yoruba data set used in this

study consists of 51 unrelated individuals, so Mi = 102 for all the autosomal sites without missing

data. (Missing data is naturally handled in this framework by setting Mi equal to the number of

alleles actually available at site i.) The probability of observing a polymorphic site i with mi copies

of the derived allele is simply given by the expectation of the binomial sampling distribution with

respect to the density of continuous population-level allele frequencies (Evans et al., 2007),

Q(mi|S, ψ, θ) =
∫ 1

0

(
Mi

mi

)
ymi(1− y)Mi−mi︸ ︷︷ ︸

binomial distribution

f (y|S, ψ, θ, tcurrent)︸ ︷︷ ︸
population-level
allele frequency

dy, 1 ≤ mi ≤ Mi − 1. (2)

LASSIE employs Equation 4.1.18 in Numerical Recipes in C (Press et al., 1992) to numerically cal-

culate the integral Q(mi|S, ψ, θ), using the discretization scheme defined for the Crank-Nicolson

algorithm (above).

Equation 2 assumes that the ancestral allele is known. In practice, we consider uncertainty

in the reconstructed ancestral allele, as previously estimated in a phylogenetic analysis (Gronau
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et al., 2013; Arbiza et al., 2013) (see Online Methods). In particular, let qi and q′i be the probabilities

of the reconstructed ancestral allele being identical to the reference allele and alternative (non-

reference) allele, respectively, and let mi be the number of observed alternative alleles. Then the

sampling distribution of segregating mutations can be calculated as,

P(mi|S, ψ, θ) = qiQ(mi|S, ψ, θ) + q′iQ(Mi −mi|S, ψ, θ). (3)

Note that, for simplicity and speed, we abandon explicit handling of uncertainty in ancestral alle-

les when using the model in the context of the mixture density network (see below).

Demographic model

To control the effect of population expansions on the distribution of allele frequencies, we employ

a three-epoch demographic model in which ρ(t, ψ) is a step function with two change points.

Previous studies suggest that a simple demographic model with two to three epochs is pow-

erful enough to account for the impact of human expansions on the site frequency spectrum

(Williamson et al., 2005; Boyko et al., 2008; Racimo and Schraiber, 2014). In our three-epoch model,

the vector of demographic parameters is denoted by ψ = (N1, N2, t1, t2), in which N1 and N2 rep-

resent the relative effective population sizes of the second and the third epochs, respectively, and

t1 and t2 indicate the durations of the second and the third epochs, respectively.

We estimate the “neutral” parameters in the model (ψ and θ) from sites putatively free from

selection (see Online Methods) by forcing S = 0 and maximizing the likelihood of the PRF model.

Because there are millions of neutral sites in the Yoruba data set, however, we approximately

estimate the neutral parameters in two steps. First, we estimate ψ using only the polymorphic

sites in neutral regions (with 1 ≤ mi ≤ Mi − 1). Let P′(mi|S = 0, ψ, θ) represent the sampling

distribution for these polymorphic sites, with,

P′(mi|S = 0, ψ, θ) =
P(mi|S = 0, ψ, θ)

∑Mi−1
n=1 P(n|S = 0, ψ, θ)

. (4)

ψ is estimated by maximizing a composite likelihood function for these sites alone, ignoring link-

age between sites,

ψ̂ = arg max
ψ

∏
i∈S

P′(mi|S = 0, ψ, θ = c), (5)
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where S is the set of segregating sites and c is an arbitrary small positive constant. Importantly,

this estimator for ψ̂ is invariant to the choice of c. This step provides a good approximation under

the PRF model (which also ignores linkage), because the probability of the monomorphic sites

depends primarily on θ and only very weakly on ψ.

In the second step, we fix ψ = ψ̂ and estimate θ using both monomorphic and polymorphic

neutral sites. However, to reduce computational cost, we consider only a random sample of 5%

of monomorphic and polymorphic sites. Because θ is a single scalar parameter and the data set

is large, the downsampling procedure has a negligible impact on the accuracy of the estimated θ.

Specifically, we calculate the probability of observing a monomorphic site if both monomorphic

and polymorphic sites are included as,

P(mi = 0|S = 0, ψ̂, θ) = 1−
Mi−1

∑
mi=1

P(mi|S = 0, ψ̂, θ). (6)

Then we estimate θ by maximizing the composite likelihood,

θ̂ = arg max
θ

∏
i∈R

P(mi|S = 0, ψ̂, θ), (7)

whereR is our subsample of monomorphic and polymorphic “neutral” sites.

