

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Fish and marine fatty acids, genetic variant of FADS gene, and long-term weight gain

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-022877
Article Type:	Research
Date Submitted by the Author:	13-Mar-2018
Complete List of Authors:	Huang, Tao Wang, Tiange ; Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University Heianza, Yoriko ; Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University Wiggs, Janey ; Harvard Medical School, Massachusetts Eye and Ear Infirmary Sun, Dianjianyi ; School of Public Health and Tropical Medicine, Tulane University Han, Liyuan ; School of Public Health and Tropical Medicine, Tulane University Choi, Hyon-Kyoo ; Massachusetts General Hospital - Harvard Medical School Center for Nervous System Repair Chai, Jin Fang ; National University Singapore Yong Loo Lin School of Medicine Sim, Xueling ; Epidemiology Domain Saw Swee Hock School of Public Health, National University of Singapore Khor, Chiea Chuen ; Epidemiology Domain Saw Swee Hock School of Public Health, National University of Singapore Friedlander, Yechiel ; Hebrew University-Hadassah Braun School of Public Health Chan, Andrew T. ; Division of Gastroenterology, Massachusetts General Hospital Curhan, Gary ; Department of Epidemiology, Harvard School of Public Health Vivo, Immaculata De ; Department of Epidemiology, Harvard School of Public Health van Dam, Rob Martinu. ; Saw Swee Hock School of Public Health, National University of Singapore Fuchs, Charles S. ; Brigham and Women's Hospital and Harvard Medical School Pasquale, Louis R. ; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School Yuan, Jian-min ; Division of Cancer Control and Population Sciences, University of Pittsburgh Cancer Institute Hu, Frank B. ; Department of Nutrition, Harvard School of Public Health Koh, Woon Puay ; Duke-NUS Medical School Qi, Lu; Tulane University, Department of Epidemiology, School of Public Health Koh, Woon Puay ; Duke-NUS Medical School Qi, Lu; Tulane University, Department of Epidemiology, School of Public Health and Tropical Medicine,

Keywords: NUTRITION & DIETETICS, GENETICS, EPIDEMIOLOGY, obesity, gene-diet interaction
SCHOLARONE [™] Manuscripts
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Fish and marine fatty acids, genetic variant of FADS gene, and long-term weight gain

Tao Huang^{1,2,3,4*}, Tiange Wang³, Yoriko Heianza³, Janey Wiggs⁵, Dianjianyi Sun³, Liyuan Han³, Hyon-Kyoo Choi⁶, Jin Fang Chai², Xueling Sim², Chiea Chuen Khor^{7,8}, Yechiel Friedlander⁹, Andrew T. Chan¹⁰, Gary Curhan¹¹, Immaculata De Vivo¹¹, Rob Martinu. van Dam^{2,4}, Chew Kiat Heng ¹², Charles S. Fuchs^{13,14}, Louis R. Pasquale¹⁵, Jian-min Yuan^{16,17}, Frank B. Hu^{4,13}, Woon Puay Koh^{2,18}, Lu Qi^{3,4,19*} ¹Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191,

China

²Epidemiology Domain Saw Swee Hock School of Public Health, National University of Singapore, Singapore, 117549.

³Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 1724 New Orleans, LA 70112;

⁴Department of Nutrition, Harvard School of Public Health, Boston, MA 02115, USA;

⁵Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA 02115, USA;

⁶Department of Rheumatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA;

⁷Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore.
⁸Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.

⁹Unit of Epidemiology, Hebrew University-Hadassah Braun School of Public Health, POB 12272, Jerusalem 91120, Israel.

¹⁰Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA;

¹¹Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA;

¹²Department of Paediatrics National University of Singapore NUHS Tower Block, Level 12, 1E Kent Ridge Road Singapore 119228

¹³Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA

14 The Conton t	for Castrointestinal Cancer Dana Early or Cancer Institute
	or Gastroiniestinal Cancer, Dana-Farber Cancer Institute
Channing D	ivision of Network Medicine, Department of Medicine, Brigham and Women's Hospital and
Harvard Medi	cal School, Boston, MA 02115, USA;
¹⁰ Division of (Cancer Control and Population Sciences, University of Pittsburgh Cancer Institute,
Pittsburgh, PA	I, USA.
¹⁷ Department	of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA,
USA.	
¹⁸ Duke-NUS M	Medical School, Singapore, Singapore.
¹⁹ Tulane Univ	ersity Obesity Research Center, School of Public Health and Tropical Medicine, Tulane
University, 14	40 Canal Street, Suite 1724 New Orleans, LA 70112;
Registration:	www. clinicaltrials.gov. Registration ID: NCT03348566
Running title	: Genetic adaptation, fish, and weight change
Word count:	3420
*Correspond	ence and requests for reprint:
* Correspond Dr. Tao Huanş	ence and requests for reprint: 3. Department of Epidemiology and Biostatistics, School of Public Health, Peking University
* Correspond Dr. Tao Huanş Beijing, China	ence and requests for reprint: g. Department of Epidemiology and Biostatistics, School of Public Health, Peking University a. Email: huangtao@bjmu.edu.cn
* Correspond Dr. Tao Huanş Beijing, China Dr. Lu Qi. De	ence and requests for reprint: g. Department of Epidemiology and Biostatistics, School of Public Health, Peking University a. Email: huangtao@bjmu.edu.cn partment of Epidemiology, School of Public Health and Tropical Medicine, Tulane
* Correspond Dr. Tao Huanş Beijing, China Dr. Lu Qi. De University. 14	ence and requests for reprint: g. Department of Epidemiology and Biostatistics, School of Public Health, Peking University a. Email: huangtao@bjmu.edu.cn partment of Epidemiology, School of Public Health and Tropical Medicine, Tulane 40 Canal Street, Suite 1724, New Orleans, LA 70112
* Correspond Dr. Tao Huanş Beijing, China Dr. Lu Qi. De University. 14 Telephone: 50	ence and requests for reprint: g. Department of Epidemiology and Biostatistics, School of Public Health, Peking University a. Email: huangtao@bjmu.edu.cn partment of Epidemiology, School of Public Health and Tropical Medicine, Tulane 40 Canal Street, Suite 1724, New Orleans, LA 70112 4-988-3549;

1	Abstract
2	Objective: We tested whether genetic variants near fatty acid desaturases gene (FADS) cluster, which
3	were recently identified to be signatures of adaptation to fish- and n-3 PUFAs-rich diet, interacted with
4	these dietary factors on change in body mass index (BMI).
5	Design: Three FADS variants were examined for gene-diet interactions on long-term (~10 years) changes
6	in BMI and body weight were tested in three prospective cohort studies.
7	Setting: Population based study
8	Participants: 11,323 women from the Nurses' Health Study (NHS), 6,833 men from the Health
9	Professionals Follow-up Study (HPFS), and replicated in 6,254 women from the Women's Health
10	Initiative (WHI), and 5,264 Chinese from the Singapore Chinese Health Study (SCHS).
11	Main outcomes: Long-term (~10 years) changes in BMI and body weight
12	Results: In the NHS and HPFS cohorts, food-sourced n-3 PUFAs intake showed interactions with the
13	FADS rs174570 on changes of BMI (P for interaction = 0.02 in NHS, 0.05 in HPFS, and 0.007 in
14	combined). Such interactions were replicated in two independent cohorts WHI and SCHS (P for
15	interaction = 0.04 in WHI, 0.02 in SCHS, and 0.001 in combined). The genetic associations of the <i>FADS</i>
16	rs174570 with changes in BMI increased across the tertiles of n-3 PUFAs in all the cohorts. Fish intake
17	also accentuated the genetic associations of the FADS rs174570 with long-term changes in BMI (pooled P
18	for interaction = 0.006). Viewed differently, long chain n-3 PUFAs intake showed stronger association
19	with long-term changes in BMI among the rs174570 T carriers (beta = 0.79 kg/m^2 per g, P = 3×10^{-5}) than
20	the rs174570 non-T carriers (beta= 0.16 kg/m^2 per g, P = 0.08). Similar results were observed for fish
21	intake.
22	Conclusions: Our analyses provide replicable evidence that long chain n-3 PUFAs and fish intakes may
23	interact with the FADS variant on long-term weight gain.
24	
25	Article summary
26	Strengths and limitations of this study
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 5 of 38

BMJ Open

1		
2 3 4	27	• This is the first study with consistent results from 4 well-established prospective cohorts of different
5 6	28	racial populations such as Caucasians with European ancestry and Singapore Chinese.
7 8	29	• The consistent results from these independent cohorts demonstrated the robustness of our findings.
9 10	30	• Unlike cross-sectional studies, our prospective analysis minimized the potential reverse causa.
11 12	31	
13 14	32	Introduction
15 16	33	Diet rich in fish and marine fatty acids especially long chain n-3 polyunsaturated fatty acids (PUFAs) has
17 18 10	34	shown beneficial effects on cardiometabolic health (1, 2), however, data from population studies on the
20 21	35	associations between such diet and body weight are inconsistent (3, 4). Emerging evidence suggests genetic
22 23	36	variations may play a role in modifying the relation between dietary factors and body weight (5-7).
24 25	37	
26 27	38	A recent study of Inuit identified genetic signatures of adaptation to diets rich in fish and n-3 PUFAs. The
28 29	39	strong signals locate in a cluster of fatty acid desaturases gene (FADS) that determine PUFAs levels (8).
30 31	40	People living in the Arctic region have been found to be genetically prone to develop obesity (9, 10) as
32 33	41	survival strength for energy storage(11, 12). Interestingly, the identified FADS genetic signatures of diet
34 35 26	42	adaptation have been also related to adiposity in the Inuit population (8). Of note, due to long-standing
36 37 38	43	selection pressure, the identified FADS signatures differ in frequency of selective allele across various
39 40	44	populations such as Europeans and Asians (13), in coincidence with varying levels of fish/marine fatty
41 42	45	acids consumption, and adiposity patterns in these populations (14). We therefore hypothesized that the
43 44	46	genetic signatures might interact with fish and marine PUFAs intakes on body weight (13).
45 46	47	
47 48	48	The present study tested the interactions between n-3 PUFA and fish intakes and variants in FADS gene
49 50	49	cluster, genetic signatures of adaptation to fish- and n-3 PUFAs-rich diet, in relation to long-term changes in
51 52	50	body mass index (BMI) in two US prospective cohorts: the Nurses' Health Study (NHS) and the Health
53 54	51	Professionals Follow-up Study (HPFS). We replicated the findings in two independent, prospective cohorts
55 56 57 58	52	the Women's Health Initiative (WHI) and the Singapore Chinese Health Study (SCHS).
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Methods **Discovery cohorts** The Nurses' Health Study The NHS began in 1976, when 121,700 female registered nurses aged 30-55 y residing in 11 states were recruited to complete a baseline questionnaire about their lifestyle and medical history (15). The current analysis baseline was set in 1990 for the NHS. We included 11,323 women of European ancestry. Informed consent was obtained from all participants. The DNA extraction methods, quality control measures, SNPs genotyping and imputation when performed have been described in detail elsewhere (16-22). All participants with genotyping data available based on previous GWASs were included (16-21). The study protocol was approved by the institutional review boards of Brigham and Women's Hospital and Harvard School of Public Health. The Health Professionals Follow-up Study The HPFS was initiated in 1986, and was composed of 51,529 male dentists, pharmacists, veterinarians, optometrists, osteopathic physicians, and podiatrists, aged 40-75 y at baseline. The male participants returned a baseline questionnaire about detailed medical history, lifestyle, and usual diet (23). In the current analysis, we used 1990 as baseline in the HPFS, when the earliest complete dietary data were collected. Our analysis included 6,833 men whose genotype data were available. Informed consent was obtained from all participants. The DNA extraction methods, quality control measures, SNPs genotyping and imputation when performed have been described in detail elsewhere (16-22). All participants with genotyping data available based on previous GWASs were included (16-21). The study protocol was approved by the institutional review boards of Brigham and Women's Hospital and Harvard School of Public Health. **Replication cohorts** The Women's Health Initiative (WHI)

The Women's Health Initiative (WHI) is a large, multiethnic, 40-center study funded by the National Heart, Lung, and Blood Institute (NHLBI) that focuses on strategies for preventing heart disease, breast and colorectal cancer, and osteoporotic fractures in postmenopausal women. A full description of the WHI study is presented elsewhere (24, 25). For the analyses, we included 6,254 Caucasians women with European ancestry who participated in the WHI clinical trial studies at baseline (1994-1998) and at sixth-year follow-up and for whom DNA was measured. The genomic DNA samples were processed according to standard Affymetrix procedures for processing of the assay. The Affymetrix Human SNP Array 6.0 (Affymetrix[®], Inc Santa Clara, CA) was used for genome wide SNP genotyping. Human subjects review committees at each participating institution reviewed and approved the study, and all women gave written informed consent.

