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1 Spatio-temporal proxy data availability

Supplementary Figure 1: Spatiotemporal distribution of proxy records in the
R-FDR screened proxy network1 used in the final reconstructions. Top: Proxy
map by archive type, coded by color and shape. Bottom: Temporal availability
of proxy data per archive, coded by color as in the top panel.
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2 Evaluation of reconstructions
Supplementary Fig. 2 provides a comparison across methods for the evaluation
metrics cross-correlation, root mean squared error (RMSE), reduction of error2
(RE), continuous ranked probability score3,4 (CRPS) and the interval score3
at the 95% level. The 1881-1915 evaluation period is used for all methods. A
comparison of the RMSE of different proxy subsets representing different points
in time is shown in SupplementaryFig. 3. It is based on reconstructions using
only those proxies extending back least to the year 1600, 1500, 1000, 500 and
1, respectively. In general, the different methods yield a consistent picture with
similar performance and no discernible best method can be identified based on
these metrics. For instance, the DA method has very good performance for all
metrics in the most recent period, but errors strongly increase back in time.
For alternative ensemble median GMST time series based on evaluation skill
see Supplementary Fig. 6.

Supplementary Figure 2: Evaluation performance of reconstructions with
the target over the 1881-1915 evaluation period. Boxplots represent ensemble
members, circles the skill of the ensemble median. Dotted horizontal lines are
the median of all methods. RMSE, CRPS and interval score have a reversed
y-axis, so that performance increases towards the top of the figure for all metrics.
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Supplementary Figure 3: RMSE of reconstructions with the target over the
1881-1915 evaluation period for different proxy subsets. Gray boxes represent
the full network, purple represents proxy records that extend back to the year
1600 CE or beyond. Cyan: 1500 CE, blue: 1000 CE, green: 500 CE, red 1
CE. Boxplots represent ensemble members, circles the RMSE of the ensemble
median. For the BHM method, only the 1000 CE set is available. Note that
lower values indicate more skillful results.
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3 Seasonal sensitivity tests

3.1 Exploring possible impacts of treating seasonal prox-
ies as if they represent an annual average

The reconstructions in this study are based on the assumption that the an-
nually resolved proxies represent the annual mean temperature (except for the
DA method5). This is a valid assumption in some cases but not for all proxy
types and locations. For instance, a majority of the tree-ring based records from
Northern Hemisphere continents respond more strongly to climatic conditions
during the growing season than to the annual mean. To assess the uncertain-
ties in space and time due to this assumption, we conduct two analyses: 1) the
correlation between summer and annual temperature at each grid box in an in-
strumental data set and a model simulation; 2) long-term trends of global mean
annual mean summer and annual average temperature over the past millennium.

3.1.1 Correlation between annual mean and boreal summer mean
temperature

Here we calculate the correlation between annual average temperature and NH
summer (JJA) temperature. First, the results are shown for the CRUTEM4
median data set6 of gridded instrumental observations for the period 1851-2016
(Supplementary Fig. 4a) (note that in many locations the observations start
after 1851). Second, the results are shown for one ensemble member of the MPI
ESM model simulations7 in the period 850-2000 CE (Supplementary Fig. 4b).
Both observations and simulations suggest that correlations of summer temper-
atures and annual mean temperatures fall below 0.5 for large parts Northern
Hemisphere land regions. For the PAGES 2k dataset, however, the majority of
sites is located in regions with higher correlation and few time series are from
regions with lowest correlation coefficients. Hence, there is still a clearly posi-
tive relationship between summer and annual mean temperature. Additionally,
aggregation of the paleodata into a global average increases the correlation be-
tween annual and summer temperature, and our GMST April-March instrumen-
tal target correlates very strongly with JJA GMST (R = 0.97; Supplementary
Fig. 4c).
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Supplementary Figure 4: a CRUTEM4 correlation between annual mean
temperature and JJA mean temperature. b Same for one MPI ESM ensemble
member. Symbols indicate the PAGES 2k paleodata locations in the year 1500
CE. c Comparison of the instrumental target used herein (Apr.-Mar. Cowtan
& Way8 GMST) with the boreal summer (JJA) seasonal average of the same
dataset.

3.1.2 Long-term trend in summer and winter temperature

Furthermore, we looked at the long-term evolution of NH summer (Apr. to Sep.)
and winter (Oct. to Mar.) temperature over the past 1000 years in simulations
with the MPI ESM7 and the CCSM model9. We find clear differences in the
long-term trend between Apr. to Sep. and Oct. to Mar. season in a global
mean temperature. In both models, global mean temperature decreases around
0.2 K per millennium more in the Oct. to Mar. season than in the Apr. to Sep.
season (Supplementary Fig. 5) due to orbital forcing. Given that our proxy
database contains more boreal summer than winter proxies, our estimates of
the long-term cooling trends are likely minimum values.
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Supplementary Figure 5: Global mean 31-year running mean temperature
anomalies (with respect to the last 100 years of the simulations). One ensemble
member from the MPI ESM (top) and one ensemble member from the CCSM
model (bottom). ‘Summer’ is Apr. to Sep.; ‘Winter’ is Oct. to Mar.
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4 GMST best estimates
All seven reconstructions were combined to generate a consensus GMST recon-
struction. We explored the sensitivity of the final reconstruction to the choice
of weightings for each of the methods. Weighting the different methods and
ensemble members based on their evaluation skill within the instrumental era
has only a minor effect on the resulting best estimate time-series, because the
methods generally perform similarly and the skill metrics do not clearly identify
a "best" method (Supplementary Fig. 2–3). Thus, results are extremely robust
to using the simple average vs. skill-based weighted means (Supplementary
Fig. 6).

