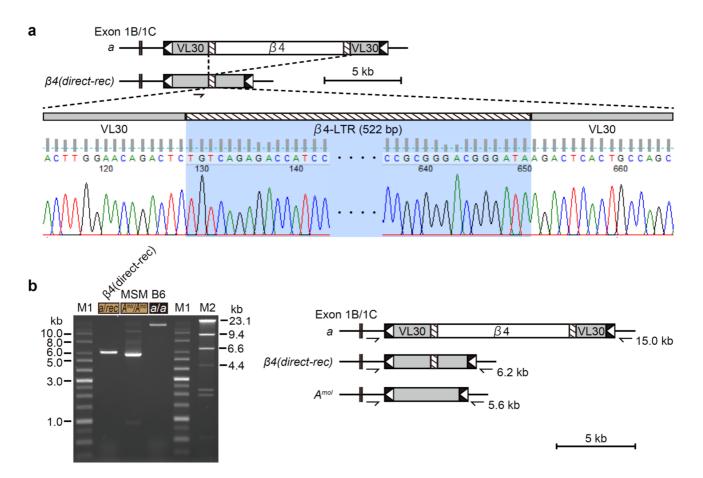
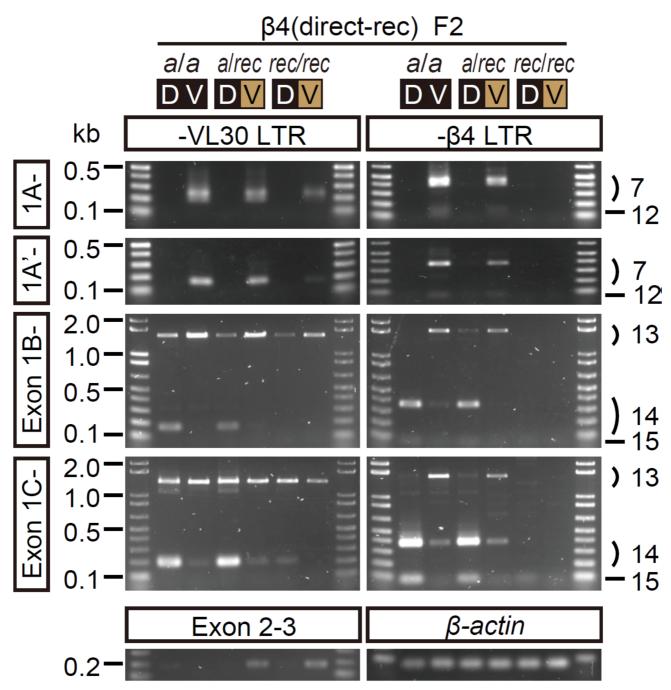
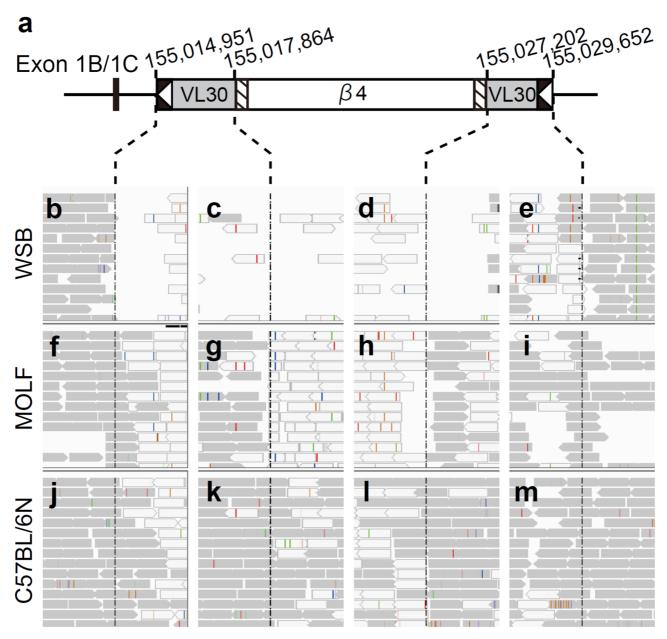
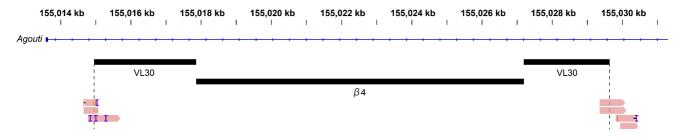
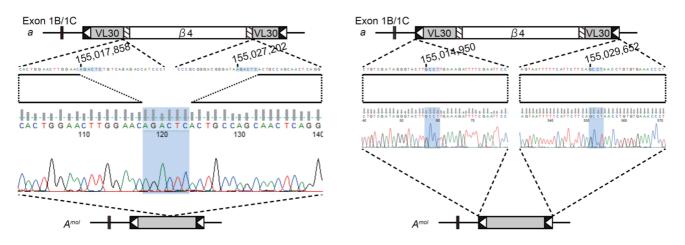