90 The Singapore Chinese Health Study (SCHS) cohort

The design of Singapore Chinese Health Study (SCHS) has been previously described in detail (26). Briefly, between 1993 and 1998, 63,257 Chinese men and women between ages of 45 and 74 years living in Singapore were enrolled into the cohort study (27). Two follow-up interviews were conducted via telephone among surviving participants between 1999 and 2004, and again between 2006 and 2010 to update information on body weight, selected lifestyle factors and medical history. All participants have given informed consent. The study was approved by the Institutional Review Boards of the National University of Singapore and the University of Pittsburgh, and the study was carried out in accordance with the approved guidelines. Genome-wide genotyping for 2615 incident diabetes cases and 2615 matched controls was performed at the Genome Institute of Singapore according to the manufacturer's recommendations using an Affymetrix ASI (Asian) Axiom array. Genotype calling was performed by the Affymetrix Corporation (28). Genome-wide genotyping for 717 incident myocardial infarction (MI) cases and 644 controls was performed for SCHS samples using the Illumina HumanOmni ZhongHua-8 Bead Chip (29).

Among these two case-control studies nested within the cohort, 5,264 subjects with genotyping data had both weight reported at both baseline and follow-up 2 interviews, and were included in this analysis. Assessment of measures of body mass index Height and body weight were assessed by questionnaire at baseline, and weight information was requested on follow-up questionnaire in all 4 cohorts. Self-reported weights were highly correlated with directly measured values (r=0.97 in HPFS and NHS) in a validation study (30). BMI was calculated as body weight (kg)/height (m²). We defined long-term changes in BMI as changes in BMI from 1990 to 2000 in the NHS and HPFS cohorts (31), and from baseline (1993) to sixth year follow-up in the WHI (24, 25), and from baseline (1998) to second follow-up (2004) in the SCHS. Assessment of diets and other covariates Questionnaires were used to collect information on a medical history and diet/lifestyle factors in all 4 cohorts. Total fish, n-3 PUFAs, supplemental use of fish oil, alcohol, sugar sweetened beverages, fried food intakes, and other dietary factors at baseline were assessed by validated food frequency questionnaires (FFQ) in the NHS and HPFS (32, 33). A 165-item validated semi-quantitative FFQ was used to collect dietary data and supplemental use of fish oil in the SCHS (27). Dietary data and supplemental use of fish oil were obtained from a self-administered baseline 122-items validated FFO in the WHI (34). Alternate health eating index was previously calculated in the NHS, HPFS (35), WHI, and SCHS respectively. Physical activity was expressed as metabolic equivalents per week by incorporating the reported time spent on various activities, and the intensity level of each activity. The validity of the self-reported physical activity data has been described previously in the NHS and HPFS (36). In the WHI, an estimated metabolic equivalent (MET) level for each type of activity was assigned from a compendium of activities (37). Physical activity was assessed using eight continuous categories ranging from never to 31 hours or more in an average week spent doing strenuous sports; vigorous work; and moderate activities in the SCHS (26).

•	-	
5	ć	
C	э	

1		
2 3	130	
4 5	131	The FADS variants selection and genotyping
6 7	122	There effets (E4DS since the state of the second size of the second sec
8	132	Three of the 6 FADS single-nucleotide polymorphisms (SNPS) reported in a recent scan of mult genomes
9 10 11	133	for signatures of adaptation (8) were derived from genome-wide scans available in the NHS, HPFS. We
12	134	assumed that each SNP in the panel acts independently in an additive manner. We coded the SNPs as
13 14 15	135	following: rs174570 (TT=2, TC=1, CC=0); rs174602 (TT=2, TC=1, CC=0); rs7115739 (TT=2, TG=1,
15 16 17	136	GG=0). The FADS rs174570 was extracted from GWAS data in the WHI and SCHS cohorts for replication
17 18 19	137	(Supplemental Table 1).
20 21	138	
22 23	139	Patient and Public Involvement
24 25	140	patients and or public were not involved.
26 27	141	
28 29	142	Statistical analyses
30 31	143	We examined the associations of the FADS variants (rs174570, rs174602, rs7115739) with adiposity
32 33 24	144	measures and long-term changes in BMI using general linear models. Interactions between the FADS
34 35 36	145	variants (rs174570, rs174602, rs7115739) and baseline fish intake, and total or food-sourced long chain n-3
37 38	146	PUFAs intakes on long-term changes in BMI were tested by including a multiplicative interaction term in
39 40	147	the models in the NHS and HPFS. The significant results for rs174570 were replicated in the WHI and
41 42	148	SCHS. Potential confounders considered in multivariable models were age, baseline physical activity,
43 44	149	baseline television watching, baseline smoking, baseline alcohol intake, baseline alternate healthy eating
45 46	150	index, and baseline total energy intake, sugar sweetened beverages (if available), fried food intake (if
47 48	151	available). We further tested the genetic associations with long-term changes in BMI according to long
49 50	152	chain n-3 PUFAs and fish intakes, and associations of long chain n-3 PUFAs and fish intakes with long-term
51 52 53	153	changes in BMI according to the FADS genotypes using general linear models after adjustment of potential
55 55	154	confounders. Results across cohorts were pooled with inverse variance weighted meta-analyses by fixed
56 57 58	155	effects models (if P \ge 0.05 for heterogeneity between studies) or random effects models (if P < 0.05 for

3 4	156	heterogeneity between studies). All reported P values are nominal and two sided. Statistical analyses were
5 6	157	performed in SAS 9.3 (SAS Institute, Cary, NC, USA).
7 8	158	
9 10	159	Results
11 12 12	160	Baseline characteristics of all participants in the NHS, HPFS, WHI and SCHS cohorts
13 14 15	161	Table 1 shows the baseline characteristics for all participants in the NHS, HPFS, WHI, and SCHS cohorts.
16 17	162	The present study included 11,323 women with genetic data from the NHS cohort, 6,833 men with genetic
18 19	163	data from the HPFS cohort, 6,254 women from the WHI, and 5,264 Chinese from the SCHS. The
20 21	164	distribution of the <i>FADS</i> genetic variants in the 4 cohorts was shown in Supplemental table 1 . We did not
22 23	165	observe any significant genetic association between the <i>FADS</i> rs174570 genotype and baseline BMI, BMI
24 25 26	166	at endpoint, and long-term changes in BMI in three US cohorts ($P > 0.05$), however, we found that the
20 27 28	167	<i>FADS</i> genotype was significantly associated with baseline BMI in the SCHS ($P = 0.002$) (Supplemental
29	168	table 2).
50	100	
30 31 32	169	
31 32 33	169 170	Genetic associations with long-term changes in BMI according to LC n-3 PUFAs/fish intakes
30 31 32 33 34 35 36	169 170 171	Genetic associations with long-term changes in BMI according to LC n-3 PUFAs/fish intakes We first tested interactions between the <i>FADS</i> genetic variants (rs174570, rs174602, rs7115739) and intakes
30 31 32 33 34 35 36 37 38	169 170 171 172	Genetic associations with long-term changes in BMI according to LC n-3 PUFAs/fish intakes We first tested interactions between the <i>FADS</i> genetic variants (rs174570, rs174602, rs7115739) and intakes of various sourced long chain n-3 PUFAs and fish in the NHS and HPFS cohorts. We found that only <i>FADS</i>
30 31 32 33 34 35 36 37 38 39 40	169 170 171 172 173	Genetic associations with long-term changes in BMI according to LC n-3 PUFAs/fish intakes We first tested interactions between the <i>FADS</i> genetic variants (rs174570, rs174602, rs7115739) and intakes of various sourced long chain n-3 PUFAs and fish in the NHS and HPFS cohorts. We found that only <i>FADS</i> rs174570 (C/T, with T as the common allele in Inuit, but rare allele in Europeans and Asians) showed
30 31 32 33 34 35 36 37 38 39 40 41 42	169 170 171 172 173 174	Genetic associations with long-term changes in BMI according to LC n-3 PUFAs/fish intakes We first tested interactions between the <i>FADS</i> genetic variants (rs174570, rs174602, rs7115739) and intakes of various sourced long chain n-3 PUFAs and fish in the NHS and HPFS cohorts. We found that only <i>FADS</i> rs174570 (C/T, with T as the common allele in Inuit, but rare allele in Europeans and Asians) showed significant interaction with LC n-3 PUFAs/fish intakes. Food-sourced n-3 PUFAs (Eicosapentaenoic acid
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	169 170 171 172 173 174 175	Genetic associations with long-term changes in BMI according to LC n-3 PUFAs/fish intakes We first tested interactions between the <i>FADS</i> genetic variants (rs174570, rs174602, rs7115739) and intakes of various sourced long chain n-3 PUFAs and fish in the NHS and HPFS cohorts. We found that only <i>FADS</i> rs174570 (C/T, with T as the common allele in Inuit, but rare allele in Europeans and Asians) showed significant interaction with LC n-3 PUFAs/fish intakes. Food-sourced n-3 PUFAs (Eicosapentaenoic acid (EPA) + Docosahexaenoic acid (DHA)) intake consistently magnified the genetic association with
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	169 170 171 172 173 174 175 176	Genetic associations with long-term changes in BMI according to LC n-3 PUFAs/fish intakes We first tested interactions between the <i>FADS</i> genetic variants (rs174570, rs174602, rs7115739) and intakes of various sourced long chain n-3 PUFAs and fish in the NHS and HPFS cohorts. We found that only <i>FADS</i> rs174570 (C/T, with T as the common allele in Inuit, but rare allele in Europeans and Asians) showed significant interaction with LC n-3 PUFAs/fish intakes. Food-sourced n-3 PUFAs (Eicosapentaenoic acid (EPA) + Docosahexaenoic acid (DHA)) intake consistently magnified the genetic association with long-term changes in BMI (P for interaction = 0.02 in NHS, 0.05 in HPFS, and 0.007 in combined cohorts)
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	169 170 171 172 173 174 175 176 177	Genetic associations with long-term changes in BMI according to LC n-3 PUFAs/fish intakes We first tested interactions between the <i>FADS</i> genetic variants (rs174570, rs174602, rs7115739) and intakes of various sourced long chain n-3 PUFAs and fish in the NHS and HPFS cohorts. We found that only <i>FADS</i> rs174570 (C/T, with T as the common allele in Inuit, but rare allele in Europeans and Asians) showed significant interaction with LC n-3 PUFAs/fish intakes. Food-sourced n-3 PUFAs (Eicosapentaenoic acid (EPA) + Docosahexaenoic acid (DHA)) intake consistently magnified the genetic association with long-term changes in BMI (P for interaction = 0.02 in NHS, 0.05 in HPFS, and 0.007 in combined cohorts) (Figure 1). We successfully replicated our results in the WHI cohort (P for interaction = 0.04) and the
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	169 170 171 172 173 174 175 176 177 178	Genetic associations with long-term changes in BMI according to LC n-3 PUFAs/fish intakes We first tested interactions between the <i>FADS</i> genetic variants (rs174570, rs174602, rs7115739) and intakes of various sourced long chain n-3 PUFAs and fish in the NHS and HPFS cohorts. We found that only <i>FADS</i> rs174570 (C/T, with T as the common allele in Inuit, but rare allele in Europeans and Asians) showed significant interaction with LC n-3 PUFAs/fish intakes. Food-sourced n-3 PUFAs (Eicosapentaenoic acid (EPA) + Docosahexaenoic acid (DHA)) intake consistently magnified the genetic association with long-term changes in BMI (P for interaction = 0.02 in NHS, 0.05 in HPFS, and 0.007 in combined cohorts) (Figure 1). We successfully replicated our results in the WHI cohort (P for interaction = 0.04) and the SCHS cohort (P for interaction = 0.02).
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 50 51 52 53	169 170 171 172 173 174 175 176 177 178 179	Genetic associations with long-term changes in BMI according to LC n-3 PUFAs/fish intakes We first tested interactions between the <i>FADS</i> genetic variants (rs174570, rs174602, rs7115739) and intakes of various sourced long chain n-3 PUFAs and fish in the NHS and HPFS cohorts. We found that only <i>FADS</i> rs174570 (C/T, with T as the common allele in Inuit, but rare allele in Europeans and Asians) showed significant interaction with LC n-3 PUFAs/fish intakes. Food-sourced n-3 PUFAs (Eicosapentaenoic acid (EPA) + Docosahexaenoic acid (DHA)) intake consistently magnified the genetic association with long-term changes in BMI (P for interaction = 0.02 in NHS, 0.05 in HPFS, and 0.007 in combined cohorts) (Figure 1). We successfully replicated our results in the WHI cohort (P for interaction = 0.04) and the SCHS cohort (P for interaction = 0.02).
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55	169 170 171 172 173 174 175 176 177 178 179 180	Genetic associations with long-term changes in BMI according to LC n-3 PUFAs/fish intakes We first tested interactions between the <i>FADS</i> genetic variants (rs174570, rs174602, rs7115739) and intakes of various sourced long chain n-3 PUFAs and fish in the NHS and HPFS cohorts. We found that only <i>FADS</i> rs174570 (C/T, with T as the common allele in Inuit, but rare allele in Europeans and Asians) showed significant interaction with LC n-3 PUFAs/fish intakes. Food-sourced n-3 PUFAs (Eicosapentaenoic acid (EPA) + Docosahexaenoic acid (DHA)) intake consistently magnified the genetic association with long-term changes in BMI (P for interaction = 0.02 in NHS, 0.05 in HPFS, and 0.007 in combined cohorts) (Figure 1). We successfully replicated our results in the WHI cohort (P for interaction = 0.04) and the SCHS cohort (P for interaction = 0.02).