Separating methods that do or do not incorporate low-frequency proxy data
has the strongest effect on the multi-method mean (Supplementary Fig. 6).
Methods that incorporate low- and high-frequency records (PAI, OIE and M08)
yield best estimates with a larger pre-industrial trend than methods using only
high-frequency records. However, due to the relatively short overlap between
instrumental and proxy data, and because all but one method (DA) do not
forward model the proxy data10, it is not possible to compare and evaluate the
different reconstructions in terms of their performance on time scales longer
than multi-decadal.

Thus our data do not allow an objective judgment of which of the two
method groups (high-resolution records only vs. all records included) yields the
more reliable low-frequency temperature estimate. As stated in the main text,
high-resolution paleoclimate archives (such as tree rings) often under-represent
fluctuations on time scales longer than multi-decadal, and many are seasonally
biased1,11. On the other hand, marine-based, low-resolution records seem to
overestimate the true variance12.

Given these findings, we strongly recommend that future users of this re-
construction product make use of our full 7000-member multi-method ensem-
ble, which captures uncertainties arising from both the different reconstruction
methods and sampling of the input data.
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Supplementary Figure 6: Same as Fig. 1a in the main text, but showing
alternative approaches to generating a consensus time series. Red: ensemble
mean of all methods weighted based on evaluation skill, with one thin line
representing each: no weight (full ensemble mean), RMSE, correlation, RE,
CRPS, 90% coverage rate, interval score and an average of all metrics. Green:
same but using only methods that incorporate low-resolution (>1 year) proxy
time series (PAI, M08 and OIE methods). Blue: same but using only methods
that only incorporate high-resolution proxy records (<=1 year; CPS, PCR,
BHM and DA methods). Cyan: median across the full ensemble.
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5 Response to forcing

5.1 Additional D&A plots

Supplementary Figure 7: a Scaling factors for total forcing for the CESM
model (as shown in Fig. 3a, left). Right: same but using all 23 model simulations
instead of only the CESM ensemble. b Same as Fig. 3a but over the period
1300-1970, thus including the industrial era. All other forcings are used in
this experiment instead of GHG-forcing only to include the full spectrum of
anthropogenic forcing, including aerosols. The 30-200 year bandpass filter used
here removes the warming trend of the last 150 years. c Same as b but using
30 year lowpass filtered data. The recent warming trend is now retained in
the data and the anthropogenic signal is clearly visible (right boxplot). In
fact, the scaling factors are significantly above one for anthropogenic forcing,
indicating an underestimation of anthropogenic forcing by the model relative
to the reconstructions. This is probably caused by the strong aerosol forcing
in CESM, leading to a relatively weak 20th century warming in this model
compared to other simulations13.



Supplementary Figure 8: Comparison of estimates of internal multi-decadal
GMST variability. Top: Density plot of all possible comparisons between the
estimates of unforced internal variability based on the D&A residuals (n =
7000) and model control simulations (n = 43) shown in Fig.3b (left) in the
main text. Each value from the control simulations is subtracted from each
value from the D&A residuals. Horizontal dashed (dotted) lines show the 95%-
range (interquartile range). Bottom: Same but for the estimates based on the
temperature variability during the Medieval Quiet Period from reconstructions
(n = 7000) and model simulations (n = 23) shown in Fig.3b (right). In both
cases, the value of zero is within the interquartile range, indicating consistency
between the different lines of evidence.
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5.2 Volcanic forcing
Volcanic forcing is often interpreted as to alter temperature anomalies on time
scales of months to a few years. Our results (Figs. 2-4 in the main text)
do suggest a GMST response to volcanic forcing on multi-decadal time scales.
Along with evidence from the literature14,15, the following analyses indicate the
this multi-decadal response is not just an artifact from filtering, but reflects a
physically consistent property of the climate system.

We calculate the probability that a volcanic eruption occurs n years before or
after the center-year of a linear trend using all overlapping pre-industrial 51-year
trends of all 7000 ensemble members. The results are shown for a window of
-45<n<45 years in Supplementary Fig. 9. There is high probability that strong
cooling trends are centered around 10 years prior to a large volcanic eruptions
(threshold aerosol optical depth AOD>0.15, 22 eruptions within 1-1850 CE).
Strong warming trends, in turn, are probable to be centered around 25 years
after an eruption, i.e. the beginning of the 51-year trend period is roughly at
the time of the eruption. Due to this relatively fast beginning of the recovery
from cooling, the strongest cooling trend are centered a few years prior to the
eruption event. The figure also shows that strong warming (cooling) trends
are unlikely to be centered around eruption events (around 25 years after an
eruption).