Unknown Serpina3a C6 Ednrb⁵	TGTCAGAGACCATCCCGTGAGAAAGTGAGCCCTTCACAATCTCCCTAGCAGGCCAAATGG	60 60 59 60
Unknown Serpina3a C6 Ednrb⁵	AACTTCAAA.	120 119 117 120
Unknown Serpina3a C6 Ednrb ^s	.ATTA.CA	180 179 177 165
Unknown Serpina3a C6 Ednrb ^s	C.GTC.TTTGA.	239
Unknown Serpina3a C6 Ednrb ^s	GGATTAA.	300 299 297 285
Unknown Serpina3a C6 Ednrb ^s	TC.TTT.C.C	360 359 357 345
Unknown Serpina3a C6 Ednrb⁵	TATA box U3 R GCGATGTATGCTTTAAAAAGAAGGCACCTCAGCCTAATAAACGAGACCTTGATAGGTTCA	417 417
Unknown Serpina3a C6 Ednrb⁵	ATCTACTTGGTCCTCCGACTCTTCTTTTTTACTCCCATTTCCTTCC	480 476 476 465
Unknown Serpina3a C6 Ednrb⁵	CCCCTCGCACCCACGAATAACTGAGTCCCGCGGGACGGGATA 522	

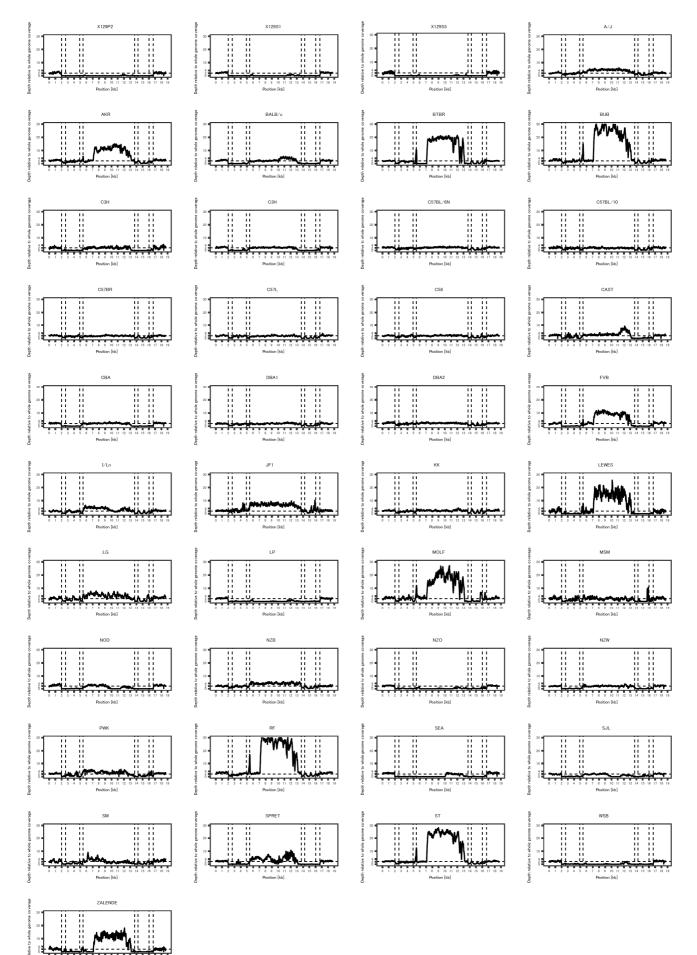

Supplementary Figure 1 | Comparison between the sequence of the direct terminal repeat of the unknown element in the *a* allele and homologous sequences in the *Serpina3a* and *C6* mRNAs and the inserted sequence in the *s* allele. The positions of the candidate TATA box and poly (A) signal are indicated by open boxes with the corresponding names. The U3, R, and U5 regions are shown shaded in gray, and the borders are indicated by lines. The position of each sequence is shown on the right.