Page 11 of 38

BMJ Open

1 ว		
2 3 4	182	accentuated the genetic association of the FADS genotypes with long-term changes in BMI (Figure 2). No
5 6	183	significant heterogeneity in the interaction effect was observed among these cohorts. Differences in
7 8	184	long-term changes of BMI per T allele were -0.105 (SE 0.067), 0.027 (SE 0.064), and 0.120 (SE 0.067)
9 10	185	kg/m ² across three tertiles of food-sourced n-3 PUFAs in pooled results from all the 4 cohorts.
11 12	186	
13 14	187	Individual food-sourced n-3 PUFAs such as EPA (pooled P for interaction=0.01) and DHA (pooled P for
15 16	188	interaction=0.003) showed similar interaction patterns; and the interactions remained significant when
17 18	189	supplemented n-3 PUFAs were considered (pooled P for interaction=0.007) (Figure 2).
19 20	190	
21 22	191	In addition, fish intake showed similar, though less significant, interaction patterns with the FADS
23 24	192	genotype on long-term changes in BMI in the NHS (P for interaction=0.16), HPFS (P for
25 26	193	interaction=0.09), WHI (P for interaction=0.09), SCHS (P for interaction=0.03) and combined results
27 28	194	(pooled P for interaction=0.006), and the differences in BMI changes per T allele were -0.096 (SE 0.071),
29 30	195	0.041 (SE 0.052), and 0.251 (SE 0.151) kg/m ² across three categories (≤ 1 serving/week, 1~6
31 32 22	196	servings/week, and > 1 serving/day) of fish intake in combined results from all the 4 cohorts.
33 34 35	197	
36 37	198	In addition, we did not observe significant interaction between two other genetic variants in <i>FADS</i> cluster
38 39	199	(rs174602 and rs7115739) and long chain n-3 PLIFAs/fish intakes in relation to long-term changes in BMI
40	155	(1517 1602 and 157115757) and long chain in 51 CTAS fish markes in relation to long term changes in Divit
41 42	200	in the NHS and HPFS cohorts. Similar interactions for long-term changes in body weight were observed
43 44	201	(Supplemental table 3 & 4).
45 46	202	
47 48	203	Long chain n-3 PUFAs/fish intakes and long-term changes in BMI according to the FADS genotype
49 50	204	We found that individuals who consumed the highest food-sourced n-3 PUFAs (EPA+DHA; T3) had
51 52	205	significantly greater increase of BMI (mean \pm SE = 0.74 \pm 0.06, kg/m ²) than did those who consumed the
53 54	206	lowest (T1) (mean \pm SE = 0.39 \pm 0.07, kg/m ²) among the T allele carriers, whereas the corresponding BMI
55 56 57	207	changes were 0.68 \pm 0.03 kg/m ² and 0.49 \pm 0.03 kg/m ² , respectively, among the non-T carriers in 4 cohorts
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

combined (Table 2 & Supplemental table 5). Similarly, we observed different associations between fish intake and BMI changes among the T allele carriers ($P = 1.5 \times 10^{-6}$) and non-carriers (P = 0.01) in the pooled results from these US cohorts. No significant heterogeneity in the interaction effect was observed among the cohorts. Figure 3 presents the predicted long-term changes in BMI from food-sourced n-3 PUFAs and fish intake according to the T carriers and the non-T carriers. Results from the NHS, HPFS and WHI cohorts consistently showed that the associations of food-sourced n-3 PUFAs and fish intakes with long-term changes in BMI were stronger among the T carriers than those among the non-T carriers. In the pooled results, the beta \pm SE for associations of food-sourced n-3 PUFAs (Figure 3) and fish intake (Figure 4) with long-term changes in BMI were 0.79 ± 0.19 kg/m² per g (P = 0.000003) and 0.64 ± 0.16 kg/m² per serving (P = 0.00002) among the T carriers, and whereas the corresponding beta \pm SE were 0.16 \pm 0.10 kg/m² per g (P = 0.08) and 0.18 ± 0.08 kg/m² per serving (P = 0.01) among the non-T carriers. 12.0 Discussion In 4 large prospective cohorts of the US and Chinese populations, we found reproducible evidence that long chain n-3 PUFAs and fish intakes accentuated the genetic association of the FADS genotypes with long-term changes in BMI. In addition, our results showed that the FADS rs174570 T allele carriers gained more weight than the non-carriers when they had higher long chain n-3 PUFAs and fish intakes. Compelling evidence has shown that fish- and long chain n-3 PUFAs-rich diet are beneficial on improvement of cardiometabolic health (1, 2). However, large prospective cohort studies examining the associations of fish or n-3 PUFAs with body weight and obesity risk generated conflicting results (3, 4). In addition, several randomized controlled trials (RCTs) supported the protective effects of fish, fish oils, or/and n-3 PUFAs intake on weight-loss (38-40), but the benefit was not evident in other trials (41-43). The

60

BMJ Open

2		
3 4	233	results from the current study lent support to our hypothesis that the heterogeneous associations between
5 6	234	fish or n-3 PUFAs and body weight might be at least partly due to gene-diet interactions.
7 8	235	
9 10	236	We found that the genetic associations between the FADS rs174570 and long-term BMI change were
11 12	237	stronger along with increasing intakes of long chain n-3 PUFAs and fish. Viewed from a different angle,
13 14 15	238	the magnitude of associations of fish and long chain n-3 PUFAs intakes with BMI changes varied among
15 16 17	239	individuals with different genotypes. The FADS rs174570 was recently identified from a study of the Inuit,
17 18 19	240	who had high fish/n-3 PUFAs intakes (8). The high frequency of T allele in Inuit reflects genetic adaptation
20 21	241	to the special fish- and n-3 PUFA rich diet. Interestingly, the identified FADS genetic signatures of diet
22 23	242	adaptation have been also related to adiposity in this population. Our data indicated that the signature allele
24 25	243	(T) was related differently with weight changes (decrease or increase), depending on the levels of fish/n-3
26 27	244	PUFAs intakes. In people with high fish/n-3 PUFAs intakes, carrying the signature allele predisposed to
28 29	245	greater weight gain and an increased risk of obesity; while carriers of this allele tended to have less body
30 31	246	weight when they are exposed to diet low in fish and n-3 PUFAs.
32 33	247	
34 35 26	248	We found that individual food-sourced n-3 PUFAs such as EPA and DHA showed similar interaction
30 37 38	249	patterns in relation to long-term changes in BMI; and the interactions also remained significant when
39 40	250	supplemented n-3 PUFAs were considered. In addition, our results indicated that the interactions of
41 42	251	fish/n-3 PUFAs intakes and the FADS genotype were persistent across different racial populations such as
43 44	252	Europeans and Asians. Our data suggest that the interactions between n-3 PUFAs and the FADS genotype is
45 46	253	robust for fatty acids from various sources.
47 48	254	
49 50	255	The mechanisms underlying the observed gene-diet interactions remain unclear, however, such
51 52	256	interactions are biologically plausible. It has long been known that the FADS genes such as
53 54 55	257	FADS1 and FADS2 encode delta-5 and delta-6 desaturases respectively, which are the important
55 56 57 58 59	258	rate-limiting steps in the endogenous formation of long-chain PUFA such as EPA and DHA from linoleic
59		

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

259	acid (n-6) and α -linolenic acid (n-3) (44). The selected allele of <i>FADS</i> rs174570 is significantly associated
260	with an increase in the concentration of n-3 fatty acids upstream in the n-3 synthesis pathway (44). In
261	addition, it has been reported that dietary n-3 PUFAs might regulate adipocyte FADS expression and
262	function (45). In addition, storage of energy and body fat is very important for the Arctic population, who
263	are regularly exposed to the extreme low temperature and fishes rich in n-3 PUFAs (11, 12). Under natural
264	selection, these people are genetically prone to high fish intake to keep body fat (9, 10). Therefore, it's not
265	surprising that high fish or n-3 PUFAs intake accentuated genetic susceptibility to obesity among people
266	carrying selective FADS signature (46, 47). Our findings support the view that extra n-3 PUFAs may not
267	do much benefit at all for Europeans with selective FADS signature(8, 13).
268	Strengths
269	Several strengths of this study merit mention. To our knowledge, this is the first study with consistent results
270	from 4 well-established prospective cohorts of different racial populations such as Caucasians with
271	European ancestry and Singapore Chinese. The consistent results from these independent cohorts
272	demonstrated the robustness of our findings. Other major strengths include the prospective design, the large
273	sample size, use of long-term change of BMI, and replication of the results. Unlike cross-sectional studies,
274	our prospective analysis minimized the potential reverse causality (48).
275	Limitations
276	However, several limitations need to be acknowledged. First, dietary fatty acids, fish, and adiposity
277	measures were self-reported, measurement errors in these variables are inevitable; however, the food
278	frequency questionnaires and adiposity measures data have been well validated (27, 30, 32-34). Second,
279	confounding by other unmeasured or unknown factors might exist, although we have carefully adjusted for
280	multiple dietary and lifestyle factors. Third, a causal relation among long chain n-3 PUFAs and fish
281	consumption, and adiposity cannot be inferred from an observational study. Fourth, all subjects with genetic
282	data were selected in each cohort. The source of genotyping data was diverse (e.g. sub-cohort, case control
283	studies), therefore, subject selection might be a major source of bias. Fifth, we acknowledge that the
284	different methods in measuring anthropometric traits, genetic variants and food intake across cohorts might

59

60

BMJ Open

2		
3 4	285	introduce bias in the present analyses. Finally, the participants included in our study were middle aged and
5 6	286	older adults of Caucasians with European ancestry in the US and Chinese in Singapore, and it is unknown
7 8	287	whether our findings could be generalized to other demographic or ethnic groups.
9 10	288	Conclusions
11 12	289	In summary, our data provides reproducible evidence from 4 multiethnic cohorts that high long chain n-3
13 14	290	PUFAs and fish intakes accentuate the genetic association of the FADS with adiposity. These findings
15 16 17	291	emphasize the importance of considering precision nutritional interventions on prevention and treatment
17 18 19	292	of obesity.
20	293	
21 22	204	Contributions TH and LO do its to day at the end among the Greet day? TH another date to DH
23	294	Contributors: TH and LQ designed the study and wrote the first draft. TH analyzed the data. FBH
24 25	295	provided statistical expertise. TW, YH, DS, LH, CSF, JW, LRP, AT, GC, IDV, HKC, JF, XS, CCK, YF, RM,
26 27	296	HCK, JY, KWP, and LQ were involved in data collection. TH and LQ are guarantors. All authors
28 29	297	contributed to the interpretation of the results and critical revision of the manuscript for important
30 31	298	intellectual content and approved the final version of the manuscript.
32 33 34	299	We acknowledge Dr. Gary C. Curhan's contribution to the genetic data.
35 36	300	
37 38	301	Funding
39 40	302	This study was supported by grants HL126024, HL034594, DK100383, DK091718, HL071981,
41 42	303	HL073168, CA87969, CA49449, CA055075, HL34594, HL088521, U01HG004399, DK080140,
43 44	304	P30DK46200, U01CA137088, U54CA155626, DK58845, DK098311, U01HG004728, EY015473,
45 46	305	CA134958, DK70756 and DK46200 from the National Institutes of Health, with additional support for
47 48	306	genotyping from Merck Research Laboratories, North Wales, PA. LQ is a recipient of the American Heart
49 50 51	307	Association Scientist Development Award (0730094N). LRP is supported by the Arthur Ashley Williams
52 53	308	Foundation and a Harvard Ophthalmology Scholar Award (Harvard Medical School) from the Harvard
54 55	309	Glaucoma Center of Excellence. ATC is a Damon Runyon Cancer Foundation Clinical Investigator. The
56 57 58	310	SCHS study is supported by the National Institutes of Health, USA (NCI R01 CA144034, UM1

CA182876, R01 DK080720), the Singapore National Medical Research Council (NMRC 1270/2010), the HUJ-CREATE Programme of the National Research Foundation, Singapore (Project Number 370062002) and Biomedical Research Council, Singapore. The funding sources had no role in the design or conduct of the study; collection, management, analysis, and interpretation of the data; or preparation, review, or approval of the manuscript. Declaration of interests: All authors have no conflict of interest to declare. No support from any organization for the submitted work; no financial relationships with any organizations that might have an interest in the submitted work in the previous three years, no other relationship or activity that could appear to have influenced the submitted work.

2 3 References 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

1. Del Gobbo LC, Imamura F, Aslibekyan S, Marklund M, Virtanen JK, Wennberg M, Yakoob MY, Chiuve SE, Dela Cruz L, Frazier-Wood AC, et al. omega-3 Polyunsaturated Fatty Acid Biomarkers and Coronary Heart Disease: Pooling Project of 19 Cohort Studies. JAMA internal medicine 2016;176(8):1155-66. doi: 10.1001/jamainternmed.2016.2925.