Mixture model for inferring representative selection coefficients

Given the estimates of the neutral parameters, θ̂ and ψ̂, we fit a three-component mixture model

to represent the global distribution of fitness effects based on all polymorphic and monomorphic

sites in coding regions. The first component in this model describes neutral evolution and its

selection coefficient S0 is fixed to 0 by definition. The second and the third components represent

weak negative selection (S1 < 0) and strong negative selection (S2 < S1), respectively. Let w0, w1,

and w2 represent the probabilities of these three mixture components, respectively. All parameters

are estimated by maximum likelihood,

(ŵ0, ŵ1, ŵ2, Ŝ1, Ŝ2) = arg max
w0,w1,w2,S1,S2

∏
i

2

∑
n=0

wnP(mi|Sn, ψ̂, θ̂) (8)

subject to the linear constraint ∑2
n=0 wn = 1 as well as the constraints that S0 = 0, S1 < 0, and

S2 < S1. In this likelihood function, P(mi 6= 0|Sn, ψ̂, θ̂) is defined in Equation 3 and describes the
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probability of observing a polymorphic site, and P(mi = 0|Sn, ψ̂, θ̂) = 1− ∑Mi−1
mi=1 P(mi|Sn, ψ̂, θ̂)

describes the probability of observing a monomorphic site given a selection coefficient Sn. The

estimated representative selection coefficients, Ŝ0 = 0, Ŝ1, and Ŝ2, are then fixed in the mixture

density network described below. Finally, the unscaled selection coefficients ŝn that LASSIE re-

ports are calculated using the equation ŝn = 2µ̂Ŝn

θ̂
, where µ̂ = 1.26× 10−8 is the estimated human

non-CpG mutation rate per site per generation (Rasmussen et al., 2014).

Mixture density network architecture

In the mixture density network (Bishop, 1994) for inferring allele-specific selection coefficients,

we assume that the allele-specific weights of selection coefficients can be inferred from the vector

of genomic features, Xijk, for a mutation event from ancestral allele j to derived allele k at site i.

We denote Pijk as the vector of allele-specific probabilities of being under neutral evolution, weak

selection, or strong selection. We assume that Pijk is determined by a mixture density network,

which, in our experiments, either includes a single hidden layer or no hidden layers. If the mixture

density network includes a hidden layer, the hidden layer is defined by,

Hijk = dropout(ReLU(Xijk ·Whidden)) (9)

where Whidden denotes the weights and bias terms while ReLU and dropout denote the rectified

linear layer (Nair and Hinton, 2010) and dropout layer (Srivastava et al., 2014), respectively. The

rectified linear layer serves as an activation function and the dropout layer serves as a regularizer

for preventing overfitting.

At the top layer of the mixture density network, LASSIE first calculates an affine transforma-

tion of the hidden features and then employs a softmax function to transform the affine transfor-

mation to a normalized probability vector, which defines the allele-specific weights of selection

components. This probability vector is defined by,

Pijk = softmax(Hijk ·Woutput), (10)

where Woutput denotes the weights and biases associated with the hidden feature vector Hijk, and

softmax denotes the softmax layer. If no hidden layer is included, Equation 9 is simply replaced

by the identity transformation, Hijk ≡ Xijk.

5



Objective function of the mixture density network

To estimate the parameters Woutput and Whidden in the mixture density network, we need to design

a loss function that captures the discrepancy between the predictions from the mixture density

network and the observed polymorphism patterns. We define this loss function as the negative

logarithmic value of a likelihood function derived from the PRF model. While uncertainty in

ancestral alleles can be considered (see above), here we simply assume that the ancestral allele

is known for simplicity and speed. Accordingly, only sites with unambiguous ancestral alleles

(qi > 0.98 or q′i > 0.98) are used in the training of the mixture density network. The scaled

mutation rate per site is fixed at θ̂ and we assume an equal mutation rate to each alternative allele,

so the scaled mutation rate for each possible derived allele is equal to θ
3 . Under these assumptions,

the probability of observing a mutation from ancestral allele j to derived allele k at a polymorphic

site i can be calculated as,

Li =
1
3

2

∑
n=0

P
ijk
n Q(mi|Ŝn, ψ̂, θ̂), (11)

where Q(mi|Ŝn, ψ̂, θ̂) is defined in Equation 2 and P
ijk
n is the probability that the mutation belongs

to selection component n. The probability of observing a monomorphic site is then equal to one

minus the total probability of observing a mutation at this site,

Li = 1− ∑
k∈{A,G,C,T}\{j}

2

∑
n=0

M−1

∑
m=1

1
3

P
ijk
n Q(m|Ŝn, ψ̂, θ̂)