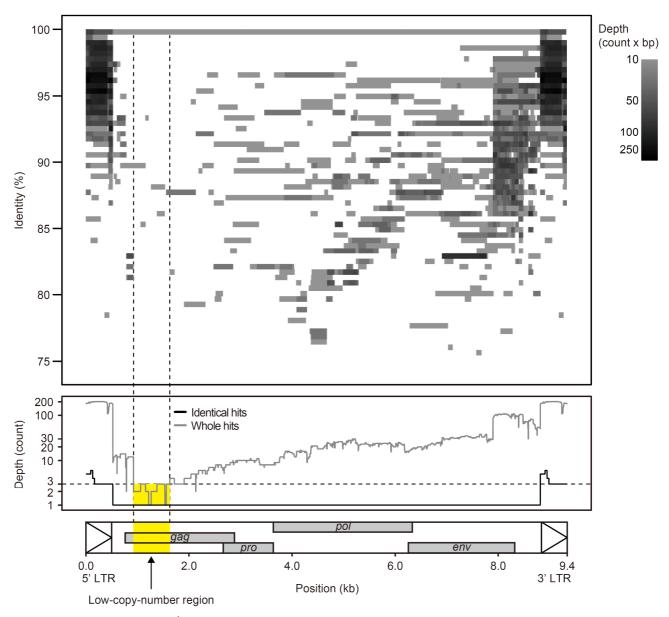

Supplementary Figure 2 | Dot plot of the unknown sequence in the *a* allele against the reference β 4 sequence. Comparison of the unknown sequence in the *a* allele (horizontal axis) and the reference β 4 (MmERV- β 4_AC102561) sequence (vertical axis). The description is according to Fig. 2. LTR, long terminal repeat. kb, kilobases.

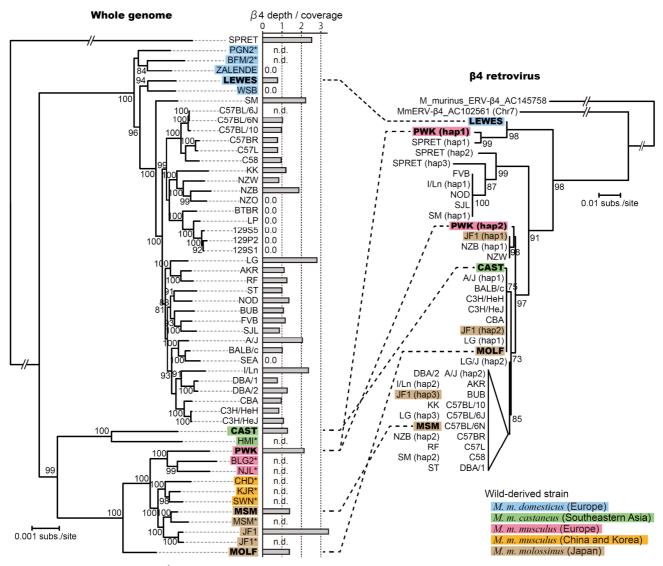

Supplementary Figure 3 | **Generation of β4-del and VL30-del mice. a,** Targeting scheme to delete the $\beta4$ (left) and the VL30 (right) insertions in the *a* allele. Scale bar = 5 kb. **b**, Gel-electrophoresis of the PCR-amplified genomic DNA fragments spanning the targeted site. A schematic illustration of the structure of each amplified DNA fragment is shown on the right. Primers used for genomic PCR are marked by arrows. Scale bar = 5 kb. **c**, Representative electropherograms from Sanger sequencing of the region spanning the targeted $\beta4$ (left) and VL30 (right) insertions. The directly duplicated sequence on both sides of the deleted endogenous retroviral sequence is highlighted by a blue background. The protospacer adjacent motif (PAM) (green box) and the gRNA sequences (red lines) are shown above the electropherogram. In the targeting of the VL30 insertion, the PAM sequence was modified from the original genomic sequence to an unrelated sequence (red boxed) to avoid re-cutting by the Cas9 nuclease of the target gRNA. **d**, Ventral views of adult $\beta4$ -del ($a/\beta4$ -del) and VL30-del (a/VL30-del) heterozygous mutant mice and that of B6 (a/a), MSM (A^{mol}/A^{mol}), and JF1 (a/a) mice. Both targeted deletions resulted in a cream-colored ventrum, whereas the MSM mouse has a much paler ventrum. kb, kilobases.