- 2. Hu FB, Bronner L, Willett WC, Stampfer MJ, Rexrode KM, Albert CM, Hunter D, Manson JE. Fish and omega-3 fatty acid intake and risk of coronary heart disease in women. Jama 2002;287(14):1815-21.
- 3. He K, Rimm EB, Merchant A, Rosner BA, Stampfer MJ, Willett WC, Ascherio A. Fish consumption and risk of stroke in men. Jama 2002;288(24):3130-6.
 - Iso H, Rexrode KM, Stampfer MJ, Manson JE, Colditz GA, Speizer FE, Hennekens CH, Willett WC. Intake of 4. fish and omega-3 fatty acids and risk of stroke in women. Jama 2001;285(3):304-12.
 - 5. Qi L, Cho YA. Gene-environment interaction and obesity. Nutrition reviews 2008;66(12):684-94. doi: 10.1111/j.1753-4887.2008.00128.x.
 - 6. Qi Q, Chu AY, Kang JH, Huang J, Rose LM, Jensen MK, Liang L, Curhan GC, Pasquale LR, Wiggs JL, et al. Fried food consumption, genetic risk, and body mass index: gene-diet interaction analysis in three US cohort studies. BMJ 2014;348:g1610. doi: 10.1136/bmj.g1610.
 - 7. Qi Q, Chu AY, Kang JH, Jensen MK, Curhan GC, Pasquale LR, Ridker PM, Hunter DJ, Willett WC, Rimm EB, et al. Sugar-sweetened beverages and genetic risk of obesity. The New England journal of medicine 2012;367(15):1387-96. doi: 10.1056/NEJMoa1203039.
 - Fumagalli M, Moltke I, Grarup N, Racimo F, Bjerregaard P, Jorgensen ME, Korneliussen TS, Gerbault P, 8. Skotte L, Linneberg A, et al. Greenlandic Inuit show genetic signatures of diet and climate adaptation. Science 2015;349(6254):1343-7. doi: 10.1126/science.aab2319.
 - 9. Hegele RA, Anderson C, Young TK, Connelly PW. G-protein beta3 subunit gene splice variant and body fat distribution in Nunavut Inuit. Genome research 1999;9(10):972-7.
 - 10. Hegele RA, Huff MW, Young TK. Common genomic variation in LMNA modulates indexes of obesity in Inuit. The Journal of clinical endocrinology and metabolism 2001;86(6):2747-51. doi: 10.1210/jcem.86.6.7550.
 - 11. Jorgensen ME, Bjeregaard P, Borch-Johnsen K. Diabetes and impaired glucose tolerance among the inuit population of Greenland. Diabetes Care 2002;25(10):1766-71.
 - 12. Jorgensen ME, Glumer C, Bjerregaard P, Gyntelberg F, Jorgensen T, Borch-Johnsen K. Obesity and central fat pattern among Greenland Inuit and a general population of Denmark (Inter99): relationship to metabolic risk factors. International journal of obesity and related metabolic disorders : journal of the International Association for the Study of Obesity 2003;27(12):1507-15. doi: 10.1038/sj.ijo.0802434.
 - 13. Tishkoff S. GENETICS. Strength in small numbers. Science 2015;349(6254):1282-3. doi: 10.1126/science.aad0584

349/6254/1282 [pii].

- 14. Dewailly E, Blanchet C, Lemieux S, Sauve L, Gingras S, Ayotte P, Holub BJ. n-3 Fatty acids and cardiovascular disease risk factors among the Inuit of Nunavik. The American journal of clinical nutrition 2001;74(4):464-73.
- 15. Colditz GA, Manson JE, Hankinson SE. The Nurses' Health Study: 20-year contribution to the understanding of health among women. Journal of women's health / the official publication of the Society for the Advancement of Women's Health Research 1997;6(1):49-62.
- 16. Cornelis MC, Monda KL, Yu K, Paynter N, Azzato EM, Bennett SN, Berndt SI, Boerwinkle E, Chanock S, Chatterjee N, et al. Genome-wide meta-analysis identifies regions on 7p21 (AHR) and 15q24 (CYP1A2) as determinants of habitual caffeine consumption. PLoS genetics 2011;7(4):e1002033. doi: 10.1371/journal.pgen.1002033.
- 17. Jensen MK, Pers TH, Dworzynski P, Girman CJ, Brunak S, Rimm EB. Protein interaction-based genome-wide analysis of incident coronary heart disease. Circulation Cardiovascular genetics 2011;4(5):549-56. doi: 10.1161/CIRCGENETICS.111.960393.
- 18. Wiggs JL, Kang JH, Yaspan BL, Mirel DB, Laurie C, Crenshaw A, Brodeur W, Gogarten S, Olson LM, Abdrabou W, et al. Common variants near CAV1 and CAV2 are associated with primary open-angle glaucoma in Caucasians from the USA. Human molecular genetics 2011;20(23):4707-13. doi: 10.1093/hmg/ddr382.
 - 19. Hunter DJ, Kraft P, Jacobs KB, Cox DG, Yeager M, Hankinson SE, Wacholder S, Wang Z, Welch R, Hutchinson

