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SF1. Comparison of biomarkers between groups and data cohorts 

 

 
 
Box plots of biomarkers for each diagnostic category (CN, MCI and AD) for subjects from ADNI and 
Test datasets. Lower and upper hinges of each boxplot correspond to 25th and 75th percentiles of 
data.  Φ: no significant difference (p-value≤0.05) between biomarkers of MCI subjects from training 
and test datasets; ζ: no significant difference (p-value≤0.05) between biomarkers of AD subjects from 
training and test datasets.   



SS1. Mathematical modelling details 
 
According to EBM and DEBM approaches, each biomarker is considered as either normal or 

abnormal and its probabilistic transition from the normal to the abnormal state is defined as event. 

The aim is to define in a data-driven manner the sequence of events that describe the most probable 

cascade of symptoms that characterize the transition from the healthy state to the full-blown 

disease spectrum. 

 

SS1.1 Event Based Model (EBM)  
 
In EBM various event sequences are sampled via a Markov Chain Monte Carlo (MCMC) process that 

aims at the maximization of the likelihood 𝑃(𝑋|𝑆) in SEq.1: 

𝑃(𝑋|𝑆) = ∏ [∑ (𝑃(𝑘) ∏ 𝑃(𝑥𝑖𝑗|𝐸𝑗)

𝑘

𝑗=1

∏ 𝑃(𝑥𝑖𝑗|¬𝐸𝑗)

𝑁𝐵

𝑗=𝑘+1

)

𝑁𝐵

𝑘=1

]

𝑁

𝑖=1

 

 

(SEq.1) 

where 𝑋 denotes the entire data set, 𝑁𝐵 is the number of biomarkers, 𝑃(𝑘) is the probability of 

being at stage 𝑘, 𝑥𝑖𝑗 is the 𝑗-th biomarker of subject 𝑖 and 𝑃(𝑥𝑖𝑗|𝐸𝑗) and 𝑃(𝑥𝑖𝑗|¬𝐸𝑗) are the 

likelihoods of measurement 𝑥𝑖𝑗 given that biomarker 𝑗 has or has not become abnormal 

respectively, implying that events 𝐸1 … 𝐸𝑘  already occurred and events 𝐸𝑘+1 … 𝐸𝑁𝐵
  still have to 

occur. The central ordering is therefore the ordering for which 𝑃(𝑋|𝑆) is maximum, or equivalently 

the ordering that best fits 𝑋. 

Sequences are sampled via an MCMC process where at each Monte Carlo step a new sequence 𝑆′ 

is sampled as a random swap between two biomarkers of the benchmark sequence 𝑆. If the 

likelihood of 𝑆′ is greater than the likelihood of 𝑆, then 𝑆′ is considered as the benchmark sequence 

for the following MCMC step. The transition to a new state can also happen if the likelihood of 𝑆′ is 

less than the likelihood of the benchmark sequence, and in this case the transition occurs with 

probability: 

 

𝑝 = 𝑒𝑃(𝑋|𝑆′
)−𝑃(𝑋|𝑆)

 

 

(SEq.2) 

so that event sequences can be chosen hierarchically as benchmark sequences based on their 

likelihood. 

The normal and abnormal states for each biomarker are defined by a gaussian mixture model 

(GMM), where the populations of CN and AD subjects are described respectively by the normal 

distributions 𝑁𝑗(𝜇𝐶𝑁, 𝜎𝐶𝑁) and 𝑁𝑗(𝜇𝐴𝐷 , 𝜎𝐴𝐷). To avoid the possibility that biomarkers will not show 

a clear bimodal distribution, the standard deviations of 𝑃(𝑥|𝐸𝑗) and 𝑃(𝑥|¬𝐸𝑗) must be less or equal 

to the distributions of biomarkers from AD and CN subjects respectively. The mixture model 

distribution for each biomarker 𝑗  is then found as the distribution that minimizes: 