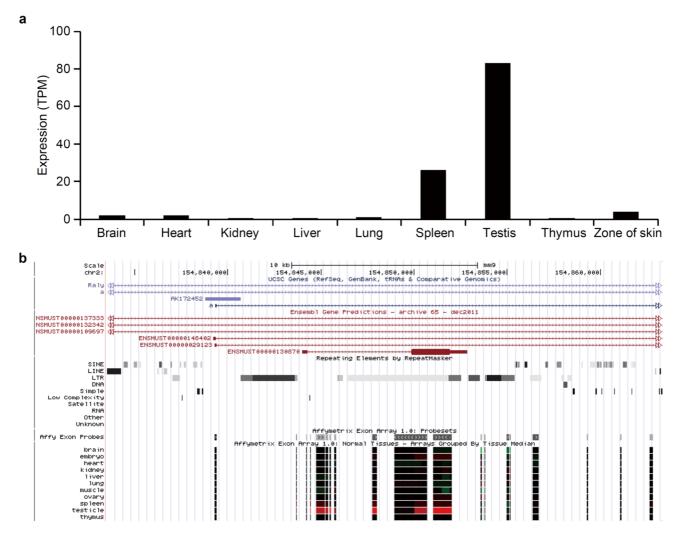

Supplementary Figure 4 | **Generation of \beta4(direct-rec) mice. a,** Top; Schematic illustration of the structure of the a^t allele. Primer used for Sanger sequencing is shown with an arrow. Scale bar = 5 kb. Bottom; Representative electropherogram from Sanger sequencing of the solo β 4 LTR insertion in the VL30 sequence in the a^t allele. The β 4 LTR sequence is highlighted with a blue background. The central region of the β 4 LTR is omitted. **b**, Gel electrophoresis of the PCR-amplified genomic DNA fragments spanning the insertions in the *agouti* locus. The β 4(*direct-rec*) allele shows a longer PCR product than the MSM allele, which contains a solo VL30 insertion. Schematic illustrations of the structures of each amplified DNA fragment are shown on the right. Primers used for genomic PCR are shown with arrows. Scale bar = 5 kb.

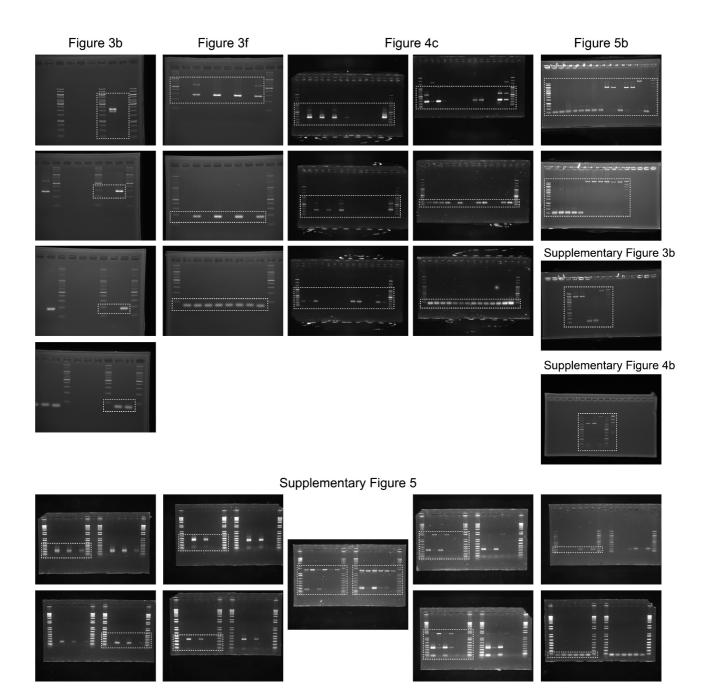

Supplementary Figure 5 | RT-PCR of the *agouti* transcripts in the dorsal and ventral skins of neonatal β 4(direct-rec) mice. F2 littermates [a/a, a/β 4(direct-rec) and β 4(direct-rec)/ β 4(direct-rec)] were used for the analyses. The *agouti* transcripts were amplified from exons 1A, 1A', 1B, and 1C to the VL30 LTR or the β 4 LTR. Transcript numbers according to those in Fig. 4. are shown on the right. The *agouti* transcripts from exon 2 to 3 were also amplified. β -actin was used as an internal control. D, dorsal skin; V, ventral skin.