 Qi L, Cornelis MC, Kraft P, Stanya KJ, Linda Kao WH, Pankow KS, Dupuis J, Florez JC, Fox CS, Pare G, et al. Genetic variants at 2424 are associated with susceptibility to type 2 diabetes. Hum Mol Genet 2010;19(13):2706-15. doi: 10.1093/hmg/ddq156. Kottgen A, Albrecht E, Teumer A, Vitart V, Krumslek J, Hundertmark C, Pistis G, Ruggiero D, O'Seghdha C Haller T, et al. Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. Nature genetics 2013;45(2):145-54. doi: 10.1033/ng.2500. Peters U, Jiao S, Schumacher FR, Hutter CM, Aragak KA, Baron AJ, Bernd SJ, Berzau S, Brenner H, Butterbach K, et al. Identification of Genetic Susceptibility Loci for Colorectal Tumors in a Genome-Wide Meta-analysis. Gastroenterology 2013;144(4):799-807 e24. doi: 10.1053/j.gastro.2012.12.020 50016-5085(12)01846-X [pi]. Rimm EB, Giovannucci EL, Willett WC, Colditz GA, Ascherio A, Rosner B, Stampfer MJ. Prospective study alcohol consumption and risk of coronary disease in men. Lancet 1901;338(8765):464-8. Anderson GL, Manson J, Wallace R, Lund B, Hall D, Davis S, Shumaker S, Wang CY, Stein F, Prentice RL. Implementation of the Women's Health Initiative study design. Annals of epidemiology 2003;13(9 Suppl):S5-17. Design of the Women's Health Initiative study dougy, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 2003;12(9):890-8. Hankin JH, Stram DO, Arakawa K, Park S, Low SH, Lee HP, Yu MC. Singapore Chinese Health Study: development, validation, and calibration of the quantitative food frequency questionnaire. Nutrition and cancer 2003;39(2):1879-56. doi: 10.1207/S15327914nc392.5. Chen Z, Pereira MA, Seielstad M, Koh WP, Tai ES, Teo YY, Liu J, Hsu C, Wang R, Odegaard AO, et al. Jontt effects of known type 2 diabetes susceptibility loci in genome-wide association study of Singapore Chini		A, et al. A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nature genetics 2007;39(7):870-4. doi: 10.1038/ng2075.
 Kottgen A, Albrecht E, Teumer A, Vitari V, Krumslek J, Hundertmark C, Pistis G, Ruggiero D, O'Seaghdha C Haller T, et al. Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. Nature genetics 2013;45(2):145-4. doi: 10.1038/ng.2500. Peters U, Jiao S, Schumacher FR, Hutter CM, Aragaki AK, Baron JA, Berndt SJ, Berleau S, Brenner H, Butterbach K, et al. Identification of Genetic Susceptibility Loci for Colorectal Tumors in a Genome-Wide Meta-analysis. Gastroenterology 2013;144(4):799-807 e24. doi: 10.1053/j.gastro.2012.12.020 Stome BG, Giovannucci EL, Willett WC, Colditz GA, Ascherio A, Rosner B, Stampfer MJ. Prospective study: alcohol consumption and risk of coronary disease in men. Lancet 1991;338(8765):464-8. Anderson GL, Manson J, Wallace R, Lund B, Hall D, Davis S, Shumaker S, Wang CY, Stein E, Prentice RL. Implementation of the Women's Health Initiative study design. Annals of epidemiology 2003;13(9 Suppl):55-17. Design of the Women's Health Initiative clinical trial and observational study. The Women's Health Initiative Study Group. Controlled clinical trial staps;19(1):61-109. Yuan JM, Stram DO, Arakawa K, Lee HP, Yu MC. Disray cryptoxanthin and reduced risk of lung cancer: th Singapore Chinese Health Study. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 2003;12(9):890-8. Hankin JH, Stram DO, Arakawa K, Park S, Low SH, Lee HP, Yu MC. Singapore Chinese Health Study: development, validation, and calibration of the quantitative food frequency questionnaire. Nutrition and cancer 2001;39(2):137-95. doi: 10.1207/S13232914nc392_5. Chen Z, Pereira MA, Seleistad M, Koh WP, Tai ES, Teo YV, Lu HSu C, Wang R, Odegaard AO, et al. Joint effects of known thyse 2 diabetes susceptibility loci in genome-wide association study of Singapore Chine the Singapore C	20.	Qi L, Cornelis MC, Kraft P, Stanya KJ, Linda Kao WH, Pankow JS, Dupuis J, Florez JC, Fox CS, Pare G, et al. Genetic variants at 2q24 are associated with susceptibility to type 2 diabetes. Hum Mol Genet 2010;19(13):2706-15. doi: 10.1093/hmg/ddq156.
 Peters U, Jiao S, Schumacher FR, Hutter CM, Aragaki AK, Baron JA, Berndt SJ, Bezieau S, Brenner H, Butterbach K, et al. Identification of Genetic Susceptibility Loci for Colorectal Tumors in a Genome-Wide Meta-analysis. Gastroenterology 2013;144(4):799-807 e24. doi: 10.1053/j.gastro.2012.12.020 SO016-S085(12)01846-X [pii]. Rimm BB, Giovannucci EL, Willett WC, Colditz GA, Ascherio A, Rosner B, Stampfer MJ. Prospective study: alcohol consumption and risk of coronary disease in men. Lancet 1991;338(8765):464-8. Anderson GL, Manson J, Wallace R, Lund B, Hall D, Davis S, Shumaker S, Wang CY, Stein E, Prentice RL. Implementation of the Women's Health Initiative study design. Annals of epidemiology 2003;13(9 Suppl):S5-17. Design of the Women's Health Initiative clinical trial and observational study. The Women's Health Initiative Study Group. Controlled clinical trials 1998;19(1):61-109. Yuan JM, Stram DO, Arakawa K, Lee HP, Yu MC. Dietary cryptoxanthin and reduced risk of lung cancer: th Singapore Chinese Health Study. Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 2003;12(9):890-8. Hankin JH, Stram DO, Arakawa K, Park S, Low SH, Lee HP, Yu MC. Singapore Chinese Health Study: development, validation, and calibration of the quantitative food frequency questionnaire. Nutrition and cancer 2001;39(2):187-95. doi: 10.1020/S15227914nc392_5. Chen Z, Pereira MA, Selelstad M, Koh WP, Tai ES, Teo Y, Liu J, Hsu C, Wang R, Odegaard AO, et al. Joint effects of known type 2 diabetes susceptibility loci in genome-wide association study of Singapore Chinese envide association study of n-3 and n-6 plasma fatty acids in a Singaporean Chinese population. Genes & nutrition 2015;10(6):53. doi: 10.1000/s12263-015-0502-2. Rimm EB, Stampfer MJ, Colditz GA, Chute CG, Litin LB, Willett WC. Validity of self-re	21.	Kottgen A, Albrecht E, Teumer A, Vitart V, Krumsiek J, Hundertmark C, Pistis G, Ruggiero D, O'Seaghdha CM Haller T, et al. Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. Nature genetics 2013;45(2):145-54. doi: 10.1038/ng.2500.
 Stotl-5:085(12)(1346-X [pii]. Rimm EB, Giovannucci EL, Willett WC, Colditz GA, Ascherio A, Rosner B, Stampfer MJ. Prospective study i alcohol consumption and risk of coronary disease in men. Lancet 1991;338(8765):464-8. Anderson GL, Manson J, Wallace R, Lund B, Hall D, Davis S, Shumaker S, Wang CY, Stein E, Prentice RL. Implementation of the Women's Health Initiative study design. Annals of epidemiology 2003;13(9 Suppl):S5-17. Design of the Women's Health Initiative clinical trial and observational study. The Women's Health Initiative Study Group. Controlled Clinical trials 1998;19(1):61-109. Yuan JM, Stram DO, Arakawa K, Lee HP, Yu MC. Dietary cryptoxanthin and reduced risk of lung cancer: the Singapore Chinese Health Study. Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 2003;12(9):890-8. Hankin JH, Stram DO, Arakawa K, Park S, Low SH, Lee HP, Yu MC. Singapore Chinese Health Study: development, validation, and calibration of the quantitative food frequency questionnaire. Nutrition and cancer 2001;39(2):187-95. doi: 10.1207/S15327914nc392_5. Chen Z, Pereira MA, Seielstad M, Koh WP, Tai ES, Teo YY, Liu J, Hsu C, Wang R, Odegaard AO, et al. Joint effects of known type 2 diabetes susceptibility loci in genome-wide association study of Singapore Chinese the Singapore Chinese health study. PloS one 2014;9(2):e87762. doi: 10.1371/journal.pone.0087762. Dorajoo R, Sun Y, Han Y, Ke T, Burger A, Chang X, Low HQ, Guau W, Lemaitre RN, Khor CC, et al. A genome-wide association study of n-3 and n-6 plasma fatty acids in a Singaporean Chinese population. Genes & nutrition 2015;10(6):53. doi: 10.1007/s12263-015-0502-2. Rimm EB, Stampfer MJ, Colditz GA, Chute CG, Littin LB, Willett WC. Validity of self-reported waist and hip circumferences in men and women. Epidemiology 1990;1(6):466-73.	22.	Peters U, Jiao S, Schumacher FR, Hutter CM, Aragaki AK, Baron JA, Berndt SI, Bezieau S, Brenner H, Butterbach K, et al. Identification of Genetic Susceptibility Loci for Colorectal Tumors in a Genome-Wide Meta-analysis. Gastroenterology 2013;144(4):799-807 e24. doi: 10.1053/j.gastro.2012.12.020
 Rimm EB, Giovannucci EL, Willett WC, Colditz GA, Ascherio A, Rosner B, Stampfer MJ. Prospective study alcohol consumption and risk of coronary disease in men. Lancet 1991;338(8765):464-8. Anderson GL, Manson J, Wallace R, Lund B, Hall D, Davis S, Shumaker S, Wang CY, Stein E, Prentice RL. Implementation of the Women's Health Initiative study design. Annals of epidemiology 2003;13(9 Suppl):S5-17. Design of the Women's Health Initiative clinical trial and observational study. The Women's Health Initiative Study Group. Controlled clinical trials 1998;19(1):61-109. Yuan JM, Stram DO, Arakawa K, Lee HP, Yu MC. Dietary cryptoxanthin and reduced risk of lung cancer: the Singapore Chinese Health Study. Cancer epidemiology. biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 2003;12(9):890-8. Hankin JH, Stram DO, Arakawa K, Park S, Low SH, Lee HP, Yu MC. Singapore Chinese Health Study: development, validation, and calibration of the quantitative food frequency questionnaire. Nutrition and cancer 2001;39(2):819-59. doi: 10.1027/515237914nc329.2.5. Chen Z, Pereira MA, Seielstad M, Koh WP, Tai ES, Teo YY, Liu J, Hsu C, Wang R, Odegaard AO, et al. Joint effects of known type 2 diabetes susceptibility loci in genome-wide association study of Singapore Chinese health Study. PloS one 2014;9(2):e875-6. doi: 10.1371/journal.pone.0087762. Dorajoo R, Sun Y, Han Y, Ke T, Burger A, Chang X, Low HQ, Guan W, Lemaitre RN, Khor CC, et al. A genome-wide association study of n-3 and n-6 plasma fatty acids in a Singaporean Chinese population. Genes & nutrition 2015;10(6):51.2063-15. doi: 10.1079/512263-015-0502-2. Rimm EB, Stampfer MJ, Colditz GA, Chute CG, Litin LB, Willett WC. Validity of self-reported waist and hip circumferences in men and women. Epidemiology 1990;1(6):466-73. Huang T, Zheng Y, Ou Q, Xu M, Ley SH, Li Y KAng JH	S0016	-5085(12)01846-X [pii].
 alcohol consumption and risk of coronary disease in men. Lancet 1991;338(8765):464-8. Anderson GL, Manson J, Wallace R, Lund B, Hall D, Davis S, Shumaker S, Wang CY, Stein E, Prentice RL. Implementation of the Women's Health Initiative study design. Annals of epidemiology 2003;13(9 Suppl):S5-17. Design of the Women's Health Initiative clinical trial and observational study. The Women's Health Initiative Study Group. Controlled clinical trial and observational study. The Women's Health Initiative Study Group. Controlled clinical trial and observational mad reduced risk of lung cancer: the Singapore Chinese Health Study. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 2003;12(9):890-8. Hankin JH, Stram DO, Arakawa K, Park S, Low SH, Lee HP, Yu MC. Singapore Chinese Health Study: development, validation, and calibration of the quantitative food frequency questionnaire. Nutrition and cancer 2001;39(2):187-95. doi: 10.1207/S15327914nc392_5. Chen Z, Pereira MA, Seielstad M, Koh WP, Tai ES, Teo YY, Liu J, Hsu C, Wang R, Odegaard AO, et al. Joint effects of known type 2 diabetes susceptibility loci in genome-wide association study of Singapore Chinese health study. PloS one 2014;9(2):e87762. doi: 10.1371/journal.pone.0087762. Dorajoo R, Sun Y, Han Y, Ke T, Burger A, Chang X, Low HQ, Guan W, Lemaitre RN, Khor CC, et al. A genome-wide association study of n-3 and n-6 plasma fatty acids in a Singaporean Chinese population. Genes & nutrition 2015;10(6):53. doi: 10.1007/s12263-015-0502-2. Rimm EB, Stampfer MJ, Colditz GA, Chute CG, Litin LB, Willett WC. Validity of self-reported waist and hip circumferences in men and women. Epidemiology 1990;1(6):466-73. Huang T, Zheng Y, Qi Q, Xu M, Ley SH, Li Y, Kang JH, Wiggs J, Pasquale LR, Chan AT, et al. DNA methylation variants at HIF3A locus, B vitamins intake,	23.	Rimm EB, Giovannucci EL, Willett WC, Colditz GA, Ascherio A, Rosner B, Stampfer MJ. Prospective study of
 Anderson GL, Manson J, Wallace R, Lund B, Hall D, Davis S, Shumaker S, Wang CY, Stein E, Prentice RL. Implementation of the Women's Health Initiative study design. Annals of epidemiology 2003;13(9 Suppl):55-17. Design of the Women's Health Initiative clinical trial and observational study. The Women's Health Initiative Study Group. Controlled Clinical trial s1998;19(1):61-109. Yuan JM, Stram DO, Arakawa K, Lee HP, Yu MC. Dietary cryptoxanthin and reduced risk of lung cancer: th Singapore Chinese Health Study. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 2003;12(9):890-8. Hankin JH, Stram DO, Arakawa K, Park S, Low SH, Lee HP, Yu MC. Singapore Chinese Health Study: development, validation, and calibration of the quantitative food frequency questionnaire. Nutrition and cancer 2001;39(2):187-95. doi: 10.1207/S15327914nc392_5. Chen Z, Pereira MA, Seielstad M, Koh WP, Tai ES, Teo YY, Liu J, Hsu C, Wang R, Odegaard AO, et al. Joint effects of known type 2 diabetes susceptibility loci in genome-wide association study of Singapore Chinese the Singapore Chinese health study. PloS one 2014;9(2):e87762. doi: 10.1371/journal.pone.0087762. Dorajoo R, Sun Y, Han Y, Ke T, Burger A, Chang X, Low HQ, Guan W, Lemaitre RN, Khor CC, et al. A genome-wide association study of n-3 and n-6 plasma faity acids in a Singaporean Chinese population. Genes & nutrition 2015;10(6):53. doi: 10.1007/s12263-015-0502-2. Rimm EB, Stampfer MJ, Colditz GA, Chute CG, Litin LB, Willett WC. Validity of self-reported waist and hip circumferences in men and women. Epidemiology 1990;1(6):466-73. Huang T, Zheng Y, Qi Q, Xu M, Ley SH, Li Y, Kang JH, Wiggs J, Pasquale LR, Chan AT, et al. DNA methylation variants at HIF3A locus, B vitamins intake, and long-term weight change: gene-diet interactions in two US cohorts. Diabetes 2015. doi		alcohol consumption and risk of coronary disease in men. Lancet 1991;338(8765):464-8.
 Design of the Women's Health Initiative clinical trial and observational study. The Women's Health Initiative Study Group. Controlled clinical trials 1998;19(1):61-109. Yuan JM, Stram DO, Arakawa K, Lee HP, Yu MC. Dietary cryptoxanthin and reduced risk of lung cancer: th Singapore Chinese Health Study. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 2003;12(9):890-8. Hankin JH, Stram DO, Arakawa K, Park S, Low SH, Lee HP, Yu MC. Singapore Chinese Health Study: development, validation, and calibration of the quantitative food frequency questionnaire. Nutrition and cancer 2001;39(2):187-95. doi: 10.1207/S15327914nc392_5. Chen Z, Pereira MA, Seielstad M, Koh WP, Tai ES, Teo YY, Liu J, Hsu C, Wang R, Odegaard AO, et al. Joint effects of known type 2 diabetes susceptibility loci in genome-wide association study of Singapore Chinese the Singapore Chinese health study. PloS one 2014;9(2):e87762. doi: 10.1371/journal.pone.0087762. Dorajoo R, Sun Y, Han Y, Ke T, Burger A, Chang X, Low HQ, Guan W, Lemaitre RN, Khor CC, et al. A genome-wide association study of n-3 and n-6 plasma fatty acids in a Singaporean Chinese population. Genes & nutrition 2015;10(6):53. doi: 10.1007/s12263-015-0502-2. Rimm EB, Stampfer MJ, Colditz GA, Chute CG, Litin LB, Willett WC. Validity of self-reported waist and hip circumferences in men and women. Epidemiology 1990;1(6):466-73. Huang T, Zheng Y, Qi Q, Xu M, Ley SH, Li Y, Kang JH, Wigg J, Pasquale LR, Chan AT, et al. DNA methylation variants at HIF3A locus, B vitamins intake, and long-term weight change: gene-diet interactions in two US cohorts. Diabetes 2015. doi: db150264 [pii] db15-0264. Willett WC, Sampson L, Stampfer MJ, Colditz GA, Litin LB, Willett WC. Reproducibility and validity of a expanded self-administered semiquantitative food frequency questionnaire. Am J E	24.	Anderson GL, Manson J, Wallace R, Lund B, Hall D, Davis S, Shumaker S, Wang CY, Stein E, Prentice RL. Implementation of the Women's Health Initiative study design. Annals of epidemiology 2003;13(9 Suppl):S5-17.
 Yuan JM, Stram DO, Arakawa K, Lee HP, Yu MC. Dietary cryptoxanthin and reduced risk of lung cancer: th Singapore Chinese Health Study. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 2003;12(9):890-8. Hankin JH, Stram DO, Arakawa K, Park S, Low SH, Lee HP, Yu MC. Singapore Chinese Health Study: development, validation, and calibration of the quantitative food frequency questionnaire. Nutrition and cancer 2001;39(2):187-95. doi: 10.1207/S15327914nc392_5. Chen Z, Pereira MA, Seielstad M, Koh WP, Tai ES, Teo YY, Liu J, Hsu C, Wang R, Odegaard AO, et al. Joint effects of known type 2 diabetes susceptibility loci in genome-wide association study of Singapore Chines the Singapore Chinese health study. PloS one 2014;9(2):e87762. doi: 10.1371/journal.pone.0087762. Dorajoo R, Sun Y, Han Y, Ke T, Burger A, Chang X, Low HO, Guan W, Lemaitre RN, Khor CC, et al. A genome-wide association study of n-3 and n-6 plasma fatty acids in a Singaporean Chinese population. Genes & nutrition 2015;10(6):53. doi: 10.1007/s12263-015-0502-2. Rimm EB, Stampfer MJ, Colditz GA, Chute CG, Litin LB, Willett WC. Validity of self-reported waist and hip circumferences in men and women. Epidemiology 1990;1(6):466-73. Huang T, Zheng Y, Qi Q, Xu M, Ley SH, Li Y, Kang JH, Wiggs J, Pasquale LB, Chan AT, et al. DNA methylation variants at HIF3A locus, B vitamins intake, and long-term weight change: gene-diet interactions in two US cohorts. Diabetes 2015. doi: db150264 [pii] db15-0264. Willett WC, Sampson L, Stampfer MJ, Rosner B, Bain C, Witschi J, Hennekens CH, Speizer FE. Reproducibility and validity of a semiquantitative food frequency questionnaire. Am J Epidemiol 1985;122(1):51-65. Rimm EB, Giovannucci EL, Stampfer MJ, Colditz GA, Litin LB, Willett WC. Reproducibility and validity of a expanded self-administered s	25.	Design of the Women's Health Initiative clinical trial and observational study. The Women's Health Initiative Study Group. Controlled clinical trials 1998;19(1):61-109.
 Hankin JH, Stram DO, Arakawa K, Park S, Low SH, Lee HP, Yu MC. Singapore Chinese Health Study: development, validation, and calibration of the quantitative food frequency questionnaire. Nutrition and cancer 2001;39(2):187-95. doi: 10.1207/S15327914nc392_5. Chen Z, Pereira MA, Seielstad M, Koh WP, Tai ES, Teo YY, Liu J, Hsu C, Wang R, Odegaard AO, et al. Joint effects of known type 2 diabetes susceptibility loci in genome-wide association study of Singapore Chines the Singapore Chinese health study. PloS one 2014;9(2):e87762. doi: 10.1371/journal.pone.0087762. Dorajoo R, Sun Y, Han Y, Ke T, Burger A, Chang X, Low HQ, Guan W, Lemaitre RN, Khor CC, et al. A genome-wide association study of n-3 and n-6 plasma fatty acids in a Singaporean Chinese population. Genes & nutrition 2015;10(6):53. doi: 10.1007/s12263-015-0502-2. Rimm EB, Stampfer MJ, Colditz GA, Chute CG, Litin LB, Willett WC. Validity of self-reported waist and hip circumferences in men and women. Epidemiology 1990;1(6):466-73. Huang T, Zheng Y, Qi Q, Xu M, Ley SH, Li Y, Kang JH, Wiggs J, Pasquale LR, Chan AT, et al. DNA methylation variants at HIF3A locus, B vitamins intake, and long-term weight change: gene-diet interactions in two US cohorts. Diabetes 2015. doi: db150264 [pii] db15-0264 [pii] db15-0264. Willett WC, Sampson L, Stampfer MJ, Rosner B, Bain C, Witschi J, Hennekens CH, Speizer FE. Reproducibility and validity of a semiquantitative food frequency questionnaire. Am J Epidemiol 1985;122(1):51-65. Rimm EB, Giovannucci EL, Stampfer MJ, Colditz GA, Litin LB, Willett WC. Reproducibility and validity of a expanded self-administered semiquantitative food frequency questionnaire among male health professionals. Am J Epidemiol 1992;135(10):1114-26; discussion 27-36. Patterson RE, Kristal AR, Tinker LF, Carter RA, Bolton MP, Agurs-Collins T. Measurement characteristics of the Women's Health Initiative food frequency question	26.	Yuan JM, Stram DO, Arakawa K, Lee HP, Yu MC. Dietary cryptoxanthin and reduced risk of lung cancer: the Singapore Chinese Health Study. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology
 Parkin JN, Stain DO, Arakawa K, Park S, Luw SH, Lew SH, Lew SH, Lew C. Singapore Chinese Health Study. development, validation, and calibration of the quantitative food frequency questionnaire. Nutrition and cancer 2001;39(2):187-95. doi: 10.1207/S15327914nc392_5. Chen Z, Pereira MA, Seielstad M, Koh WP, Tai ES, Teo YY, Liu J, Hsu C, Wang R, Odegaard AO, et al. Joint effects of known type 2 diabetes susceptibility loci in genome-wide association study of Singapore Chines the Singapore Chinese health study. PloS one 2014;9(2):e87762. doi: 10.1371/journal.pone.0087762. Dorajoo R, Sun Y, Han Y, Ke T, Burger A, Chang X, Low HQ, Guan W, Lemaitre RN, Khor CC, et al. A genome-wide association study of n-3 and n-6 plasma fatty acids in a Singaporean Chinese population. Genes & nutrition 2015;10(6):53. doi: 10.1007/s12263-015-0502-2. Rimm EB, Stampfer MJ, Colditz GA, Chute CG, Litin LB, Willett WC. Validity of self-reported waist and hip circumferences in men and women. Epidemiology 1990;16(6):466-73. Huang T, Zheng Y, Qi Q, Xu M, Ley SH, Li Y, Kang JH, Wiggs J, Pasquale LR, Chan AT, et al. DNA methylation variants at HIF3A locus, B vitamins intake, and long-term weight change: gene-diet interactions in two US cohorts. Diabetes 2015. doi: db150264 [pii] 10.2337/db15-0264. Willett WC, Sampson L, Stampfer MJ, Rosner B, Bain C, Witschi J, Hennekens CH, Speizer FE. Reproducibility and validity of a semiquantitative food frequency questionnaire. Am J Epidemiol 1985;122(1):51-65. Rimm EB, Giovannucci EL, Stampfer MJ, Colditz GA, Litin LB, Willett WC. Reproducibility and validity of ar expanded self-administered semiquantitative food frequency questionnaire among male health professionals. Am J Epidemiol 1992;135(10):1114-26; discussion 27-36. Patterson RE, Kristal AR, Tinker LF, Carter RA, Bolton MP, Agurs-Collins T. Measurement characteristics of the Women's Health Initiative food frequency questionnaire. Anna	77	2003;12(9):890-8. Hankin III. Stram DO. Arakawa K. Dark S. Law S.H. Lee H.D. Yu MC. Singapore Chinese Health Study:
 Chen Z, Pereira MA, Seielstad M, Koh WP, Tai ES, Teo YY, Liu J, Hsu C, Wang R, Odegaard AO, et al. Joint effects of known type 2 diabetes susceptibility loci in genome-wide association study of Singapore Chine the Singapore Chinese health study. PloS one 2014;9(2):e87762. doi: 10.1371/journal.pone.0087762. Dorajoo R, Sun Y, Han Y, Ke T, Burger A, Chang X, Low HQ, Guan W, Lemaitre RN, Khor CC, et al. A genome-wide association study of n-3 and n-6 plasma fatty acids in a Singaporean Chinese population. Genes & nutrition 2015;10(6):53. doi: 10.1007/s12263-015-0502-2. Rimm EB, Stampfer MJ, Colditz GA, Chute CG, Litin LB, Willett WC. Validity of self-reported waist and hip circumferences in men and women. Epidemiology 1990;1(6):466-73. Huang T, Zheng Y, Qi Q, Xu M, Ley SH, Li Y, Kang JH, Wiggs J, Pasquale LR, Chan AT, et al. DNA methylation variants at HIF3A locus, B vitamins intake, and long-term weight change: gene-diet interactions in two US cohorts. Diabetes 2015. doi: db150264 [pii] 10.2337/db15-0264. Willett WC, Sampson L, Stampfer MJ, Rosner B, Bain C, Witschi J, Hennekens CH, Speizer FE. Reproducibility and validity of a semiquantitative food frequency questionnaire. Am J Epidemiol 1985;122(1):51-65. Rimm EB, Giovannucci EL, Stampfer MJ, Colditz GA, Litin LB, Willett WC. Reproducibility and validity of a semiquantitative food frequency questionnaire among male health professionals. Am J Epidemiol 1992;135(10):1114-26; discussion 27-36. Patterson RE, Kristal AR, Tinker LF, Carter RA, Bolton MP, Agurs-Collins T. Measurement characteristics of the Women's Health Initiative food frequency questionnaire. Annals of epidemiology 1999;9(3):178-87. Chiuve SE, Fung TT, Rimm EB, Hu FB, McCullough ML, Wang M, Stampfer MJ, Willett WC. Alternative dietary indices both strongly predict risk of chronic disease. The Journal of nutrition 2012;142(6):1009-18 doi: 10.3945/jin.111.157222 [pii]. Wolf A	27.	development, validation, and calibration of the quantitative food frequency questionnaire. Nutrition and cancer 2001;39(2):187-95. doi: 10.1207/S15327914nc392_5.
 Dorajoo R, Sun Y, Han Y, Ke T, Burger A, Chang X, Low HQ, Guan W, Lemaitre RN, Khor CC, et al. A genome-wide association study of n-3 and n-6 plasma fatty acids in a Singaporean Chinese population. Genes & nutrition 2015;10(6):53. doi: 10.1007/s12263-015-0502-2. Rimm EB, Stampfer MJ, Colditz GA, Chute CG, Litin LB, Willett WC. Validity of self-reported waist and hip circumferences in men and women. Epidemiology 1990;1(6):466-73. Huang T, Zheng Y, Qi Q, Xu M, Ley SH, Li Y, Kang JH, Wiggs J, Pasquale LR, Chan AT, et al. DNA methylation variants at HIF3A locus, B vitamins intake, and long-term weight change: gene-diet interactions in two US cohorts. Diabetes 2015. doi: db150264 [pii] 10.2337/db15-0264. Willett WC, Sampson L, Stampfer MJ, Rosner B, Bain C, Witschi J, Hennekens CH, Speizer FE. Reproducibility and validity of a semiquantitative food frequency questionnaire. Am J Epidemiol 1985;122(1):51-65. Rimm EB, Giovannucci EL, Stampfer MJ, Colditz GA, Litin LB, Willett WC. Reproducibility and validity of ar expanded self-administered semiquantitative food frequency questionnaire among male health professionals. Am J Epidemiol 1992;135(10):1114-26; discussion 27-36. Patterson RE, Kristal AR, Tinker LF, Carter RA, Bolton MP, Agurs-Collins T. Measurement characteristics of the Women's Health Initiative food frequency questionnaire. Annals of epidemiology 1999;9(3):178-87. Chiuve SE, Fung TT, Rimm EB, Hu FB, McCullough ML, Wang M, Stampfer MJ, Willett WC. Alternative dietary indices both strongly predict risk of chronic disease. The Journal of nutrition 2012;142(6):1009-18 doi: 10.3945/jn.111.157222 [pii]. Wolf AM, Hunter DJ, Colditz GA, Manson JE, Stampfer MJ, Corsano KA, Rosner B, Kriska A, Willett WC. Reproducibility and validity of a self-administered physical activity questionnaire. Int J Epidemiol 	28.	Chen Z, Pereira MA, Seielstad M, Koh WP, Tai ES, Teo YY, Liu J, Hsu C, Wang R, Odegaard AO, et al. Joint effects of known type 2 diabetes susceptibility loci in genome-wide association study of Singapore Chinese the Singapore Chinese health study. PloS one 2014;9(2):e87762. doi: 10.1371/journal.pone.0087762.
 Rimm EB, Stampfer MJ, Colditz GA, Chute CG, Litin LB, Willett WC. Validity of self-reported waist and hip circumferences in men and women. Epidemiology 1990;1(6):466-73. Huang T, Zheng Y, Qi Q, Xu M, Ley SH, Li Y, Kang JH, Wiggs J, Pasquale LR, Chan AT, et al. DNA methylation variants at HIF3A locus, B vitamins intake, and long-term weight change: gene-diet interactions in two US cohorts. Diabetes 2015. doi: db150264 [pii] db15-0264 [pii] 22337/db15-0264. Willett WC, Sampson L, Stampfer MJ, Rosner B, Bain C, Witschi J, Hennekens CH, Speizer FE. Reproducibility and validity of a semiquantitative food frequency questionnaire. Am J Epidemiol 1985;122(1):51-65. Rimm EB, Giovannucci EL, Stampfer MJ, Colditz GA, Litin LB, Willett WC. Reproducibility and validity of ar expanded self-administered semiquantitative food frequency questionnaire among male health professionals. Am J Epidemiol 1992;135(10):1114-26; discussion 27-36. Patterson RE, Kristal AR, Tinker LF, Carter RA, Bolton MP, Agurs-Collins T. Measurement characteristics of the Women's Health Initiative food frequency questionnaire. Annals of epidemiology 1999;9(3):178-87. Chiuve SE, Fung TT, Rimm EB, Hu FB, McCullough ML, Wang M, Stampfer MJ, Willett WC. Alternative dietary indices both strongly predict risk of chronic disease. The Journal of nutrition 2012;142(6):1009-18 doi: 10.3945/jn.111.157222 [pii]. Wolf AM, Hunter DJ, Colditz GA, Manson JE, Stampfer MJ, Corsano KA, Rosner B, Kriska A, Willett WC. Reproducibility and validity of a self-administered physical activity questionnaire. Int J Epidemiol 	29.	Dorajoo R, Sun Y, Han Y, Ke T, Burger A, Chang X, Low HQ, Guan W, Lemaitre RN, Khor CC, et al. A genome-wide association study of n-3 and n-6 plasma fatty acids in a Singaporean Chinese population. Genes & nutrition 2015;10(6):53. doi: 10.1007/s12263-015-0502-2.
 Huang T, Zheng Y, Qi Q, Xu M, Ley SH, Li Y, Kang JH, Wiggs J, Pasquale LR, Chan AT, et al. DNA methylation variants at HIF3A locus, B vitamins intake, and long-term weight change: gene-diet interactions in two US cohorts. Diabetes 2015. doi: db150264 [pii] db15-0264 [pii] 10.2337/db15-0264. Willett WC, Sampson L, Stampfer MJ, Rosner B, Bain C, Witschi J, Hennekens CH, Speizer FE. Reproducibility and validity of a semiquantitative food frequency questionnaire. Am J Epidemiol 1985;122(1):51-65. Rimm EB, Giovannucci EL, Stampfer MJ, Colditz GA, Litin LB, Willett WC. Reproducibility and validity of an expanded self-administered semiquantitative food frequency questionnaire among male health professionals. Am J Epidemiol 1992;135(10):1114-26; discussion 27-36. Patterson RE, Kristal AR, Tinker LF, Carter RA, Bolton MP, Agurs-Collins T. Measurement characteristics of the Women's Health Initiative food frequency questionnaire. Annals of epidemiology 1999;9(3):178-87. Chiuve SE, Fung TT, Rimm EB, Hu FB, McCullough ML, Wang M, Stampfer MJ, Willett WC. Alternative dietary indices both strongly predict risk of chronic disease. The Journal of nutrition 2012;142(6):1009-18 doi: 10.3945/jn.111.157222 jin.111.157222 [pii]. Wolf AM, Hunter DJ, Colditz GA, Manson JE, Stampfer MJ, Corsano KA, Rosner B, Kriska A, Willett WC. Reproducibility and validity of a self-administered physical activity questionnaire. Int J Epidemiol 	30.	Rimm EB, Stampfer MJ, Colditz GA, Chute CG, Litin LB, Willett WC. Validity of self-reported waist and hip circumferences in men and women. Epidemiology 1990;1(6):466-73.
 db15-0264 [pii] 10.2337/db15-0264. 32. Willett WC, Sampson L, Stampfer MJ, Rosner B, Bain C, Witschi J, Hennekens CH, Speizer FE. Reproducibility and validity of a semiquantitative food frequency questionnaire. Am J Epidemiol 1985;122(1):51-65. 33. Rimm EB, Giovannucci EL, Stampfer MJ, Colditz GA, Litin LB, Willett WC. Reproducibility and validity of an expanded self-administered semiquantitative food frequency questionnaire among male health professionals. Am J Epidemiol 1992;135(10):1114-26; discussion 27-36. 34. Patterson RE, Kristal AR, Tinker LF, Carter RA, Bolton MP, Agurs-Collins T. Measurement characteristics of the Women's Health Initiative food frequency questionnaire. Annals of epidemiology 1999;9(3):178-87. 35. Chiuve SE, Fung TT, Rimm EB, Hu FB, McCullough ML, Wang M, Stampfer MJ, Willett WC. Alternative dietary indices both strongly predict risk of chronic disease. The Journal of nutrition 2012;142(6):1009-18 doi: 10.3945/jn.111.157222 jn.111.157222 [pii]. 36. Wolf AM, Hunter DJ, Colditz GA, Manson JE, Stampfer MJ, Corsano KA, Rosner B, Kriska A, Willett WC. Reproducibility and validity of a self-administered physical activity questionnaire. Int J Epidemiol 	31.	Huang T, Zheng Y, Qi Q, Xu M, Ley SH, Li Y, Kang JH, Wiggs J, Pasquale LR, Chan AT, et al. DNA methylation variants at HIF3A locus, B vitamins intake, and long-term weight change: gene-diet interactions in two US cohorts. Diabetes 2015. doi: db150264 [pii]
 Willett WC, Sampson L, Stampfer MJ, Rosner B, Bain C, Witschi J, Hennekens CH, Speizer FE. Reproducibility and validity of a semiquantitative food frequency questionnaire. Am J Epidemiol 1985;122(1):51-65. Rimm EB, Giovannucci EL, Stampfer MJ, Colditz GA, Litin LB, Willett WC. Reproducibility and validity of ar expanded self-administered semiquantitative food frequency questionnaire among male health professionals. Am J Epidemiol 1992;135(10):1114-26; discussion 27-36. Patterson RE, Kristal AR, Tinker LF, Carter RA, Bolton MP, Agurs-Collins T. Measurement characteristics of the Women's Health Initiative food frequency questionnaire. Annals of epidemiology 1999;9(3):178-87. Chiuve SE, Fung TT, Rimm EB, Hu FB, McCullough ML, Wang M, Stampfer MJ, Willett WC. Alternative dietary indices both strongly predict risk of chronic disease. The Journal of nutrition 2012;142(6):1009-18 doi: 10.3945/jn.111.157222 jn.111.157222 [pii]. Wolf AM, Hunter DJ, Colditz GA, Manson JE, Stampfer MJ, Corsano KA, Rosner B, Kriska A, Willett WC. Reproducibility and validity of a self-administered physical activity questionnaire. Int J Epidemiol 	db15-	0264 [nii]
 Willett WC, Sampson L, Stampfer MJ, Rosner B, Bain C, Witschi J, Hennekens CH, Speizer FE. Reproducibility and validity of a semiquantitative food frequency questionnaire. Am J Epidemiol 1985;122(1):51-65. Rimm EB, Giovannucci EL, Stampfer MJ, Colditz GA, Litin LB, Willett WC. Reproducibility and validity of an expanded self-administered semiquantitative food frequency questionnaire among male health professionals. Am J Epidemiol 1992;135(10):1114-26; discussion 27-36. Patterson RE, Kristal AR, Tinker LF, Carter RA, Bolton MP, Agurs-Collins T. Measurement characteristics of the Women's Health Initiative food frequency questionnaire. Annals of epidemiology 1999;9(3):178-87. Chiuve SE, Fung TT, Rimm EB, Hu FB, McCullough ML, Wang M, Stampfer MJ, Willett WC. Alternative dietary indices both strongly predict risk of chronic disease. The Journal of nutrition 2012;142(6):1009-18 doi: 10.3945/jn.111.157222 jn.111.157222 [pii]. Wolf AM, Hunter DJ, Colditz GA, Manson JE, Stampfer MJ, Corsano KA, Rosner B, Kriska A, Willett WC. Reproducibility and validity of a self-administered physical activity questionnaire. Int J Epidemiol 	10.233	37/db15-0264.
 Rimm EB, Giovannucci EL, Stampfer MJ, Colditz GA, Litin LB, Willett WC. Reproducibility and validity of ar expanded self-administered semiquantitative food frequency questionnaire among male health professionals. Am J Epidemiol 1992;135(10):1114-26; discussion 27-36. Patterson RE, Kristal AR, Tinker LF, Carter RA, Bolton MP, Agurs-Collins T. Measurement characteristics of the Women's Health Initiative food frequency questionnaire. Annals of epidemiology 1999;9(3):178-87. Chiuve SE, Fung TT, Rimm EB, Hu FB, McCullough ML, Wang M, Stampfer MJ, Willett WC. Alternative dietary indices both strongly predict risk of chronic disease. The Journal of nutrition 2012;142(6):1009-18 doi: 10.3945/jn.111.157222 Jin.111.157222 [pii]. Wolf AM, Hunter DJ, Colditz GA, Manson JE, Stampfer MJ, Corsano KA, Rosner B, Kriska A, Willett WC. Reproducibility and validity of a self-administered physical activity questionnaire. Int J Epidemiol 	32.	Willett WC, Sampson L, Stampfer MJ, Rosner B, Bain C, Witschi J, Hennekens CH, Speizer FE. Reproducibility and validity of a semiquantitative food frequency questionnaire. Am J Epidemiol 1985:122(1):51-65.
 Patterson RE, Kristal AR, Tinker LF, Carter RA, Bolton MP, Agurs-Collins T. Measurement characteristics of the Women's Health Initiative food frequency questionnaire. Annals of epidemiology 1999;9(3):178-87. Chiuve SE, Fung TT, Rimm EB, Hu FB, McCullough ML, Wang M, Stampfer MJ, Willett WC. Alternative dietary indices both strongly predict risk of chronic disease. The Journal of nutrition 2012;142(6):1009-18 doi: 10.3945/jn.111.157222 jn.111.157222 [pii]. Wolf AM, Hunter DJ, Colditz GA, Manson JE, Stampfer MJ, Corsano KA, Rosner B, Kriska A, Willett WC. Reproducibility and validity of a self-administered physical activity questionnaire. Int J Epidemiol 	33.	Rimm EB, Giovannucci EL, Stampfer MJ, Colditz GA, Litin LB, Willett WC. Reproducibility and validity of an expanded self-administered semiquantitative food frequency questionnaire among male health
 Chiuve SE, Fung TT, Rimm EB, Hu FB, McCullough ML, Wang M, Stampfer MJ, Willett WC. Alternative dietary indices both strongly predict risk of chronic disease. The Journal of nutrition 2012;142(6):1009-18 doi: 10.3945/jn.111.157222 jn.111.157222 [pii]. Wolf AM, Hunter DJ, Colditz GA, Manson JE, Stampfer MJ, Corsano KA, Rosner B, Kriska A, Willett WC. Reproducibility and validity of a self-administered physical activity questionnaire. Int J Epidemiol 	34.	Patterson RE, Kristal AR, Tinker LF, Carter RA, Bolton MP, Agurs-Collins T. Measurement characteristics of
 jn.111.157222 [pii]. 36. Wolf AM, Hunter DJ, Colditz GA, Manson JE, Stampfer MJ, Corsano KA, Rosner B, Kriska A, Willett WC. Reproducibility and validity of a self-administered physical activity questionnaire. Int J Epidemiol 	35.	Chiuve SE, Fung TT, Rimm EB, Hu FB, McCullough ML, Wang M, Stampfer MJ, Willett WC. Alternative dietary indices both strongly predict risk of chronic disease. The Journal of nutrition 2012;142(6):1009-18. doi: 10.3945/jn.111.157222
36. Wolf AM, Hunter DJ, Colditz GA, Manson JE, Stampfer MJ, Corsano KA, Rosner B, Kriska A, Willett WC. Reproducibility and validity of a self-administered physical activity questionnaire. Int J Epidemiol	jn.111	.157222 [pii].
	36.	Wolf AM, Hunter DJ, Colditz GA, Manson JE, Stampfer MJ, Corsano KA, Rosner B, Kriska A, Willett WC. Reproducibility and validity of a self-administered physical activity questionnaire. Int J Epidemiol
For peer review only - http://bmiopen.bmi.com/site/about/quidelines.xhtml		For peer review only - http://bmiopen.bmi.com/site/about/quidelines.xhtml