=
1
3 ∑

k∈{A,G,C,T}\{j}

2

∑
n=0

P
ijk
n −

1
3 ∑

k∈{A,G,C,T}\{j}

2

∑
n=0

M−1

∑
m=1

P
ijk
n Q(m|Ŝn, ψ̂, θ̂)

=
1
3 ∑

k∈{A,G,C,T}\{j}

2

∑
n=0

P
ijk
n [1−

M−1

∑
m=1

Q(m|Ŝn, ψ̂, θ̂)]

=
1
3 ∑

k∈{A,G,C,T}\{j}

2

∑
n=0

P
ijk
n Q(m = 0|Ŝn, ψ̂, θ̂),

(12)

where Q(m = 0|Ŝn, ψ̂, θ̂) = 1− ∑M−1
m=1 Q(m|Ŝn, ψ̂, θ̂). It is worth noting that Q(m|Ŝn, ψ̂, θ̂) is not

dependent on the parameters in the mixture density network and, therefore, can be precomputed

and cached for efficient evaluation of the likelihood function. Assuming independence across

sites, the loss function for a mini-batch of sites follows

loss = −∑i log(Li)

k
(13)
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in which k is the number of sites in a mini-batch and Li is defined in Equation 11 and 12.
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Supplemental Table S1: Genomic features for LASSIE (hg19 assembly)

Feature group Feature name Type Reference Note
Variant category Stop-gain Binary Liu et al. (2013) Indicate if a mutation results in a gain of stop codon

Stop-loss Binary Liu et al. (2013) Indicate if a mutation results in a loss of stop codon
Missense Binary Liu et al. (2013) Indicate if a mutation results in a substitution of amino acid

Sequence conservation SIFT prediction Binary Liu et al. (2013) Binary prediction of deleteriousness from SIFT
LRT prediction Binary Liu et al. (2013) Binary prediction of deleteriousness from LRT
MA prediction Binary Liu et al. (2013) Binary prediction of deleteriousness from Mutation Assessor
PROVEAN prediction Binary Liu et al. (2013) Binary prediction of deleteriousness from PROVEAN
SLR score Binary Liu et al. (2013) Raw SLR score
SIFT score Numeric Liu et al. (2013) Raw SIFT score
LRT omega Numeric Liu et al. (2013) Raw LRT score
MA score Numeric Liu et al. (2013) Raw Mutation Assessor score
PROVEAN score Numeric Liu et al. (2013) Raw PROVEAN score
Grantham score Numeric Grantham (1974) Raw Grantham score
HMM entropy Numeric Wong et al. (2011) HMM entropy score from SNVBox
HMM relative entropy Numeric Wong et al. (2011) HMM relative entropy score from SNVBox
dscore Numeric Liu et al. (2013) Dscore from PolyPhen-2
Primate phyloP score Numeric Pollard et al. (2010) Primate phyloP conservation score
Mammalian phyloP score Numeric Pollard et al. (2010) Mammalian phyloP conservation score
Vertebrate phyloP score Numeric Pollard et al. (2010) Vertebrate phyloP conservation score

Structural information PredRSAB Numeric Wong et al. (2011) Probability of the residue being buried
PredRSAI Numeric Wong et al. (2011) Probability of the residue being intermediately exposed
PredRSAE Numeric Wong et al. (2011) Probability of the residue being exposed
PredBFactorF Numeric Wong et al. (2011) Probability that the residue’s backbone is flexible
PredBFactorM Numeric Wong et al. (2011) Probability that the residue’s backbone is intermediately flexible
PredBFactorS Numeric Wong et al. (2011) Probability that the residue’s backbone is stiff
PredStabilityH Numeric Wong et al. (2011) Probability that the residue strongly stabilizes folding
PredStabilityM Numeric Wong et al. (2011) Probability that the residue stabilizes folding
PredStabilityL Numeric Wong et al. (2011) Probability that the residue destabilizes folding
PredSSE Numeric Wong et al. (2011) Probability that the secondary structure of the residue is strand
PredSSH Numeric Wong et al. (2011) Probability that the secondary structure of the residue is helix
PredSSC Numeric Wong et al. (2011) Probability that the secondary structure of the residue is loop

Regulatory information SPIDEX Numeric Xiong et al. (2015) SPIDEX Splicing score
Maximum RNA-seq signal Numeric Roadmap Epigenomics Consortium et al. (2015) Maximum RNA-seq signal from the Roadmap Epigenomics Project



Supplemental Table S2: Model fitting of the mixture density network. All coding sites on chro-
mosome 1 were used as the held-out test data.