Supplementary Figure 6 | Representative mapping of NGS reads to sites of the β 4 and the VL30 insertions in the *a* allele. **a**, Schematic representation of structure of the VL30 and the β 4 elements in the *a* allele. **b–m**, Mapping of the NGS data¹ from WSB (**b–e**), MOLF (**f–i**). and C57BL/6N (**j–m**) strains spanning the sites of the VL30 (left sides: **b**, **f**, **j**; right sides: **e**, **i**, **m**) and β 4 insertions (left sides: **c**, **g**, **k**; right sides: **d**, **h**, **l**) in the *a* allele. kb, kilobases.


Supplementary Figure 7 | Mapping of capillary sequencing data around the insertion of VL30 in the *agouti* locus in the MSM strain. Capillary sequencing data² derived from MSM genomic DNA was mapped onto the B6 genome. Mapped sequences are indicated as pink bars. The regions of the VL30 and β 4 elements are indicated by black bars.


Supplementary Figure 8 | Sequencing of the VL30 in the *agouti* loci of wild-derived strains. Representative electropherograms from Sanger sequencing of the region spanning the sites of the β 4 (left) and VL30 (right) insertions in the MSM (A^{mol}/A^{mol}) strain.


Supplementary Figure 9 | Depth of NGS reads across the β 4 and the VL30 insertions in *agouti* loci in various inbred strains. For each strain, we determined the sequencing depth across the β 4 and the VL30 insertions and adjacent 2 kb of flanking sequences (chr2:155,012,951–155,031,651) relative to the coverage of the whole genome. The relative values were multiplied by 2 to determine copy number. The horizontal dashed line indicates a depth of 2. The vertical dashed lines indicate the positions of both sides of the 5' and 3' LTRs of the β 4 and the VL30. The depths of the LTR regions are underestimated because of low mapping quality. kb, kilobases.


Supplementary Figure 10 | Recruitment plot of homologous sequences of β 4 in the *a* allele. BLAST hits with >70 % identity aligned against the β 4 in the *a* allele. The *x*-axis shows the hit position along the sequence, and the *y*-axis indicates the percent identity of the hit, ranging from 75 to 100 % (upper panel), and the depth of each hit (lower panel). Whole hits (gray line) and hits with 100 % sequence identity (black line) are indicated. Schematic representation of structure of β 4 in the *a* allele is indicated on the bottom with its low copy-number region (yellow). LTR, long terminal repeat. kb, kilobases. bp, base pair.

Supplementary Figure 11 | Tanglegram of the host and β 4 retrovirus. Maximum likelihood neighbor-joining trees based on alignments of the sequence of all autosomal chromosomes (left) and the haplotypes of the β 4 sequence (right). Wild-derived strains (bold letters) are connected with dashed lines between the phylogenetic trees. Left: The *M. spretus*-derived SPRET/EiJ (SPRET) was used as an outgroup. Right: a gray mouse lemur (*Microcebus murinus*) endogenous retrovirus (M_murinus_ERV- β 4_AC145758) and the reference β 4 retrovirus (MmERV- β 4_AC102561) were used as an outgroup. Middle: the copy numbers of β 4 are shown as the average depth in the low copy-number region of β 4 divided by the whole-genome coverage. The description is according to Fig. 5a. Scale bar = 0.001 (left) and 0.01 (right) nucleotide substitutions per site. n.d., no data available.

Supplementary Figure 12 | Tissue-specific expression of β 4 endogenous retrovirus in the *a* allele. a, RNAseq data (GSE74747)³ of the *Gm14226* gene (ENSMUSG00000084897 - Ensembl 91) in nine tissues from an adult male B6 mouse. Data were obtained from Expression Atlas. b, Microarray data⁴ of the *Gm14226* gene (ENSMUST00000130870 - Ensembl 65) in 11 tissues from Affymetrix Mouse Exon 1.0 ST arrays. Screenshot of UCSC Genome Browser was captured using NCBI37/mm9 assembly.

Supplementary Figure 13 | Original uncropped images of agarose gels. White broken boxes indicate the borders of the cropped images presented in the manuscript.

Supplementary Table 1 | Summary of primer and oligonucleotide sequences.