1		
2		
3		1994:23(5):991-9.
4	37	Langer RD, White F, Lewis CF, Kotchen IM, Hendrix SL, Trevisan M, The Women's Health Initiative
5	57.	Observational Study: baseline characteristics of participants and reliability of baseline measures. Appals of
6		observational study. Dasenne characteristics of participants and reliability of basenne measures. Annais of
7		
7 0	38.	Kabir M, Skurnik G, Naour N, Pechtner V, Meugnier E, Rome S, Quignard-Boulange A, Vidal H, Slama G,
0		Clement K, et al. Treatment for 2 mo with n 3 polyunsaturated fatty acids reduces adiposity and some
9		atherogenic factors but does not improve insulin sensitivity in women with type 2 diabetes: a randomized
10		controlled study. The American journal of clinical nutrition 2007;86(6):1670-9.
11	39.	Munro IA, Garg ML. Prior supplementation with long chain omega-3 polyunsaturated fatty acids promotes
12		weight loss in obese adults: a double-blinded randomised controlled trial. Food & function 2013;4(4):650-8.
13		doi: 10.1039/c3fo60038f
14	40	Thorsdottir I. Tomasson H. Gunnarsdottir I. Gisladottir F. Kiely M. Parra MD. Randarra NM. Schaafsma G.
15	40.	Martinez IA. Dandemized trial of weight loss diate for young adults varying in fich and fich ail content. Int l
16		Naturez JA. Kanuorinzeu triar or weight-ioss-ulets for young adults varying in fish and fish on content. Int J
17		Obes (Lond) 2007;31(10):1560-6. doi: 10.1038/5J.IJ0.0803643.
18	41.	Munro IA, Garg ML. Dietary supplementation with n-3 PUFA does not promote weight loss when combined
10		with a very-low-energy diet. The British journal of nutrition 2012;108(8):1466-74. doi:
19		10.1017/S0007114511006817.
20	42.	Crochemore IC, Souza AF, de Souza AC, Rosado EL. omega-3 polyunsaturated fatty acid supplementation
21		does not influence body composition, insulin resistance, and lipemia in women with type 2 diabetes and
22		obesity. Nutrition in clinical practice : official publication of the American Society for Parenteral and Enteral
23		Nutrition 2012;27(4):553-60. doi: 10.1177/0884533612444535
24	12	Render N. Dortmann M. Heg 7. Hofmann K. Zwahlen M. Egger M. Eich or n2-DUEA intake and body
25	45.	composition a systematic review and mote applyis. Obesity reviews an official journal of the
26		composition: a systematic review and meta-analysis. Obesity reviews : an official journal of the
27		International Association for the Study of Obesity 2014;15(8):657-65. doi: 10.1111/obr.12189.
28	44.	Ameur A, Enroth S, Johansson A, Zaboli G, Igl W, Johansson AC, Rivas MA, Daly MJ, Schmitz G, Hicks AA, et
29		al. Genetic adaptation of fatty-acid metabolism: a human-specific haplotype increasing the biosynthesis of
30		long-chain omega-3 and omega-6 fatty acids. Am J Hum Genet 2012;90(5):809-20. doi:
31		10.1016/j.ajhg.2012.03.014.
27	45.	Ralston JC, Matravadia S, Gaudio N, Holloway GP, Mutch DM. Polyunsaturated fatty acid regulation of
52		adipocyte FADS1 and FADS2 expression and function. Obesity (Silver Spring) 2015;23(4);725-8. doi:
33		10 1002/oby 21035
34	46	Smith GL Julliand S. Reeds DN. Sinacore DR. Klein S. Mittendorfer B. Eich oil-derived n-3 PLIEA therapy
35	40.	increases muscle mass and function in healthy older adults. The American journal of clinical nutrition
36		2015 102(4)-115 22 July 10 2015 (and 1010) in fielding older addits. The American journal of clinical nutrition
37		2015;102(1):115-22. doi: 10.3945/ajcn.114.105833.
38	47.	Jourdan C, Kloiber S, Nieters A, Seiler H, Himmerich H, Köhli MA, Lucae S, Wolfram G, Gieger C, Wichmann
39		HE, et al. Gene-PUFA interactions and obesity risk. The British journal of nutrition 2011;106(8):1263-72. doi:
40		10.1017/S0007114511001541.
41	48.	Manolio TA, Bailey-Wilson JE, Collins FS. Genes, environment and the value of prospective cohort studies.
42		Nature reviews Genetics 2006;7(10):812-20. doi: 10.1038/nrg1919.
43		
13		
45		
45		
40		
4/		
48		
49		
50		
51		
52		
53		
54		
55		
56		
57		
58		
50		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
50		