Results for the model simulations are very similar (Supplementary Fig. 10),
indicating that the observed pattern is physically plausible. In the model data,
the strong warming trend occur closer to the eruption date (i.e. are shifted to
the right on the x-axis) compared to the reconstructions, which causes also the
strong cooling events to be centered 3-5 years earlier relative to the eruption
date. This faster recovery in the model world is also visible in Fig. 2 in the
main text.

Superposed Epoch Analysis of the 51-year trends confirms these findings
and shows that both the cooling around the eruption date and the subsequent
strong warming are significant (Supplementary Fig. 11).

11



Supplementary Figure 9: Probability of large volcanic eruptions to occur be-
fore, during or after a 51-year trend. The number of eruptions occurring in year
n before or after the center year of the trend across the entire reconstruction
ensemble is divided by the number of eruptions occurring by chance. The hori-
zontal axis shows the lag n from the center year of the trend with the vertical
line indicating the full range of the 51-year trend. The vertical axis indicates the
magnitude of the trend with large positive trends at the top and large negative
trends at the bottom.

Supplementary Figure 10: Same as Supplementary Fig. 9,but for the 23
climate model simulations used herein. The period covered is 850-1850.
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Supplementary Figure 11: Superposed Epoch Analysis of 51-year trends
around large volcanic eruptions (AOD>0.15). Top: The green line shows the
average 51-year trend of the reconstruction ensemble median between −70 to
+70 years after the eruption date (anomalies wrt years -70 to -30). Green
shading represents the 95% confidence interval based on all 51-year trends that
are not overlapping with an eruption. The black line shows the median response
of the individual ensemble members. Bottom: Ensemble probability for the
average trend to be below (blue) or above (red) the confidence interval (of the
individual ensemble member).

Next, we further assess the temperature response to volcanic forcing in model
simulations, to test whether the observed multi-decadal signal in the temper-
ature response also evidenced in physics-based simulations. Supplementary
Fig. 12 shows the median temperature evolution in volcanic-only forced sim-
ulations of the HadCM316 and CESM_113 ensembles. This figure illustrates
the long-term effect of volcanic cooling, with a clear multi-decadal pattern.
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Supplementary Figure 12: Volcanically-only forced model simulations be-
tween 1400-2000 CE. Ensemble median (unfiltered) temperature evolution sim-
ulated by HadCM316 (n = 3) and CESM_113 (n = 5) using only volcanic
forcing as external driver.

Supplementary Fig. 13 assess the cumulative effect of magnitude and fre-
quency of volcanic eruptions on multi-decadal temperature trends in climate
models. It shows AOD magnitudes integrated over 20 years vs. 51-year tem-
perature trend in the model simulations. There is a strong relationship between
these two curves (r = 0.71, p < 0.01, corrected for first-order autocorrelation),
providing more evidence for an influence of the frequency and magnitude of
volcanic forcing on multi-decadal temperature trends.
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Supplementary Figure 13: 30-year cumulative volcanic forcing and multi-
decadal GMST trends in model simulations. Black: 20-year sum of AOD, to
represent the cumulative magnitude and frequency of volcanic eruptions. Red:
ensemble median 51-year temperature trends across the 23 model simulations
used herein. Years on the horizontal axis reflect the last year of each 51-year
trend, to account for the lagged response of the trends to eruptions (Supple-
mentary Fig. 9). Correlation and p-value, corrected for lag-1 autocorrelation,
are provided in the Figure.

In addition, we run a simple zero-dimensional Energy Balance Model17
(EBM, see Methods) to test if changes in the frequency of volcanic eruptions
can alter multi-decadal temperature variability. Indeed, a multi-decadal signal
is evident in both the full-forced (all = CO2 + solar + volcanic) and volcanic-
only EBM (Supplementary Fig. 14).
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Supplementary Figure 14: Temperature variations over the CE based on an
EBM using full (black) and volcanic-only (blue) forcing. The blue line corre-
sponds to the green line in Fig. 4a in the main text.

