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Supplementary Note 1: Modularity of highly Mutated Genes in the unbiased, 
systematic human protein-protein interactome 

Disease proteins are not scattered randomly in the human protein-protein interactome, 

but form one or several connected subgraphs, defining the disease module1. Previous 

studies have suggested the literature bias for the human protein-protein interactome, 

with well-studied proteins often having high connectivity (degree) in the literature-

derived data2. To inspect the potential literature biased, we utilized the unbiased, 

systematic human protein-protein interactome identified by (unbiased) yeast two-hybrid 

(Y2H) assays (see Methods). We found that the significantly mutated genes or highly 

mutated genes form significant modules in this unbiased interactome, as well 

(Supplementary Fig. 1), suggesting low literature data bias. 
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Supplementary Fig. 1. Proof-of-concept of disease module for mutant genes derived 

from patient-specific DNA sequencing data in the unbiased, comprehensive human 

protein-protein interactome. Both significantly mutated genes (SMGs, Supplementary 
Data 1) identified by statistical approaches and highly mutated genes ranked by 

mutation frequency have the closest network distance compared to random genes by 

degree-control randomization in this unbiased, comprehensive human protein-protein 

interactome (https://ccsb.dana-farber.org/interactome-data.html).  

 

Supplementary Note 2: Genes are highly mutated in network modules from the 
co-expressed protein-protein interaction network 
We define a network module based on the RNA-seq data and PPI network. For each 

cancer type, we computed the Pearson Correlation Coefficient (𝑃𝐶𝐶(𝑖, 𝑗)) for each PPI 

coding gene pair between gene i and gene j, and we only retained the significantly co-

expressed pairs (p-value less than 0.05, F-statistic) for both tumor samples (𝑃𝐶𝐶(𝑖, 𝑗)() 

and normal samples (𝑃𝐶𝐶(𝑖, 𝑗))) based on RNA-seq data. We used |𝑃𝐶𝐶(𝑖, 𝑗)( −

𝑃𝐶𝐶(𝑖, 𝑗))| > 0.7 as a cutoff to select the differentially co-expressed protein-protein 

interactions, and defined the largest connected component1 as the network module for 

the corresponding cancer type. We found that genes in the network modules identified 

from the RNA-seq data-based co-expressed PPI network are more likely mutated as 

shown in Supplementary Fig. 2. Furthermore, known significantly mutated genes 

(SMGs) are significantly enriched in the network modules identified from RNA-seq data-

based co-expressed PPI networks across four selected cancer types, as well 

(Supplementary Fig. 3). These observations support the hypothesis that highly 

mutated genes are more differentially co-expressed in the human interactome. 
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Supplementary Fig. 2. Normalized mutation frequency (average mutation frequency) of 

genes in the network modules identified from RNA-seq data only (red line) compared to 

the same number of randomly selected genes (cyan histogram) with similar degree 

(connectivity) distribution in the human protein-protein interactome in four selected 

cancer types: invasive breast carcinoma (BRCA), lung adenocarcinoma (LUAD), colon 

adenocarcinoma (COAD), and uterine corpus endometrial carcinoma (UCEC). 
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Supplementary Fig. 3. Known significantly mutated gene (SMG) enrichment analysis in 

the new disease modules identified from RNA-seq data only (red line) compared to the 

same number of randomly selected genes (cyan histogram) with similar degree 

(connectivity) distribution in the human protein-protein interactome in four selected 

cancer types: invasive breast carcinoma (BRCA), lung adenocarcinoma (LUAD), colon 

adenocarcinoma (COAD), and uterine corpus endometrial carcinoma (UCEC). 
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Supplementary Note 3: Methodology and Detailed Description of GPSnet 
Here we present GPSnet, an integrated, network-based methodology for patient-

specific disease module identification and in silico drug repurposing. Supplementary 
Fig. 4 illustrates the pipeline of the GPSnet algorithm. 

 

 

Supplementary Fig. 4. A diagram illustrating the GPSnet methodology as described as 
below. 

 
We aim to find the hyper-mutated module for each caner type, where the number of 
mutations of the genes in the module is significantly larger than random modules. We 

set the initial score of each gene (i) in each cancer type as 𝑠1(𝑖) =
3(4)
5(4)

, where 𝑚(𝑖) is 

the number of the mutation of gene i in the corresponding cancer type, and 𝑙(𝑖) is the 
cDNA length of gene i. In order to eliminate the influence of the sparse somatic 
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mutations, the network smoothing method is used to transmit the score across the 
whole human protein-protein interactome network.  