𝐶𝑗 = ∑ log (𝜗𝑗𝑃 (𝑥𝑖𝑗|𝐸𝑗 , 𝑁𝑗(𝜇𝐴𝐷 , 𝜎𝐴𝐷)) + (1 − 𝜗𝑗)𝑃 (𝑥𝑖𝑗|¬𝐸𝑗 , 𝑁𝑗(𝜇𝐶𝑁 , 𝜎𝐶𝑁)))
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(SEq.3) 



along 𝜇𝐴𝐷, 𝜎𝐴𝐷 , 𝜇𝐶𝑁 , 𝜎𝐶𝑁 and 𝜗𝑗. The summation in SEq.3 is intended over all subjects. The parameter 

𝜗𝑗  is a mixing parameter between 0 and 1 weighs the CN and AD distributions for the 𝑗-th biomarker. 

 
SS1.2 Discriminative Event Based Model (DEBM)  
 

The approach of DEBM model for the calculation of the central ordering, on the other hand, is a 

two-step process where first (i)  a specific ordering 𝑆𝑖 is calculated for each subject by sorting the 

posterior probability that biomarker 𝑥𝑖𝑗 has become abnormal and then (ii) computing the central 

ordering 𝑆 as the  event sequence that minimizes the sum of modified Kendall’s tau distances (see 

SS1.4) between itself and all the subject-wise orderings 𝑆𝑖 

As the posterior probability is influenced by the physiological variability of biomarkers, DEBM 

assumes that single subject orderings 𝑆𝑖 are noisy estimates of the central ordering 𝑆. 

An initial estimate of the distributions of non-diseased and diseased subjects for each biomarker is 

performed using values from subjects at the very opposite sides of the disease spectrum, as defined 

by a Bayesian classifier which is trained to remove outliers and wrongly labelled data. It generates 

truncated Gaussian functions that neglect the tails of the distributions of the two populations, thus 

reducing the value of the standard deviations of the two distributions with respect to those of the 

whole population distribution. This allows to separate efficiently the two normal distributions for 

the 𝑗-th biomarker 𝑁𝑗(𝜇𝐶𝑁 , 𝜎𝐶𝑁) and 𝑁𝑗(𝜇𝐴𝐷 , 𝜎𝐴𝐷). With this method the resulting distributions are 

biased estimates of the expected distribution, characterized by smaller variance and a mean that is 

greater than the expected one for the distribution with the larger mean and minor for the 

distribution that has the smaller mean. 

The biased distributions are then refined including data from all subjects via a GMM that has 

constraints based on the aforementioned relationships between the expected and the biased 

distributions, where the objective function for optimization of biomarker 𝑗 is the same as that for 

EBM (Eq.3). The optimization of 𝐶𝑗 is performed by alternatively optimizing the gaussian parameters 

 𝜇𝐶𝑁 , 𝜎𝐶𝑁,𝜇𝐴𝐷 , 𝜎𝐴𝐷and the mixing parameter 𝜗𝑗  until the latter converges. The mixing parameters of 

the Bayesian classifier are used as prior probabilities for the class they represent, i.e. pathological 

or non-pathological.  

 

SS1.3 Subject staging 

 

Specific methods for staging subjects on the basis of the event sequences are available in both EBM 

and DEBM original formulations. For the sake of simplicity, and in order to have a common staging 

system for both models, the method from EBM was employed in this work. This method stages each 

subject on the central event sequence, with the inclusion of stage 0 where no biomarker is 

abnormal, and assigns each individual the stage 𝜎𝑖 defined as: 

𝜎𝑖 = argmax𝑘𝑃(𝑋𝑖|𝑆, 𝑘) = argmax𝑘𝑃(𝑘) ∏ 𝑃(𝑥𝑖𝑗|𝐸𝑗)
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(SEq.4) 

The stage  𝜎𝑖 is the 𝑘-th step of the optimal sequence 𝑆 that maximizes the probability that all events 

up to  𝑘 already occurred for subject 𝑖 and events from (𝑘 + 1) to 𝑁𝐵 have not occurred yet given 



the biomarker set 𝑋𝑖. In case of a missing biomarker the probability of the biomarker to be in 

abnormal state was set to ½ .  