To further test the influence of volcanic forcing on multi-decadal GMST
variability, a stochastic volcanic forcing experiment is performed. For this, the
2000-year-long volcanic history18,19 is split in 133 segments which start from
a near-zero volcanic background flux before an eruption, and which contain an
event, as well as the subsequent decay to a background flux (−0.115W/m2).
For volcanic surrogates, we randomly draw from these 133 volcanic epochs to
construct 2000-year long forcing histories. The EBM is run for 1000 randomized
forcing histories. A considerable proportion of the resulting GMST variability
is contained in the multi-decadal frequency band (red dot at x=133 and upper
inset in Supplementary Fig. 15 ). Now, keeping the overall forcing variability
fixed to (var(∆F ) = 0.6W/m2 + 0.01), we decrease the recurrence time for
volcanic eruptions by mixing in non-volcanic background epochs, adding Gaus-
sian distributed noise over the whole time period (Supplementary Fig. 15 lower
inset) such that with fewer eruptions, white noise becomes stronger. We then
evaluate the ratio of multi-decadal (30-200a) variance to total variance using
power spectra (c.f. Ref. 20). We find that with the increase of the recurrence
time of volcanic events, the relative proportion of variance in the multi-decadal
to centennial band decreases.
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Supplementary Figure 15: Ratio of multi-decadal vs. total GMST variance
as a function of the frequency of volcanic eruptions in the EBM. The ratio is
calculated 1000 times for n volcanic eruptions per 2000 years for n between 2
and 133 (the value corresponding observations in Ref. 21). The insets show one
realization of temperature history (black) and volcanic forcin (blue) in the EBM
for n = 133 (upper inset) and n = 14 (lower inset).

This collection of evidence suggests that the multi-decadal response of GMST
variability and trends presented in the main text is consistent with the physics
of the climate system.

5.3 Solar forcing
Supplementary Fig. 16 presents a cross wavelet analysis22,23 of GMST and
solar forcing24,25. The results indicate no robust relationship between GMST
and solar forcing. Coherence is mostly found at the very lowest frequencies
(below 500 years), where the degrees of freedom are too small to allow a robust
significance analysis.
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Supplementary Figure 16: Wavelet coherence between the solar forcing and
the reconstructed temperature time series for the different methods. Red de-
notes coherence > 0.5; blue denotes < 0.5. The relative phase relationship is
shown as arrows (plotted where coherence is > 0.5) with in-phase pointing right
and anti-phase pointing left, and solar forcing leading temperature by 90 de-
grees pointing up. “LMR” in the header of the bottom panel refers to the DA
method.



6 Sensitivity to proxy subsets and time-series fil-
tering

Supplementary Fig. 17 shows the reconstructions and their skill based on the
full unscreened PAGES 2k proxy matrix as opposed to the screened network
used in the main text (see Methods section). The screened subset yields bet-
ter agreement across methods and higher evaluation skill for all reconstruction
techniques.
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Supplementary Figure 17: a, b Same as Fig. 1 in the main text but us-
ing all proxies within the PAGES 2k database (not only the R-FDR screened
records) and based on a 1916-1995 calibration period. c evaluation RMSE for the
screened (R-FDR) and full (STD) proxy dataset for all reconstruction methods.
Boxplots represent ensemble members, circles the skill of the ensemble median,
and diamonds the calibration period RMSE of the ensemble median. Note that
lower values indicate better performance.
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Supplementary Fig. 18 provides an alternative window for the filtering of
the time series to show multi-decadal GSMT variability. The figure indicates
that the choice of the bandwidth does not influence our interpretations and
conclusions.

Supplementary Figure 18: Same as Fig. 2 in the main text but using a
window between 20 and 100 years (instead of 30-200 years) for the butterworth
filtering of the time series.

There is an apparent data-model mismatch in the 19th century in Fig. 2 in
the main text. Supplementary Fig. 19 compares the unfiltered data over 1750-
2010 and indicates that the apparent difference is inflated by the filter applied in
Fig. 2. The unfiltered data show that the difference is really only caused by the
stronger cooling after Tambora in the models and a slightly faster recovery from
the cooling caused by the 1830s eruptions in the models. Recent literature26–28
and a composite of long instrumental stations show that the reconstructions are
likely to better capture the temperature variability in the early 19th century
compared to the models (with the caveat that the instrumental composite is
strongly biased towards the European domain, where all stations are located).
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Supplementary Figure 19: Comparison of reconstructions, models and in-
strumental data over 1750-2010. Same as Fig. 2 but using unfiltered data and
over the 1750-2010 time window. The instrumental target is also included (black
line). Pink line shows a composite of long instrumental station data extending
back to 1775. Station data are from GHCNm (v3, adjusted) and all stations cov-
ering 75% of years within 1775-1900 are included (at least nine months with non-
missing data required per year). Included stations are Kremsmünster, Wien,
Prag, Paris, Karlsruhe, Berlin/Dahlem, Berlin/Tempelhof, München, Hohen-
peissenberg, Budapest, Milano, Torino, Vilnius, De Bilt, Trondheim, Warsaw,
St. Petersburg, Stockholm, Basel, Genf, Edinburgh, Greenwich, New Haven.
Because these are land station data, they have much larger variance than the
GMST data. The composite was therefore scaled to the variance of the Cowtan
& Way instrumental target over 1850-1900. All anomalies are with respect to
the common period of overlap (1850-1900).
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7 Trends: Sensitivity figures
Supplementary Fig. 20a is similar to Fig. 4 in the main text but using relative
trends. To correct for variance biases back in time due to proxy replication
or other artifacts arising from the methodology11, the trend of each 51-year
period is divided by the temperature standard deviation over the respective
51-year period. Results are very similar to the uncorrected data, indicating
that variance issues do not influence our conclusions about trends over different
periods.