The random walk with restart process (RWR) is applied to calculate the smoothing 
gene score. Consider a random walker starting from gene i, who will move to a random 
neighbor with probability (1 − α) or will return to gene i with probability α at each 
iterative time step, where	α ∈ [0	1] is the parameter that drives the restart probability of 
the random walk process. The RWR process is run until a steady-state is reached. We 
denote	𝑠>????⃗  as the score vector at iterative step t, and the resulting propagation process 
can be described as 

𝑠>AB???????⃗ = (1 − 𝛼)𝑊𝑠>???⃗ + 𝛼𝑠1???⃗       (1) 

where, 𝑠1???⃗  is the vector of each gene’s initial score, and W is the transfer matrix with 
𝑊4F =

B
G(F)

 if gene i interacts with gene j, and 𝑊4F = 0 otherwise (𝑘(𝑗) is the degree of 

gene j). The theoretical solution is to this equation 

𝑠 = α(1 − (1 − α)W)JB𝑠1???⃗       (2) 

where the i-th element of 𝑠 is the smoothing score of gene i. The module is defined as a 
sub-graph within the network of each cancer type, and the score of the module M is 

𝑍L = ∑ (N(4)JO)P∈Q
√3

, where m is the number of genes in module M and 𝜇 is the average 

score over the whole gene set for the corresponding cancer type. We denote 𝛤L	as the 
set of the genes that interact with module M.  

The following steps are used for the random searching process needed to generate the 
module. 

(1) Initially, a random gene is selected as the “seed” module.  
(2) For each gene 𝑖 ∈ 𝛤L, we calculate the connectivity significance as follows (extended 

from the hypergeometric distribution): 

P(i) = ∑
W3G XY

)J3
GPJG

Z

Y
)
GP
Z

GP
G[G\        (3) 

where 𝑘4 is the degree of gene i, 𝑚 is the number of genes in the module, 𝑘3 is the 
number of gene i’s neighbors that belong to the module and 𝑁 is the total number of 
the gene set.  

(3) For each gene 𝑖 ∈ 𝛤L, we calculate the expanded module score if gene i is added to 
the module as follows: 

𝑍3AB(𝑖) =
(N(4)JO)A∑ (N(F)JO)^∈Q

√3AB
      (4) 
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(4) The candidate gene i that would add to the module should satisfy two constraints, 
𝑃(𝑖) < 0.05 and 𝑍3AB(𝑖) > 𝑍3. Gene i will be included in the growing module with 

probability N(4)
∑ N(4)P∈ab

	in this time step, where cg is the set of the candidate genes. 

(5) Steps (2)-(4) are repeated until no more genes can be added.  
Repeating the above steps, we obtain a set of modules. We rank the modules according 
to the descending order of their final score. The gene confidence is calculated as the 
number of times that the genes appear in the top 1 percent of modules. Genes are then 
sorted in descending order of the confidence score, and the top L genes are considered 
as the final consensus module (Supplementary Data 2). 
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Supplementary Fig. 5. Network plot of the number of cancer-specific and shared genes 

between the disease modules across 15 cancer types. The numbers in the cyan circles 

denote the numbers of common (shared or overlapped) genes among the 

corresponding cancer types. The purple circles represent the number of unique genes 

for specific cancer types. 
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Supplementary Fig. 6. Known cancer driver genes (named significantly mutated genes, 
Supplementary Data 1) are appreciably enriched in cancer type-specific disease 
modules across 15 cancer types. Disease modules were identified by GPSnet when α = 
0.5 to balance the degree bias. The significantly mutated genes were collected from 
TCGA projects as described in previous studies3,4. 
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Supplementary Fig. 7. Known cancer-associated genes (Supplementary Data 3) are 
appreciably enriched in cancer type-specific disease modules across 14 cancer types. 
Disease modules were identified by GPSnet when α = 0.5 to balance the degree bias. 
HNSC was excluded for validation owing to lack of known cancer-associated genes 
from publicly available databases. Known cancer-associated genes were collected from 
four public databases: the Online Mendelian Inheritance in Man (OMIM) database5, 
HuGE Navigator6, PharmGKB7, and Comparative Toxicogenomics Database (CTD)8, as 
described in our recent study9. 
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Supplementary Fig. 8. Known cancer driver genes (named significantly mutated genes, 
Supplementary Data 1) are appreciably enriched in patient-specific disease modules 
across 15 cancer types. Disease modules were identified by GPSnet from the unbiased, 
comprehensive human protein-protein interactome when α = 0.5 (Eq. 4 and 5) to 
balance the degree bias. 
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Supplementary Fig. 9. Drug target enrichment analysis. Drug target enrichment analysis 