Number of hidden layers Average loss in the held-out test data
No hidden layer (linear) 0.0321644
One hidden layer (Nonlinear) 0.0322484



Supplemental Table S3: Top 10 most enriched Gene Ontology (molecular function) terms among
the 1,118 genes under enhanced selection.

Category Fold enrichment p-value FDR
GABA receptor activity (GO:0016917) 5.93 3.63E-04 3.53E-03
voltage-gated potassium channel activity (GO:0005249) 5.07 5.78E-08 1.53E-06
glutamate receptor activity (GO:0008066) 4.98 4.67E-05 6.18E-04
mRNA binding (GO:0003729) 3.85 2.86E-09 1.32E-07
voltage-gated ion channel activity (GO:0005244) 3.73 1.10E-06 2.04E-05
translation initiation factor activity (GO:0003743) 3.46 3.24E-03 2.40E-02
adenylate cyclase activity (GO:0004016) 2.91 4.94E-04 4.57E-03
translation regulator activity (GO:0045182) 2.88 8.03E-04 7.08E-03
chromatin binding (GO:0003682) 2.87 1.86E-06 3.13E-05
ligand-gated ion channel activity (GO:0015276) 2.85 2.01E-05 2.86E-04



Supplemental Table S4: Top 10 most enriched Reactome pathways among the 1,118 genes under
enhanced selection.

Category Fold enrichment p-value FDR
Cohesin Loading onto Chromatin (R-HSA-2470946) 10.37 7.87E-05 1.04E-03
CREB phosphorylation through the activation of Adenylate Cyclase (R-HSA-442720) 10.37 3.12E-03 2.02E-02
GABA A receptor activation (R-HSA-977441) 9.22 4.11E-05 5.91E-04
PTK6 Regulates RHO GTPases, RAS GTPase and MAP kinases (R-HSA-8849471) 9.08 1.36E-04 1.58E-03
HuR (ELAVL1) binds and stabilizes mRNA (R-HSA-450520) 8.89 4.55E-04 4.46E-03
Adenylate cyclase activating pathway (R-HSA-170660) 8.30 5.22E-03 2.99E-02
Unblocking of NMDA receptor, glutamate binding and activation (R-HSA-438066) 8.15 3.24E-06 6.18E-05
CREB phosphorylation through the activation of CaMKII (R-HSA-442729) 7.98 1.05E-05 1.75E-04
Interleukin-21 signaling (R-HSA-9020958) 7.78 7.37E-04 6.67E-03
PKA-mediated phosphorylation of CREB (R-HSA-111931) 7.54 1.09E-04 1.36E-03



Supplemental Table S5: Enriched Gene Ontology (molecular function) terms among the 773 genes
under relaxed selection.

Category Fold enrichment p-value FDR
metallopeptidase activity (GO:0008237) 3.57 2.08E-03 4.81E-02
ATPase activity, coupled to transmembrane movement of substances (GO:0042626) 3.12 1.80E-03 6.67E-02
oxidoreductase activity (GO:0016491) 2.82 1.04E-10 1.93E-08
catalytic activity (GO:0003824) 1.45 1.81E-09 1.67E-07



Supplemental Table S6: Top 10 most enriched Reactome pathways among the 773 genes under
relaxed selection.

Category Fold enrichment p-value FDR
Melanin biosynthesis (R-HSA-5662702) 15.87 1.42E-04 2.29E-02
Eicosanoids (R-HSA-211979) 12.34 1.79E-05 5.35E-03
Fructose metabolism (R-HSA-5652084) 11.33 4.03E-04 4.45E-02
Laminin interactions (R-HSA-3000157) 6.04 2.07E-04 2.41E-02
Cytochrome P450 - arranged by substrate type (R-HSA-211897) 5.41 1.17E-06 8.20E-04
Phase I - Functionalization of compounds (R-HSA-211945) 4.31 8.54E-07 8.95E-04
Collagen formation (R-HSA-1474290) 3.84 3.82E-05 8.01E-03
Collagen biosynthesis and modifying enzymes (R-HSA-1650814) 3.71 5.19E-04 4.94E-02
Diseases of metabolism (R-HSA-5668914) 3.27 4.77E-04 4.77E-02
Biological oxidations (R-HSA-211859) 2.82 6.63E-06 3.48E-03



Supplemental Table S7: Top 10 most enriched Gene Ontology (molecular function) terms among
the 1,118 genes under enhanced selection. To control gene length as a possible confounding factor,
foreground genes are matched with background genes by the number of potential mutations.