Supplementary Fig. 20b shows an alternative illustration for the trends by
displaying the ensemble probability for large trends at each time step (lines)
and the ensemble probability for the largest 51-year trend within each century
(blue bars). The figure also shows the results from a reconstruction using de-
trended data for calibration (green line). 20th century trends remain large, even
with detrended calibration, indicating that the large trends in this century are
not a calibration artifact. Supplementary Fig. 20b also includes results from
pure-noise-proxy reconstructions based on two different methods to generate
the noisse proxies: Serially correlated full AR noise proxies as described in the
Methods section of the main text (orange). Cross-correlated noise proxies are
generated such that the multivariate correlation among the noise-proxies is the
same as in the real-proxy matrix (purple). These cross-correlated noise proxies
have the same AR(1) coefficient as the real proxies (as opposed to the serially
correlated noise proxies, which have the full AR-spectrum identical to the real
proxies). Pure-noise-proxy reconstructions based on both methods also have the
largest trends in the 20th century. The magnitude is, however, much smaller and
the ensemble probability for the largest 20th century trends is clearly higher for
the real data (Supplementary Fig. 20c). Note that the noisy-proxy comparisons
are only based on the CPS, PCR and PAI methods.
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Supplementary Figure 20: a Same as Fig. 4a in the main text, but for
relative trends. Trends are divided by the GMST standard deviation of each
respective 51-year period. b Probability of occurrence of large trends. Fraction
of reconstruction ensemble members showing a 51-year trend that exceeds the
97.5th percentile of all pre-industrial (1-1850 CE) trends. Gray: reconstructions.
Red: model simulations. Green: reconstruction using detrended proxy and
target data for calibration. Orange: pure AR-noise proxies (same data as in
Fig. 4b). Purple: additional noise proxy experiment using cross-corelated (same
covariance matrix as real proxy data) AR(1) noise proxies (see Methods in main
text). These experiments were only conducted for the CPS, PCR and PAI
methods. Green diamonds represent large volcanic eruptions in different data
sets21,29,30. Blue bars represent the ensemble probability that the largest 51-
year trend occurs in the given century (note the reversed y-axis). c Same as Fig.
4b in the main text, but also including cross-correlated noise proxies (purple).
These experiments were only conducted for the CPS, PCR and PAI methods.



8 Additional data-model comparison tables

Supplementary Table 1: Same as the last two columns in Tab. 1 in the main
text but using unfiltered data. Data present the variance ratios and correlations
between unfilterred models and data, respectively, over the period 1300-2000.
Ensemble medians are provided for each reconstruction method and 2.5th and
97.5th percentiles in square brackets. Percentage of ensemble members with
correlations larger than expected from noise in parenthesis.

model/data variance model vs. data
ratios unfiltered correlations unfiltered

Composite plus scaling (CPS) 1.4 [0.99, 3.07] 0.41 [0.3, 0.65] (100%)
Principal component regression (PCR) 1.38 [0.9, 2.98] 0.4 [0.29, 0.65] (100%)
Optimal information extraction (OIE) 1.05 [0.84, 2.29] 0.41 [0.32, 0.6] (100%)
Regularized errors in variables (M08) 1.17 [0.74, 2.53] 0.46 [0.35, 0.7] (100%)
Pairwise comparison (PaiCO) 1.62 [1.28, 3.59] 0.49 [0.37, 0.79] (100%)
Hierarchical Bayesian model (BHM) 0.7 [0.56, 1.54] 0.38 [0.29, 0.69] (100%)
Offline data assimilation (DA) 2.35 [1.36, 5.02] 0.51 [0.41, 0.78] (100%)

Supplementary Table 2: Same as the third column in Tab. 1 in the main text
but showing the result for each individual model simulation. Data present the
variance ratios between multi-decadal (30-200 year bandpass filtered) models
and data over the period 1300-2000. Ensemble medians are provided for each
reconstruction method and 2.5th and 97.5th percentiles in square brackets.