Name	Sequence	Length [nt]	Chr.	Strand	Start	End	Experiment
Agouti-exon1A F2	TCAGAAGAGGGAGTCATCAGC	21	2	+	154,951,250	154,951,270	RT-PCR
Agouti-exon1Ad F1	CGATTTCTGATGAATCCTGGAAC	23	2	+	154,952,550	154,952,572	RT-PCR
Agouti-exon1B F1	CTGGGACGAGTCTGAACCTAC	21	2	+	155,013,452	155,013,472	RT-PCR
Agouti-exon1C F1	AGACATTCTGGCCTGGCTTC	20	2	+	155,013,584	155,013,603	RT-PCR
Agouti-exon2 F1	GGCTTCCTGTGCTTCTTCAC	20	2	+	155,045,658	155,045,677	RT-PCR
Agouti-exon3 R2	GAAGACCTCTTCCGCTTCTC	20	2	-	155,047,717	155,047,736	RT-PCR
VL30 LTR R1	GGAACAGCCTCTCTCAATTCC	21	2	-	155,014,903	155,014,923	RT-PCR
MmERV-B4 LTR 6R	GTTATTCGTGGGTGCGAG	18	2	-	155,018,347	155,018,364	RT-PCR
ERVB4-1_env 1R	TCTTCTTTGAGGGCTGCACATA	22	2	-	155,025,746	155,025,767	RT-PCR
βactin F	TGACAGGATGCAGAAGGAGA	20	5	-	142,904,102	142,904,121	RT-PCR
βactin R	CGCTCAGGAGGAGCAATG	18	5	+	142,903,922	142,903,939	RT-PCR
T7-ERVb4R-opti-gRNA 1F	GGATCCTAATACGACTCACTATAGGGGTGAGTCTTATCCCGTCCCGGTTTAAGAGCTATGCTGG	64	N/A	N/A	N/A	N/A	CRISPR
T7-ERVb4L-opti-gRNA 1F	GGATCCTAATACGACTCACTATAGGGTCTCTGACAGAGTCTGTTCCGTTTAAGAGCTATGCTGG	64	N/A	N/A	N/A	N/A	CRISPR
T7-VL30-opti-gRNA1	GGATCCTAATACGACTCACTATAGGGGTTCCACAGCTCTGTCGATAGTTTAAGAGCTATGCTGG	64	N/A	N/A	N/A	N/A	CRISPR
T7-VL30-opti-gRNA2	GGATCCTAATACGACTCACTATAGGGTCAAACCCAGGGTTTCACACGTTTAAGAGCTATGCTGG	64	N/A	N/A	N/A	N/A	CRISPR
T7-gRNA-PCR-R	AAAAAGCACCGACTCGGTGCC	22	N/A	N/A	N/A	N/A	CRISPR
Null-ERVb4-37bp-AGACTC-37bp	CAAGTGGGCGGATGCCTCCCTCACTGGAACTTGGAACAGACTCACTGCCAGCAACTCAGGGTGG TGCCACCTTCTGAGAA	80	2	+	155,017,821	155,027,244	CRISPR
VL30-del oligo	GAGAGAGGCTGTTCCACAGCTCTGTCGATATCATACTTGCCTAATGCGTGTGAAACCCTGGGTTT GATTCCCCAGCATCA	80	2	+	155,014,909	155,029,693	CRISPR
Agouti-VL30 5F	CCAAGTGAAAGGAATTGAGAGGCTGTTCCACAGCTCTG	38	2	+	155,014,893	155,014,932	Genomic PCR, Sequencing
Agouti-VL30 4R	TTGGGAATCACAAGCATACACCTCATATCCGGTTGG	36	2	-	155,029,833	155,029,868	Genomic PCR, Sequencing
MMVL30-ins.check F1	CTITCTGTTACCTTGGTCAGATTGTTG	27	2	+	155,017,707	155,017,733	Sequencing
MMVL30-ins.check R1	TTTCACTTTAAGATAAGTGCCGGTTG	26	2	-	155,027,301	155,027,326	Sequencing

Supplementary Table 2 | Summary of inbred strains.