Category Fold enrichment p-value FDR
Histone-lysine N-methyltransferase activity (GO:0018024) 19.76 3.46E-03 3.04E-02
Histone methyltransferase activity (GO:0042054) 19.76 3.46E-03 2.99E-02
Transcriptional repressor activity, RNA polymerase II transcription regulatory region
sequence-specific DNA binding (GO:0001227) 11.12 3.94E-05 5.45E-04

Voltage-gated potassium channel activity (GO:0005249) 9.88 1.56E-09 5.04E-08
Glutamate receptor activity (GO:0008066) 7.14 9.05E-06 1.41E-04
Glutamate binding (GO:0016595) 7.14 9.05E-06 1.37E-04
Signal sequence binding (GO:0005048) 7.06 1.09E-04 1.39E-03
Voltage-gated cation channel activity (GO:0022843) 6.59 7.25E-04 7.80E-03
Protein serine/threonine/tyrosine kinase activity (GO:0004712) 6.35 3.88E-04 4.37E-03
MAP kinase kinase activity (GO:0004708) 6.35 3.88E-04 4.27E-03



Supplemental Table S8: Top 10 most enriched Reactome pathways among the 1,118 genes under
enhanced selection. To control gene length as a possible confounding factor, foreground genes are
matched with background genes by the number of potential mutations.

Category Fold enrichment p-value FDR
PKA-mediated phosphorylation of CREB (R-HSA-111931) 39.53 4.84E-06 6.66E-05
GABA A receptor activation (R-HSA-977441) 39.53 4.84E-06 6.61E-05
PKA activation (R-HSA-163615) 34.59 2.57E-05 3.14E-04
PTK6 Regulates RHO GTPases, RAS GTPase and MAP kinases (R-HSA-8849471) 34.59 2.57E-05 3.12E-04
HuR (ELAVL1) binds and stabilizes mRNA (R-HSA-450520) 29.64 1.35E-04 1.29E-03
Glucagon signaling in metabolic regulation (R-HSA-163359) 29.64 1.35E-04 1.28E-03
Signaling by Activin (R-HSA-1502540) 29.64 1.35E-04 1.28E-03
PKA activation in glucagon signalling (R-HSA-164378) 29.64 1.35E-04 1.27E-03
Activated PKN1 stimulates transcription of AR (androgen receptor) regulated genes
KLK2 and KLK3 (R-HSA-5625886)

29.64 1.35E-04 1.27E-03

ERCC6 (CSB) and EHMT2 (G9a) positively regulate rRNA expression (R-HSA-427389) 29.64 3.21E-08 9.03E-07



Supplemental Table S9: Enriched Gene Ontology (molecular function) terms among the 773 genes
under relaxed selection. To control gene length as a possible confounding factor, foreground genes
are matched with background genes by the number of potential mutations.

Category Fold enrichment p-value FDR
Oxidoreductase activity (GO:0016491) 3.05 5.94E-10 2.86E-07



Supplemental Table S10: Top 10 most enriched Reactome pathways among the 773 genes under
relaxed selection. To control gene length as a possible confounding factor, foreground genes are
matched with background genes by the number of potential mutations.