CPS PCR OIE M08 PAI BHM DA
CCSM4 2.07 [1.51, 2.7] 2.1 [1.43, 3.01] 2.19 [1.77, 2.71] 1.31 [0.83, 1.89] 2.58 [2.41, 2.74] 2.5 [2.11, 2.89] 2.32 [1.97, 3.29]
CESM 1 0.9 [0.66, 1.18] 0.91 [0.62, 1.31] 0.95 [0.77, 1.18] 0.57 [0.36, 0.82] 1.13 [1.05, 1.19] 1.09 [0.92, 1.26] 1.01 [0.86, 1.43]
CESM 2 0.74 [0.54, 0.97] 0.75 [0.51, 1.08] 0.78 [0.63, 0.97] 0.47 [0.3, 0.68] 0.93 [0.86, 0.98] 0.9 [0.75, 1.03] 0.83 [0.71, 1.18]
CESM 3 0.71 [0.52, 0.93] 0.72 [0.49, 1.03] 0.75 [0.61, 0.93] 0.45 [0.29, 0.65] 0.89 [0.83, 0.94] 0.86 [0.72, 0.99] 0.8 [0.67, 1.13]
CESM 4 0.83 [0.6, 1.08] 0.84 [0.57, 1.21] 0.88 [0.71, 1.09] 0.52 [0.33, 0.76] 1.03 [0.96, 1.1] 1 [0.84, 1.15] 0.93 [0.79, 1.31]
CESM 5 0.75 [0.55, 0.98] 0.76 [0.52, 1.09] 0.79 [0.64, 0.98] 0.47 [0.3, 0.68] 0.94 [0.87, 0.99] 0.91 [0.76, 1.05] 0.84 [0.71, 1.19]
CESM 6 0.83 [0.61, 1.09] 0.84 [0.58, 1.21] 0.88 [0.71, 1.09] 0.53 [0.33, 0.76] 1.04 [0.97, 1.1] 1.01 [0.85, 1.16] 0.93 [0.79, 1.32]
CESM 7 0.38 [0.28, 0.5] 0.39 [0.26, 0.55] 0.4 [0.33, 0.5] 0.24 [0.15, 0.35] 0.48 [0.44, 0.5] 0.46 [0.39, 0.53] 0.43 [0.36, 0.6]
CESM 8 0.66 [0.48, 0.87] 0.67 [0.46, 0.97] 0.7 [0.57, 0.87] 0.42 [0.27, 0.61] 0.83 [0.77, 0.88] 0.8 [0.68, 0.93] 0.74 [0.63, 1.05]
CESM 9 0.7 [0.51, 0.92] 0.71 [0.49, 1.02] 0.74 [0.6, 0.92] 0.44 [0.28, 0.64] 0.88 [0.82, 0.93] 0.85 [0.71, 0.98] 0.79 [0.67, 1.12]
CESM 10 0.72 [0.52, 0.94] 0.73 [0.5, 1.04] 0.76 [0.61, 0.94] 0.45 [0.29, 0.66] 0.9 [0.84, 0.95] 0.87 [0.73, 1] 0.8 [0.68, 1.14]
CESM 11 0.61 [0.44, 0.8] 0.62 [0.42, 0.89] 0.64 [0.52, 0.8] 0.39 [0.24, 0.56] 0.76 [0.71, 0.81] 0.74 [0.62, 0.85] 0.68 [0.58, 0.97]
CESM 12 0.54 [0.39, 0.7] 0.54 [0.37, 0.78] 0.57 [0.46, 0.7] 0.34 [0.22, 0.49] 0.67 [0.63, 0.71] 0.65 [0.55, 0.75] 0.6 [0.51, 0.85]
CESM 13 1.07 [0.78, 1.4] 1.09 [0.74, 1.56] 1.13 [0.92, 1.4] 0.68 [0.43, 0.98] 1.34 [1.25, 1.42] 1.29 [1.09, 1.5] 1.2 [1.02, 1.7]
BCC-CSM 1.96 [1.43, 2.56] 1.99 [1.36, 2.85] 2.07 [1.68, 2.57] 1.24 [0.79, 1.79] 2.45 [2.28, 2.6] 2.37 [1.99, 2.73] 2.2 [1.86, 3.11]
CSM1 1.09 [0.8, 1.43] 1.11 [0.76, 1.59] 1.16 [0.94, 1.43] 0.69 [0.44, 1] 1.36 [1.27, 1.45] 1.32 [1.11, 1.52] 1.23 [1.04, 1.74]
GISS 1 1.76 [1.29, 2.31] 1.79 [1.22, 2.57] 1.87 [1.51, 2.32] 1.12 [0.71, 1.62] 2.21 [2.06, 2.34] 2.14 [1.8, 2.47] 1.98 [1.68, 2.81]
GISS 2 1.7 [1.24, 2.23] 1.73 [1.18, 2.48] 1.8 [1.46, 2.24] 1.08 [0.69, 1.56] 2.13 [1.99, 2.26] 2.06 [1.74, 2.38] 1.91 [1.62, 2.71]
GISS 3 1.53 [1.12, 2.01] 1.56 [1.06, 2.24] 1.62 [1.31, 2.01] 0.97 [0.62, 1.4] 1.92 [1.79, 2.04] 1.86 [1.56, 2.14] 1.72 [1.46, 2.44]
HadCM3 1.85 [1.35, 2.42] 1.88 [1.28, 2.69] 1.96 [1.58, 2.42] 1.17 [0.74, 1.69] 2.31 [2.16, 2.45] 2.23 [1.88, 2.58] 2.07 [1.76, 2.94]
MPI 1 2.39 [1.75, 3.13] 2.43 [1.66, 3.49] 2.53 [2.05, 3.14] 1.52 [0.96, 2.19] 2.99 [2.79, 3.17] 2.9 [2.44, 3.34] 2.69 [2.28, 3.81]
MPI 2 1.57 [1.15, 2.06] 1.6 [1.09, 2.29] 1.67 [1.35, 2.06] 1 [0.63, 1.44] 1.97 [1.84, 2.09] 1.9 [1.6, 2.2] 1.77 [1.5, 2.5]
MPI 3 2.47 [1.8, 3.23] 2.51 [1.71, 3.6] 2.62 [2.12, 3.24] 1.56 [0.99, 2.26] 3.09 [2.88, 3.28] 2.99 [2.52, 3.45] 2.77 [2.35, 3.93]
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Supplementary Table 3: Same as the last column in Tab. 1 in the main
text but showing the result for each individual model simulation. Data present
the correlations between multi-decadal (30-200 year bandpass filtered) models
and data over the period 1300-2000. Ensemble medians are provided for each
reconstruction method and 2.5th and 97.5th percentiles in square brackets. Per-
centage of ensemble members with correlations larger than expected from noise
in parenthesis.