	NHS ¹	HPFS	WHI	SCHS
	n=11,323	n=6,833	n=6,254	n=5,264
Age (year)	57 ± 9	57 ± 11	68 ± 5	56 ± 7
Female (%)	100	0	100	58.7
Body weight (kg)	70.1 ± 14.9	82.8 ± 12.5	73.7 ± 15.0	60.3 ± 9.8
Body mass index (kg/m ²)	26.2 ± 5.1	25.9 ± 3.3	28.3 ± 5.5	23.4 ± 3.3
Alcohol consumption (g/day)	5.14 ± 9.23	10.97 ± 15.05	6.00 ± 11.96	1.97 ± 8.02
Physical activity (MET-h/week)	19.3 ± 22.1	36.9 ± 39.5	11.6 ± 13.1	0.5 ± 1.0^2
Television watching (h/week)	17.5 ± 14.8	10.5 ± 8.2	/	2.2 ± 0.8
Current smokers (n, (%))	1557(13.8)	493(7.3)	407(15.0)	1364(20.0)
Total energy intake (kcal/day)	1766 ± 502	1949 ± 578	1602 ± 654	1606 ± 573
Alternative health eating index score	53.4 ± 10.8	53.8 ± 11.4	53.5 ± 10.6	55.8 ± 8.2
Sugar sweetened beverage intake (servings/day)	0.13 ± 0.39	0.23 ± 0.48	0.39 ± 0.82	0.69 ± 2.40^3
Total fried food (servings/day)	0.12 ± 0.20	0.22 ± 0.28	/	/
Fish intake (servings/day)	0.31 ± 0.29	0.33 ± 0.30	0.23 ± 0.20	0.16 ± 0.07
EPA (g/day)	0.08 ± 0.14	0.12 ± 0.20	0.04 ± 0.04	/
DHA (g/day)	0.17 ± 0.14	0.22 ± 0.19	0.07 ± 0.07	/
Food-sourced EPA+DHA (g/day)	0.23 ± 0.19	0.31 ± 0.25	0.11 ± 0.10	0.33 ± 0.20
Total EPA+DHA (g/day)	0.26 ± 0.27	0.35 ± 0.37	0.38 ± 0.48	/