 
SS1.4 Modified Kendall’s Tau distance 
 
Traditional Kendall’s Tau distance is often used in order to measure quantitative differences 
between sequences, and it can be defined as:  
 

𝐾(𝑆, 𝑆′) = ∑ 𝑉𝑛(𝑆, 𝑆′)
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(SEq.5) 

Where 𝑆 and 𝑆′ are the two sequences, 𝑁 is the total number of events and 𝑉𝑛(𝑆, 𝑆′) is the number 
of adjacent swaps needed so that event 𝑛 of sequence 𝑆 is at the same position in both sequences. 
In a nutshell, Kendall’s tau distance computes the total number of adjacent swaps that are needed 
to transform the sequence 𝑆′ into sequence 𝑆. In DEBM model the estimates of the individual 
sequences are based on rankings of posterior probabilities of biomarkers being abnormal, therefore 
it is convenient to define a model version of Kendall’s Tau distance that takes into account of 
posterior probabilities where swaps between events for which the difference of probability is large 

is penalized. In this case the number of swaps 𝑉𝑛(𝑆, 𝑆′) is replaced by 𝑉̂𝑛(𝑆, 𝑆′) that is computed as: 
 

𝑉̂𝑛(𝑆, 𝑆′) = ∑ 𝑝𝑛
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(SEq.6) 

Where 𝑛 and 𝑘 denote the positions of the same biomarker in 𝑆 and 𝑆′ respectively and 𝑝𝑖 denotes 

the probability that biomarker at position 𝑖 has become abnormal. After 𝑉̂𝑛(𝑆, 𝑆′) has been 
calculated for a single biomarker 𝑆′ is updated by swapping event at position 𝑘 with event at 
position 𝑛. 
 
 
  



ST1. EBM and DEBM comparative table 
 

FEATURES EBM DEBM 

Input files  
 

-training data set (.csv format) 
-test data sets (optional, .csv format) 

-training data set (.csv format) 
-test data sets (optional, .csv format) 

Outputs 
 

-optimal ordering of biomarkers 
-mixture model biomarker distributions 
-subject staging (optional) 

-optimal ordering of biomarkers 
-mixture model biomarker distributions 
-event proximity 
-subject staging (optional) 

Mixture model 
specs 
 

-in order to ensure bi-modality the 
standard deviations of the distributions of 
events are bounded to be less or equal 
than the standard deviations of 
distributions of biomarkers of AD and CN 
subjects                                   

-mixture model is built starting from 
distributions from easy controls and easy 
diseased subjects 
-optimization of model parameters 
performed alternatively between gaussian 
parameters and mixing parameter 

Assumptions 
 

-optimal ordering is the sequence that 
best fits the training data set 

-optimal ordering is the average of 
subject-wise optimal sequences 

Strengths 
 

-based on cross sectional data sets 
-no a priori assumptions about biomarkers 
distributions 
-method explored and validated in 8 peer-
reviewed works      
-possibility to define abnormality cut 
points for biomarkers                                 

-based on cross sectional data sets 
-no a priori assumptions about biomarkers 
distributions 
-ease of calculation and short 
computation times (10 minutes for 
calculation of a sequence from 1500 
subjects) 
-estimation of distance between events 

Weaknesses 
 

-long computation times 
-may incur in overfitting 

-Novel approach that requires further 
validation                                        

Algorithm 
validation 
 

-performed only on well curated research 
data sets (ADNI, MAGNIMS, GENFI, 
TRACK-HD) and on synthetic data 

-performed only on ADNI and on synthetic 
data 

 
Acronyms: csv: comma-separated values; ADNI: Alzheimer’s Disease neuroimaging Initiative; 
MAGNIMS: Magnetic Resonance in Multiple Sclerosis; GENFI: GENetic Frontotemporal dementia 
Initiative; HD Huntington’s Disease. 