for (A) significantly mutated genes identified by statistics-based approaches alone (red) 

and (B) patient-specific disease module genes (orange) identified by GPSnet algorithm 

from the human interactome. The distribution of druggable gene products (proteins that 
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can be targeted by known approved or experimental drugs, see Methods) versus 

undruggable targets (proteins that cannot be targeted by any available approved or 

experimental drugs) in patient-specific disease modules across 15 cancer types. * P-

value < 1.0x10-5: Gene products in patient-specific disease modules are more likely to 

be targeted by available approved or experimental drugs compared to whole genome by 

Fisher’s exact test. 
 

 

 
Supplementary Fig. 10. Drug target enrichment analysis of GPSnet-identified disease 

modules in two specific cancer types: invasive breast carcinoma (BRCA) and lung 

adenocarcinoma (LUAD). We collected the FDA-approved cancer type-specific drugs 

from the NCI drug database (https://www.cancer.gov/about-cancer/treatment/drugs/) for 

all 15 cancer types/subtypes (Supplementary Data 4). We found that the GPSnet-

identified disease module contains drug targets of drugs known to treat this cancer, 

while the non-module did not. P-value was computed by Fisher’s exact test.  
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Supplementary Fig. 11. Druggable human interactome analysis. We found that the 

significant neighbors of cancer driver genes (significantly mutated genes, 

Supplementary Data 1) or experimentally validated cancer genes (Cancer Gene 

Census [CGC] collected from COSMIC database [https://cancer.sanger.ac.uk/census]) 

are more likely to be targeted by approved drugs compared to driver genes or CGC 

gene products alone. We identified significant neighbors of proteins from the human 

protein-protein interactome via the DIAMOnD algorithm10. Herein, we tested two types 

of drug targets: (a) drug-protein binding affinity (IC50) less than 1 µM, and (b) drug-

protein binding affinity (IC50) less than 10 µM. 
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Supplementary Fig. 12. A heatmap of computationally predicted anticancer indications 

for approved cardiovascular drugs (defined by first-level Anatomical Therapeutic 

Chemical Classification codes) across 15 cancer types, identified by both network 

proximity (1/𝑑d) and gene-set enrichment analysis (-log(p)) approaches (Supplementary 
Data 5). The detailed data are provided in Supplementary Data 5. 
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Supplementary Fig. 13. Ouabain’s response is perturbed by HIF1A-knockdown in A549 

cells. (a) siRNA significantly downregulates HIF1A gene expression in A549 cells. (b) 

Cell viability reduction by ouabain is perturbed by two specific siRNA of HIF1A. Each 

experiment was performed at least three times in duplicate and all data is represented 

as mean ± SEM (n = 3).  
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Supplementary Fig. 14. Effect of ouabain on NAD+/NADH ratio in A549 cell lines tested 

by SoNar11. Ouabain reduces intracellular NAD+/NADH ratio in A549 cells at 10 nM or 

20 nM. Intracellular NAD+/NADH ratio was detected by SoNar fluorescence after 

ouabain treatment in A549 cells at 24 hour. The detailed description of this NAD+/NADH 

ratio assay was provided in our previous studies11. 
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Supplementary Fig. 15. Network proximity analysis between ouabain’s targets (red line) 

and the significantly mutated genes (SMGs) of LUAD comparing to the same number of 

randomly selected targets/genes (cyan) with a similar degree (connectivity) distribution 

in the human protein-protein interactome. 
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Supplementary Fig. 16. Enrichment analysis of drug targets in the new disease 

modules identified from the unbiased, systematic interactome network 

(https://ccsb.dana-farber.org/interactome-data.html) for four selected cancer types: 

invasive breast carcinoma (BRCA), lung adenocarcinoma (LUAD), skin cutaneous 

melanoma (SKCM), and uterine corpus endometrial carcinoma (UCEC). Z (z-score) and 

p-value (P) were computed by permutation test.  
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Supplementary Fig. 17. The enrichment analysis of drug targets in the new disease 

modules identified from a recently published comprehensive human binary interactome 

network12 (http://interactomeinsider.yulab.org/) for four selected cancer types: invasive 