Strain name	Species	Subspecies	Type of lab strain	Strain origin (country)	Strain origin (province/state)	Strain origin (city)	Source Name (institution)	NGS data (institution)
129P2/OlaHsd	Mus musculus	na	Classical	Castle	na	na	JAX	Sanger
129S1/SvlmJ	Mus musculus	na	Classical	Castle	na	na	JAX	Sanger
129S5/SvEvBrd	Mus musculus	na	Classical	Castle	na	na	JAX	Sanger
A/J	Mus musculus	na	Classical	Castle	na	na	JAX	Sanger
AKR/J	Mus musculus	na	Classical	Castle	na	na	JAX	Sanger
Balb/cJ	Mus musculus	na	Classical	Castle	na	na	JAX	Sanger
BFM/2Ms	Mus musculus	domesticus	Wild-derived	France	Montpellier	na	NIG	NIG
BLG2/Ms	Mus musculus	musculus	Wild-derived	Bulgaria	Toshevo	na	NIG	NIG
BTBR T ⁺ Itpr3 ^{tf} /J	Mus musculus	na	Classical	Unknown	na	na	JAX	Sanger
BUB/BnJ	Mus musculus	na	Classical	Other inbred strains	na	na	JAX	Sanger
C3H/HeH	Mus musculus	na	Classical	Castle	na	na	JAX	Sanger
C3H/HeJ	Mus musculus	na	Classical	Castle	na	na	JAX	Sanger
C57BL/10J	Mus musculus	na	Classical	C57-related	na	na	JAX	Sanger
C57BL/6NJ	Mus musculus	na	Classical	C57-related	na	na	JAX	Sanger
C57BR/cdJ	Mus musculus	na	Classical	C57-related	na	na	JAX	Sanger
C57L/J	Mus musculus	na	Classical	C57-related	na	na	JAX	Sanger
C58/J	Mus musculus	na	Classical	C57-related	na	na	JAX	Sanger
CAST/EiJ	Mus musculus	castaneus	Wild-derived	Thailand	na	Thonburi	JAX	Sanger
CBA/J	Mus musculus	na	Classical	Castle	na	na	JAX	Sanger
CHD/Ms	Mus musculus	musculus	Wild-derived	China	Chengdu	na	NIG	NIG
DBA/1J	Mus musculus	na	Classical	Castle	na	na	JAX	Sanger
DBA/2J	Mus musculus	na	Classical	Castle	na	na	JAX	Sanger
FVB/NJ	Mus musculus	na	Classical	Swiss	na	na	JAX	Sanger
HMI/Ms	Mus musculus	castaneus	Wild-derived	Taiwan	Hemei	na	NIG	NIG
I/LnJ JF1/Ms	Mus musculus Mus musculus	na molossinus	Classical Fancy mice	Castle Japan	na na	na Denmark	JAX NIG	Sanger Sanger
KJR/Ms	Mus musculus	musculus	Wild-derived	Korea	Kojuri	Market na	NIG	NIG
KK/HIJ	Mus musculus	na	Classical	China & Japan	na	na	JAX	Sanger
LEWES/EiJ	Mus musculus	domesticus	Wild-derived	US	Delaware	na	JAX	Sanger
LG/J	Mus musculus	na	Classical	Other inbred strains	na	na	JAX	Sanger
LP/J	Mus musculus	na	Classical	Castle	na	na	JAX	Sanger
MOLF/EiJ	Mus musculus	molossinus	Wild-derived	Japan	Kyushu	Fukuoka	JAX	Sanger
MSM/Ms	Mus musculus	molossinus	Wild-derived	Japan	Shizuoka	Mishima	NIG	NIG
NJL/Ms	Mus musculus	musculus	Wild-derived	Denmark	Northern Jutland	na	NIG	NIG
NOD/LtJ	Mus musculus	na	Classical	Swiss	na	na	JAX	Sanger
NZB/BINJ	Mus musculus	na	Classical	Castle	na	na	JAX	Sanger
NZO/HILtJ	Mus musculus	na	Classical	Castle	na	na	JAX	Sanger
NZW/LacJ	Mus musculus	na	Classical	Castle	na	na	JAX	Sanger
P/J	Mus musculus	na	Classical	Castle	na	na	JAX	Sanger
PGN2/Ms	Mus musculus	domesticus	Wild-derived	Canada	Ontario	Windsor	NIG	NIG
PWK/PhJ	Mus musculus	musculus	Wild-derived	Czech Rep	Bohemia	Lhotka	JAX	Sanger
RF/J	Mus musculus	na	Classical	Castle	na	na	JAX	Sanger
SEA/GnJ	Mus musculus	na	Classical	Castle	na	na	JAX	Sanger
SEG/Pas	Mus spretus	na	Wild-derived	Spain	Granada	na	PAS	na
SJL/J	Mus musculus	na	Classical	Swiss	na	na	JAX	Sanger
SM/J	Mus musculus	na	Classical	Castle	na	na	JAX	Sanger
SPRET/EiJ	Mus spretus	na	Wild-derived	Spain	Cadiz Province	Puerto Real	JAX	Sanger
ST/bJ	Mus musculus	na	Classical	Other inbred strains	na	na	JAX	Sanger
SWN/Ms	Mus musculus	musculus	Wild-derived	Korea	Suweon	na	NIG	NIG
WSB/EiJ	Mus musculus	domesticus	Wild-derived	US	Maryland	Centerville	JAX	Sanger
			Wild-derived		-		JAX	

Supplementary Table 3 \mid Genome coverage and depth and estimated copy numbers of the $\beta4$ sequence among inbred strains.