SF2. Staging of subjects from single cohorts 

 
Staging based on the sequences obtained with EBM and DEBM for subjects of each test cohort. 
Staging of subjects from all diagnostic categories (Cognitively normal (CN) in blue, mild cognitive 
impairment (MCI) in orange, and Alzheimer’s disease (AD) in red) are shown for the cases of (a) ADC 
subjects on EBM sequence; (b) ADC subjects on DEBM sequence; (c) ARWiBo subjects on EBM 
sequence; (d) ARWiBo subjects on DEBM sequence; (e) EDSD subjects on EBM sequence; (f) EDSD 
subjects on DEBM sequence; (g) OASIS subjects on EBM sequence; (h) OASIS  subjects on DEBM 
sequence; (i) ViTA subjects on EBM sequence; (j) ViTA subjects on DEBM sequence.  



SF3. EBM stage vs DEBM stage 

 

Scatter plot of DEBM stage vs. EBM stage for training (left) and test (right) subjects. Areas of annuli 
are proportional to the number of subjects. Linear regression resulted in slopes of 0.891 (R2=0.802) 
for training subjects and 0.829 (R2=0.680) for test subjects. 

  



SF4. Event ordering including all biomarkers 
 

 
Positional variance diagrams of Event ordering obtained with EBM and DEBM when MMSE is 
included in the original set of biomarkers. Both diagrams show the number of times each biomarker 
occurred in a certain position from a batch of 50 independent bootstrapped sequences generated 
form biomarkers of subjects from the training set with EBM (left) and DEBM (right) methods. 
 
SF5. Staging of subjects including all biomarkers 

 

Subject staging based on the sequences obtained with EBM and DEBM methods when MMSE is 
included in the set of biomarkers. Staging of subjects from all diagnostic categories (Cognitively 
normal (CN) in blue, mild cognitive impairment (MCI) in orange, and Alzheimer’s disease (AD) in red) 
are shown for the cases of (a) training subjects on EBM sequence; (b) training subjects on DEBM 
sequence; (c) test subjects on EBM sequence and (d) test subjects on DEBM sequence. Histograms 
are normalized for each diagnostic category.  



ST2. Performance metrics of EBM and DEBM including all biomarkers 

Training 

set 

EBM DEBM p-value 

kT sens spec BalAcc AUC kT sens spec BalAcc AUC  

AD vs CN 11 0.99 0.97 0.98 0.99* 6 0.95 0.96 0.96 0.97* 5.66 10-2 

AD vs MCI 11 0.72 0.97 0.84 0.85* 6 0.50 0.96 0.73 0.78 7.64 10-2 

MCI vs CN 7 0.97 0.48 0.73 0.75* 3 0.90 0.58 0.74 0.76* 0.671 

Test 

set 

EBM DEBM p-value 

kT Sens spec BalAcc AUC kT Sens spec BalAcc AUC  

AD vs CN 11 0.90 0.84 0.87 0.91 3 0.70 0.97 0.84 0.89 1.24 10-3 

AD vs MCI 11 0.70 0.84 0.77 0.80 9 0.64 0.82 0.73 0.78 0.222 

MCI vs CN 1 0.64 0.69 0.66 0.68 1 0.69 0.66 0.67 0.67 0.251 

 

Measurements of area under curve (AUC), sensitivity (Sens), specificity (Spec) and balanced accuracy 
(BalAcc) at a specific threshold (KT) for the subject staged with EBM and DEBM methods on train and 
test datasets when MMSE is included in the set of biomarkers. Thresholds are chosen to maximize 
the balanced accuracy in each classification task. P-values of Delong test performed to compare 
AUCs obtained with EBM and DEBM methods are reported in the last column. AUCs of ADNI subjects 
denoted with * are significantly different from their analogous of test subjects (p-value ≤ 0.05)  

  



SF6. Single case interface of data-driven model 
 

 
 
Single case interface (alpha release developed by Icometrix NV in the context of the EuroPOND 
H2020 initiative) to stage patient according to the biomarkers data availability. X-axis reports the 
patient’s stage, Y-axis reports the probability of biomarker abnormalities. 