breast carcinoma (BRCA), lung adenocarcinoma (LUAD), skin cutaneous melanoma 

(SKCM), and uterine corpus endometrial carcinoma (UCEC). Z (z-score) and p-value 

(P) were computed by permutation test.  
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Supplementary Fig. 18. Known cancer driver genes (named significantly mutated 
genes, Supplementary Data 1) are appreciably enriched in patient-specific disease 
modules across 15 cancer types. Disease modules were identified by GPSnet when α = 
0.4 (Eq. 4 and 5). 
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Supplementary Fig. 19. Known cancer driver genes (named significantly mutated 
genes, Supplementary Data 1) are appreciably enriched in patient-specific disease 
modules across 15 cancer types. Disease modules were identified by GPSnet when α = 
0.6 (Eq. 4 and 5). 
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Supplementary Fig. 20. Known cancer-associated genes (Supplementary Data 3) are 
appreciably enriched in patient-specific disease modules across 14 cancer types. 
Disease modules were identified by GPSnet when α = 0.4 (Eq. 4 and 5). HNSC was 
excluded for validation owing to lack of known cancer-associated genes from publicly 
available databases. 
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Supplementary Fig. 21. Known cancer-associated genes (Supplementary Data 3) are 
appreciably enriched in patient-specific disease modules across 14 cancer types. 
Disease modules were identified by GPSnet when α = 0.6 (Eq. 4 and 5). HNSC was 
excluded for validation owing to lack of known cancer-associated genes from publicly 
available databases. 
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Supplementary Fig. 22. Uncropped images for Figure 6c Western blots. Western blot 
analysis of HIF1α protein expression (normalized by GAPHD) after CoCl2/ouabain 
treatment in A549 cells (see Methods). 
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Supplementary Fig. 23. Uncropped images for Figure 7d Western blots. Western blot 
analysis of LEO1 protein expression (normalized by GAPDH) following ouabain 
treatment in A549 cells and two normal human lung fibroblasts cells (WI38 and MRC5). 
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       Supplementary Table 1: Chemicals and reagents used in this study. 

chemicals and reagents Catalog# Source 
CellTiter 96 AQueous One Solution Cell 
Proliferation Assay (MTS)  

G3580  Promega 

DMSO (dimethylsulfoxide) D2650 Sigma 
DMEM Medium 
RPMI 1640 Medium 
MEM Medium 

10566016 
21875109 
11095072 

Gibco 
Gibco 
Gibco 

FBS (Fetal Bovine Serum) 10099141 Gibco 
Penicillin-Streptomycin Vetec-

V900929  
Sigma-Aldrich 

BSA (bovine serum albumin) 
Pierce™ BCA Protein Assay Kit 

A1933 
23227  

Sigma 
Thermo-Fisher 

SYBR Green Real-Time PCR Master Mixes 4334973 Thermo-Fisher 
ReverTra Ace qPCR RT Master Mix FSQ-201 TOYOBO 
ExFect 2000 Transfection Reagent T202-02 Vazyme 
TRIzol™ Reagent 15596018 Invitrogen 
Triton X-100 
Phosphatase Inhibitor Cocktail A 
Phosphatase Inhibitor Cocktail B 
Phosphatase Inhibitor Cocktail C 
Protease Inhibitors Set 
Goat Anti-Rabbit IRDye 800CW 

T8787 
sc-45044 
sc-45045 
sc-45065 
11206893001 
926-32211 

Sigma 
Santa Cruz 
Santa Cruz 
Santa Cruz 
Roche 
LI-COR 

 

       Supplementary Table 2: Antibodies used in this study. 

Antibodies Catalog# Source 
anti-GAPDH AB0037 Abways 
anti-HIF-1α CY5197 Abways 
anti-LEO1 ab75721 Abcam 

 

Supplementary Table 3: Primers used in this study for various PCR assays. 

Genes Forward primer (5’-3’) Reverse primer (5’-3’) 
HIF1A ACTCAGGACACAGATTTAGA

CTTG 
TGGCATTAGCAGTAGGTTCTT
G 

LEO1  AGAAGCGGATAGTGACACTG
AGGT 

TTCATCAACAGGCTGTCCTGG
AGT 

shHIF1A-1 CCGGGTGATGAAAGAATTACCGAATCTCGAGATTCGG
TAATTCTTTCATCACTTTTT 

shHIF1A-2 CCGGTGCTCTTTGTGGTTGGATCTACTCGAGTAGATCC
AACCACAAAGAGCATTTTT 

      GAPDH TGGCCTTCCGTGTTCCTAC GAGTTGCTGTTGAAGTCGCA 
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