Sample	Total_Depth	LCN_Depth	LCN_Depth (hard filtered)	Internal_ Depth	LCN_Depth/Total_Depth	LCN_Depth(hard filtered)/Total_Depth
129P2/OlaHsd	37.49	0.10	0.05	1.37	0.00	0.00
129S1/SvImJ	56.61	0.18	0.18	4.20	0.00	0.00
129S5/SvEvBrd	17.14	0.00	0.00	0.48	0.00	0.00
A/J	48.27	99.94	98.95	99.21	2.07	2.04
AKR/J	50.00	55.40	55.09	213.91	1.10	1.10
BALB/cJ	53.93	55.52	54.82	69.50	1.02	1.01
BTBR T ⁺ Itpr3 ^{tf} /J	78.12	0.00	0.00	491.64	0.00	0.00
BUB/BnJ	42.03	45.63	45.04	372.43	1.08	1.07
СЗН/НеН	13.47	14.24	14.21	13.00	1.05	1.05
C3H/HeJ	55.43	60.56	59.56	55.68	1.09	1.07
C57BL/10J	25.50	27.28	26.97	24.41	1.06	1.05
C57BL/6NJ	52.20	54.09	53.25	59.05	1.03	1.02
C57BR/cdJ	39.86	32.71	31.95	36.84	0.82	0.80
C57L/J	42.89	33.57	33.12	38.99	0.78	0.77
C58/J	43.61	43.52	43.02	44.15	0.99	0.98
CAST/EiJ	45.23	59.01	58.18	74.14	1.30	1.28
CBA/J	49.37	48.14	47.41	49.74	0.97	0.96
DBA/1J	38.13	30.67	30.14	37.72	0.80	0.79
DBA/2J	47.27	60.51	59.69	54.46	1.28	1.26
FVB/NJ	62.85	73.83	70.66	223.62	1.17	1.12
I/LnJ	34.55	83.82	82.27	61.33	2.42	2.38
JF1/MsJ	28.45	100.36	98.44	97.96	3.52	3.46
KK/HiJ	47.69	58.32	57.95	58.32	1.22	1.21
LEWES/EiJ	4.45	3.66	3.51	24.03	0.82	0.78
LG/J	27.89	77.63	76.74	61.34	2.78	2.75
LP/J	45.93	0.00	0.00	4.28	0.00	0.00
MOLF/EiJ	25.16	35.03	34.45	166.51	1.39	1.36
MSM/Ms	13.86	20.04	18.58	15.22	1.44	1.34
NOD/ShiLtJ	49.19	67.51	66.51	36.08	1.37	1.35
NZB/B1NJ	38.51	74.78	73.77	79.22	1.94	1.91
NZO/HlLtJ	59.11	0.01	0.01	6.69	0.00	0.00
NZW/LacJ	55.17	47.16	46.59	56.40	0.85	0.84
PWK/PhJ	44.46	95.68	94.31	71.55	2.15	2.12
RF/J	45.42	57.63	57.20	429.65	1.26	1.25
SEA/GnJ	42.12	0.00	0.00	15.28	0.00	0.00
SJL/J	40.72	35.54	35.49	24.47	0.87	0.87
SM/J	23.08	52.51	51.90	27.81	2.27	2.24
SPRET/EiJ	58.26	144.54	138.11	119.08	2.48	2.37
ST/bJ	68.09	69.69	68.52	557.64	1.02	1.00
WSB/EiJ	43.10	0.18	0.18	4.79	0.00	0.00
ZALENDE/EiJ	17.02	0.19	0.19	70.39	0.01	0.01

Reference

- 1. Adams, D. J., Doran, A. G., Lilue, J. & Keane, T. M. The Mouse Genomes Project: a repository of inbred laboratory mouse strain genomes. *Mamm. Genome* **26**, 403-412 (2015).
- **2.** Takada, T. et al. The ancestor of extant Japanese fancy mice contributed to the mosaic genomes of classical inbred strains. *Genome Res.* **23**, 1329-1338 (2013).
- Huntley, M. A. et al. Complex regulation of ADAR-mediated RNA-editing across tissues. *BMC Genomics* 17, 61 (2016).
- Pohl, A. A. et al. Affy exon tissues: exon levels in normal tissues in human, mouse and rat. *Bioinformatics* 25, 2442-2443 (2009).