CPS PCR OIE M08
CCSM4 0.68 [0.54, 0.75] (99.9%) 0.6 [0.38, 0.73] (99.5%) 0.62 [0.52, 0.7] (100%) 0.63 [0.53, 0.7] (99.9%)
CESM 1 0.53 [0.37, 0.63] (98.8%) 0.51 [0.32, 0.63] (98.3%) 0.58 [0.48, 0.66] (99.3%) 0.47 [0.38, 0.54] (97.6%)
CESM 2 0.57 [0.4, 0.66] (99.9%) 0.58 [0.4, 0.69] (99.6%) 0.65 [0.55, 0.72] (100%) 0.56 [0.44, 0.63] (99.9%)
CESM 3 0.58 [0.45, 0.67] (99.9%) 0.56 [0.4, 0.68] (99.6%) 0.64 [0.55, 0.72] (99.9%) 0.55 [0.44, 0.64] (99.7%)
CESM 4 0.64 [0.51, 0.72] (100%) 0.59 [0.37, 0.71] (99.5%) 0.64 [0.55, 0.72] (100%) 0.67 [0.58, 0.74] (100%)
CESM 5 0.58 [0.43, 0.66] (99.9%) 0.59 [0.43, 0.71] (99.8%) 0.59 [0.49, 0.66] (100%) 0.56 [0.47, 0.63] (99.9%)
CESM 6 0.55 [0.4, 0.65] (99.1%) 0.5 [0.29, 0.63] (97.8%) 0.59 [0.49, 0.68] (99.5%) 0.61 [0.5, 0.68] (99.7%)
CESM 7 0.5 [0.37, 0.59] (98.7%) 0.49 [0.32, 0.6] (98.4%) 0.53 [0.43, 0.61] (99.5%) 0.51 [0.4, 0.59] (99.2%)
CESM 8 0.6 [0.47, 0.68] (99.6%) 0.57 [0.39, 0.69] (99.5%) 0.58 [0.48, 0.67] (99.8%) 0.61 [0.5, 0.68] (99.8%)
CESM 9 0.56 [0.45, 0.65] (99.5%) 0.54 [0.37, 0.65] (99.3%) 0.6 [0.5, 0.68] (99.8%) 0.6 [0.48, 0.68] (99.7%)
CESM 10 0.61 [0.49, 0.68] (99.9%) 0.61 [0.45, 0.71] (99.5%) 0.67 [0.59, 0.74] (100%) 0.64 [0.55, 0.7] (99.8%)
CESM 11 0.75 [0.65, 0.81] (100%) 0.72 [0.56, 0.81] (100%) 0.75 [0.67, 0.81] (100%) 0.77 [0.66, 0.83] (100%)
CESM 12 0.55 [0.43, 0.63] (99.7%) 0.55 [0.37, 0.67] (99.6%) 0.54 [0.44, 0.62] (99.8%) 0.56 [0.45, 0.63] (99.8%)
CESM 13 0.65 [0.51, 0.74] (99.8%) 0.59 [0.36, 0.73] (99.4%) 0.6 [0.48, 0.69] (99.8%) 0.64 [0.54, 0.72] (100%)
CSIRO 0.68 [0.55, 0.75] (100%) 0.61 [0.41, 0.74] (99.7%) 0.65 [0.54, 0.72] (99.9%) 0.67 [0.58, 0.74] (100%)
CSM1 0.59 [0.46, 0.67] (99.7%) 0.56 [0.36, 0.68] (99.2%) 0.63 [0.54, 0.7] (100%) 0.48 [0.35, 0.6] (97.7%)
GISS 1 0.75 [0.63, 0.82] (100%) 0.7 [0.53, 0.8] (100%) 0.78 [0.7, 0.83] (100%) 0.68 [0.59, 0.76] (99.8%)
GISS 2 0.8 [0.68, 0.86] (100%) 0.74 [0.52, 0.84] (100%) 0.78 [0.71, 0.84] (100%) 0.71 [0.62, 0.78] (100%)
GISS 3 0.73 [0.62, 0.8] (100%) 0.68 [0.5, 0.79] (99.8%) 0.72 [0.62, 0.79] (100%) 0.65 [0.54, 0.73] (99.9%)
HadCM3 0.75 [0.64, 0.81] (100%) 0.69 [0.47, 0.79] (99.8%) 0.73 [0.64, 0.8] (100%) 0.8 [0.72, 0.85] (100%)
MPI 1 0.71 [0.59, 0.78] (99.9%) 0.65 [0.42, 0.77] (99.7%) 0.67 [0.57, 0.75] (100%) 0.69 [0.59, 0.75] (99.9%)
MPI 2 0.74 [0.63, 0.81] (100%) 0.69 [0.52, 0.79] (99.8%) 0.75 [0.67, 0.81] (100%) 0.74 [0.66, 0.79] (100%)
MPI 3 0.74 [0.63, 0.8] (100%) 0.67 [0.46, 0.78] (99.8%) 0.71 [0.62, 0.78] (100%) 0.72 [0.64, 0.78] (100%)