Category Fold enrichment p-value FDR
Eicosanoids (R-HSA-211979) 34.85 2.45E-05 7.47E-03
Cytochrome P450 - arranged by substrate type (R-HSA-211897) 6.79 2.45E-06 8.99E-04
Arachidonic acid metabolism (R-HSA-2142753) 6.40 3.66E-04 5.16E-02
Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism (R-HSA-6788656) 6.40 3.66E-04 4.79E-02
Phase I - Functionalization of compounds (R-HSA-211945) 4.98 2.08E-06 9.52E-04
Biological oxidations (R-HSA-211859) 4.34 9.74E-08 8.92E-05
Fatty acid metabolism (R-HSA-8978868) 4.07 2.48E-05 6.50E-03
Metabolism of amino acids and derivatives (R-HSA-71291) 3.25 1.01E-06 6.14E-04
Metabolism of carbohydrates (R-HSA-71387) 2.41 2.42E-04 4.02E-02
Metabolism (R-HSA-1430728) 2.21 5.84E-17 1.07E-13
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Supplemental Figure S1: Comparison of folded site-frequency spectra between the Poisson Ran-
dom Field model and the observed data. (A) The expected site-frequency spectrum from the
demographic model provides an excellent fit to the observed site-frequency spectrum in putative
neutral regions. (B) The expected site-frequency spectrum from the three-component selection
model provides an excellent fit to the observed site-frequency spectrum in coding regions.
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Supplemental Figure S2: Feature weights estimated by LASSIE. Blue and red bars depict the
weights associated with strong and weak selection, respectively. A positive weight suggests that
the corresponding feature is positively correlated with weak or strong selection. The colors of
feature names correspond to four feature groups: variant category (green), sequence conservation
(purple), structural information (red), and regulatory information (orange).



0.00000

0.00005

0.00010

0.00015

0.00020

Low
expression

Medium
expression

High
expression

0.00000

0.00005

0.00010

0.00015

0.00020

Single−exon gene Multi−exon gene

0.00000

0.00005

0.00010

0.00015

0.00020

No binding SRSF1 binding

0.00000

0.00005

0.00010

0.00015

0.00020

No binding SRSF7 binding

A B

C D

|s| |s|

|s| |s|

Supplemental Figure S3: Distribution of selection coefficients across synonymous mutations. (A)
Negative selection on synonymous mutations is positively correlated with gene expression level
(Spearman’s rank correlation coefficient ρ = 0.286; two-tailed p < 10−15 by t-test). (B) Negative
selection on synonymous mutations is stronger in multi-exon genes than single-exon genes (two-
tailed p < 10−15 by Wilcoxon rank-sum test). (C) Negative selection on synonymous mutations is
stronger in SRSF1 binding sites than non-binding sites (two-tailed p < 10−15 by Wilcoxon rank-
sum test). (D) Negative selection on synonymous mutations is strong in SRSF7 binding sites than
non-binding sites (two-tailed p = 3.036× 10−10 by Wilcoxon rank-sum test). The SRSF1 and SRSF7
binding sites were obtained from a previous study (Van Nostrand et al., 2016). In each box plot,
the bottom, the top, and the internal horizontal bar of each box depict the firt quartile, the third
quartile, and the median, respectively. The whiskers represent the 1.5-fold interquartile ranges.
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Supplemental Figure S5: Prediction power of different computational and experimental methods
for separating pathogenic variants from benign variants in the BRCA1 gene. The CRISPR scores
were obtained from Findlay et al. (2018).
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Supplemental Figure S6: Comparison of expected and observed numbers of synonymous muta-
tions across all protein coding genes in the ExAC data set. Each dot represents a single protein
coding gene. A gene was filtered out if it is enriched or depleted with synonymous mutations in
the ExAC data set (Poisson-Binomial test; FDR rate ≤ 0.2). Genes with less that 200 potential syn-
onymous mutations were also filtered out and were not shown in the plot. The dashed diagonal
line represents the case of the expected number of mutations being equal to the observed number
of mutations.
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Supplemental Figure S7: Groups of genes enriched for enhanced or relaxed selection. To control
gene length as a possible confounding factor, foreground genes are matched with background
genes by the number of potential mutations.
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Supplemental Figure S8: Distribution of distances between coding sites and nearest putative
neutral site. 1.5% coding sites are more than 20kb away from any putative neutral site and their
distances are truncated at 20kb.
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Supplemental Figure S9: Comparison of folded site-frequency spectra between all 4D synony-
mous sites and 4D sites within 2kb of any neutral sites.
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Supplemental Figure S10: Comparison of folded site-frequency spectra between segregating 4D
sites and neutral sites. In comparison with segregating neutral sites, segregating 4D sites are
enriched with singleton variants, suggesting negative selection on synonymous mutations.
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Supplemental Figure S11: Correlation between LASSIE parameters separately estimated on even-
and odd-numbered chromosomes (Pearson’s correlation coefficient r = 0.967). The dashed diag-
onal line represents the case of the estimated parameters being equal between even- and odd-
numbered chromosomes.