PAI BHM DA
CCSM4 0.67 [0.64, 0.7] (99.9%) 0.47 [0.41, 0.52] (98.4%) 0.67 [0.63, 0.7] (100%)
CESM 1 0.57 [0.54, 0.61] (99.8%) 0.46 [0.4, 0.52] (97.9%) 0.62 [0.57, 0.68] (100%)
CESM 2 0.53 [0.49, 0.56] (99.8%) 0.63 [0.57, 0.68] (100%) 0.58 [0.53, 0.61] (99.9%)
CESM 3 0.57 [0.52, 0.6] (99.8%) 0.55 [0.48, 0.6] (99.9%) 0.52 [0.48, 0.55] (99.4%)
CESM 4 0.6 [0.56, 0.62] (99.7%) 0.5 [0.43, 0.55] (98.7%) 0.62 [0.57, 0.66] (99.8%)
CESM 5 0.58 [0.54, 0.6] (100%) 0.56 [0.51, 0.62] (100%) 0.59 [0.54, 0.62] (100%)
CESM 6 0.48 [0.44, 0.51] (97.6%) 0.44 [0.37, 0.5] (96.8%) 0.54 [0.48, 0.59] (99.2%)
CESM 7 0.42 [0.37, 0.46] (96.8%) 0.52 [0.46, 0.57] (99.2%) 0.4 [0.37, 0.42] (95.8%)
CESM 8 0.54 [0.5, 0.57] (99.9%) 0.4 [0.33, 0.46] (96.7%) 0.55 [0.52, 0.59] (100%)
CESM 9 0.48 [0.44, 0.52] (98.3%) 0.52 [0.46, 0.57] (98.8%) 0.51 [0.45, 0.53] (98.8%)
CESM 10 0.56 [0.51, 0.59] (99.7%) 0.6 [0.54, 0.65] (99.8%) 0.61 [0.56, 0.63] (99.9%)
CESM 11 0.72 [0.69, 0.76] (100%) 0.62 [0.57, 0.66] (99.9%) 0.72 [0.68, 0.75] (100%)
CESM 12 0.47 [0.43, 0.5] (99.4%) 0.38 [0.31, 0.44] (96.2%) 0.55 [0.52, 0.58] (99.7%)
CESM 13 0.6 [0.56, 0.63] (99.9%) 0.54 [0.47, 0.59] (99.8%) 0.57 [0.51, 0.62] (99.9%)
CSIRO 0.68 [0.64, 0.71] (100%) 0.45 [0.39, 0.51] (98.1%) 0.73 [0.66, 0.79] (100%)
CSM1 0.67 [0.62, 0.71] (99.8%) 0.64 [0.59, 0.68] (99.9%) 0.59 [0.54, 0.63] (99.5%)
GISS 1 0.81 [0.78, 0.83] (100%) 0.62 [0.57, 0.67] (99.9%) 0.85 [0.8, 0.87] (100%)
GISS 2 0.87 [0.86, 0.89] (100%) 0.68 [0.62, 0.72] (99.9%) 0.89 [0.83, 0.9] (100%)
GISS 3 0.81 [0.78, 0.84] (100%) 0.48 [0.42, 0.54] (98.6%) 0.84 [0.79, 0.86] (100%)
HadCM3 0.71 [0.67, 0.75] (100%) 0.61 [0.54, 0.65] (99.9%) 0.79 [0.75, 0.84] (100%)
MPI 1 0.72 [0.68, 0.75] (100%) 0.52 [0.45, 0.58] (99.4%) 0.76 [0.71, 0.81] (100%)
MPI 2 0.73 [0.69, 0.76] (100%) 0.52 [0.45, 0.58] (99.2%) 0.81 [0.76, 0.86] (100%)
MPI 3 0.76 [0.73, 0.8] (100%) 0.5 [0.43, 0.56] (98.5%) 0.79 [0.73, 0.84] (100%)
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