Table 1 Baseline characteristics of all participants in the NHS, HPFS, WHI, and SCHS cohorts.

¹Plus-minus values are means \pm SD. ²Hours per week of moderate activity in the SCHS. ³Glasses per week of soda intake in the SCHS.

EPA: 20:5n-3; DHA: 22:6n-3; MET denotes metabolic equivalents.

The body-mass index (BMI) is the weight in kilograms divided by the square of the height in meters. Data on BMI, long chain n-3 PUFAs and fish consumptions were assessed at baseline in the NHS (1990), the HPFS (1990), the WHI (1994-1998), and the SCHS (1993-1998), respectively. Television watching assessed in 1992 for Nurses' Health Study and in 1990 for Health Professionals Follow-Up Study.

BMJ Open

Table 2 Associations of long chain n-3 PUFAs and fish intakes with long-term changes in BMI according to FADS genotypes

Diata	EADS construined	Long chain 1	1-3 PUFAs and	D for trond	P for	
Dicts	FADS genotypes	C	ategories of die	ets	r lor trenu	interaction*
Total fish, serving/day		≤1/wk	1~6/wk	$\geq 1/d$		
NHS	Non-T carriers	0.82±0.06	0.98±0.04	1.15±0.13	0.006	0.03
	T carriers	0.73±0.11	0.95±0.08	1.55±0.25	0.0007	
HPFS	Non-T carriers	0.43±0.05	0.52±0.04	0.59±0.12	0.73	0.03
	T carriers	0.21±0.11	0.52±0.07	0.79±0.22	0.02	
WHI	Non-T carriers	0.11±0.08	0.28±0.06	0.28±0.34	0.04	0.09
	T carriers	0.02±0.15	0.29±0.11	0.94±0.67	0.01	
SCHS	Non-T carriers	-3.08±0.19	-3.00±0.17	-3.35±0.18	0.32	0.01
	T carriers	-3.61±0.17	-3.10±0.15	-3.25±0.17	0.13	
Pooled ¹	Non-T carriers	0.50±0.03	0.67±0.03	0.81 ± 0.08	0.01	0.0007
	T carriers	0.38±0.07	0.63±0.05	1.11±0.16	2×10 ⁻⁴	
Food-sourced EPA+DH	IA, g/day	T1	T2	Т3		
NHS	Non-T carriers	0.79±0.06	0.92±0.05	1.11±0.06	0.01	0.005
	T carriers	0.71±0.10	0.84±0.11	1.19±0.11	0.0001	
HPFS	Non-T carriers	0.46±0.05	0.53±0.05	0.49±0.05	0.79	0.02
	T carriers	0.23±0.11	0.48±0.10	0.58±0.09	0.02	
WHI	Non-T carriers	0.02 ± 0.08	0.21±0.08	0.41±0.08	0.06	0.04
	T carriers	-0.03±0.15	0.29±0.14	0.35±0.15	0.004	
SCHS	Non-T carriers	-3.32±0.17	-3.15±0.18	-2.99±0.17	0.16	0.035
	T carriers	-3.55±0.16	-3.34±0.16	-3.05±0.16	0.02	
Pooled ¹	Non-T carriers	0.49±0.03	0.64±0.03	0.68±0.03	0.01	0.0003
	T carriers	0.39±0.07	0.57±0.06	0.74±0.06	1.5×10 ⁻⁶	
Total EPA+DHA, g/day	Į.	T1	T2	Т3		

2	4
,	
~	-

NHS	Non-T carriers	0.79±0.06	0.94±0.05	1.08±0.06	0.8	0.01
	T carriers	0.72±0.11	0.87±0.10	1.16±0.11	0.02	
HPFS	Non-T carriers	0.47 ± 0.05	0.53±0.05	0.49±0.05	0.88	0.13
	T carriers	0.23±0.10	0.50±0.09	0.57±0.10	0.16	
WHI	Non-T carriers	0.39±0.10	0.04 ± 0.08	0.23±0.10	0.42	0.27
	T carriers	0.04±0.18	0.28±0.15	0.28±0.16	0.84	
Pooled ¹	Non-T carriers	0.57±0.04	0.62±0.03	0.67±0.04	0.65	0.005
	T carriers	0.39±0.07	0.60±0.06	$0.74{\pm}0.07$	0.01	

Data are means \pm SE.

¹P for interaction was generated from dominant model of *FADS* rs174570 (CC vs CT+TT).

Numbers of T carriers/Non-T carriers in the NHS, HPFS, WHI, and SCHS are 1698/9625, 1025/5808, 876/5378, and 1842/3422, respectively.

Data on BMI, long chain n-3 PUFAs and fish consumptions were assessed at baseline in the NHS (1990), the HPFS (1990), the WHI (1994-1998), and the SCHS (1993-1998), respectively.

Data on follow-up BMI was assessed in 2000 in the NHS and HPFS, in the sixth follow-up year in the WHI, and from 2006 to 2010 in the SCHS, respectively.

Long-term BMI changes were calculated based on the changes in BMI from baseline to follow-up year in the four cohorts, respectively.

The general linear model was used to test the associations of long chain n-3 PUFAs and fish intakes with long-term changes in BMI by *FADS* genotypes after adjustment for age, source of genotyping data, baseline BMI, smoking, alcohol intake, physical activity, total energy intake, alternate healthy eating index, television watching, sugar sweetened beverage, fried food consumption.

The results were pooled by means of fixed effects meta-analyses (if $P \ge 0.05$ for heterogeneity between studies).

Registration: www. clinicaltrials.gov. Registration ID: NCT03348566

Figure Legends

Figure 1 Genetic variant of *FADS* rs174570, long chain n-3 PUFAs and fish intakes and long-term BMI changes

Effect size (ES) (95% CI) values are β coefficients for interaction between the *FADS* variant rs174570 (additive model) and diets from results of the NHS, HPFS, WHI, and SCHS cohorts.

Data on BMI, long chain n-3 PUFAs (food sourced EPA+ DHA and total EPA+ DHA (food and

supplemental use)) and fish consumptions were assessed at baseline in the NHS (1990), the HPFS (1990),

the WHI (1994-1998), and the SCHS (1993-1998), respectively.

Data on follow-up BMI was assessed in 2000 in the NHS and HPFS, in the sixth follow-up year in the

WHI, and from 2006 to 2010 in the SCHS, respectively.

Long-term BMI changes were calculated based on the changes in BMI from baseline to follow-up year in the four cohorts, respectively.

The general linear model was used to test the *FADS* variant-diets interaction by including a multiplicative interaction term in the models after adjustment for age, source of genotyping data, baseline BMI, smoking, alcohol intake, physical activity, total energy intake, alternate healthy eating index, television watching, sugar sweetened beverage, fried food consumption.

The results were pooled by means of fixed effects meta-analyses (if $P \ge 0.05$ for heterogeneity between studies).

Figure 2 Genetic association of *FADS* variant rs174570 with long-term BMI change according to long chain n-3 PUFAs and fish intakes

Pooled-EUR: data from NHS, HPFS, and WHI were pooled.

Pooled Multiethnic: data from NHS, HPFS, WHI and SCHS were pooled.

Data are β coefficients \pm SE.

Numbers of participants across three categories ($\leq 1/wk/1 \sim 6/wk/\geq 1/d$) of fish intake in the NHS, HPFS,

WHI, and SCHS are 1618/8465/1239, 977/5108/748, 894/4675/684, and 752/3935/576, respectively.

Frequency of fish intake: ≤ 1 serving per week, 1~6 servings per week, and 1 serving per day Data on BMI, long chain n-3 PUFAs (food sourced EPA+ DHA and total EPA+ DHA (food and supplemental use)) and fish consumptions were assessed at baseline in the NHS (1990), the HPFS (1990), the WHI (1994-1998), and the SCHS (1993-1998), respectively.

Data on follow-up BMI was assessed in 2000 in the NHS and HPFS, in the sixth follow-up year in the WHI, and from 2006 to 2010 in the SCHS, respectively.

The general linear model was used to test the genetic association of the *FADS* variant (additive model) with long-term changes in BMI by frequency of fish intake and tertiles of LC fatty acids after adjustment for age, source of genotyping data, baseline BMI, smoking, alcohol intake, physical activity, total energy intake, alternate healthy eating index, television watching, sugar sweetened beverage, fried food consumption. The results were pooled by means of fixed effects meta-analyses (if $P \ge 0.05$ for heterogeneity between studies).

Figure 3 Predicted long-term changes in BMI from long chain n-3 PUFAs intake according to *FADS* genotypes

Numbers of T carriers/Non-T carriers in the NHS, HPFS, and WHI are 1698/9625, 1025/5808, and 876/5378, respectively.

Black circles for T allele carriers and open circle for non-T-carriers.

The general linear model was used to test the associations of long chain n-3 PUFAs intake with long-term changes in BMI according to *FADS* genotypes after adjustment for age, source of genotyping data, baseline BMI, smoking, alcohol intake, physical activity, total energy intake, alternate healthy eating index, television watching, sugar sweetened beverage, fried food consumption.

The data on food-sourced EPA+DHA was pooled from the NHS and HPFS cohorts. Data from US cohorts was pooled by means of fixed effects meta-analyses (if $P \ge 0.05$ for heterogeneity between studies).

BMJ Open

Figure 4 Predicted long-term changes in BMI from fish intake according to FADS genotypes

Numbers of T carriers/Non-T carriers in the NHS, HPFS, and WHI are 1698/9625, 1025/5808, and 876/5378, respectively.

Black circles for T allele carriers and open circle for non-T-carriers.

The general linear model was used to test the associations of and fish intake with long-term changes in BMI according to *FADS* genotypes after adjustment for age, source of genotyping data, baseline BMI, smoking, alcohol intake, physical activity, total energy intake, alternate healthy eating index, television watching, sugar sweetened beverage, fried food consumption.

The data on total fish intake was pooled from the NHS, HPFS, and WHI cohorts. Data from US cohorts was pooled by means of fixed effects meta-analyses (if P ≥ 0.05 for heterogeneity between studies).

Cohort EFA HHS HPFS Subtotal (l-squared = 0.0%, p = 0.549) Food-sourced DHA NHS HPFS WHI Subtotal (l-squared = 45.4%, p = 0.160) Food-sourced EPA+DHA NHS HPFS Subtotal (l-squared = 11.0%, p = 0.338) Total EPA+DHA NHS HPFS Subtotal (l-squared = 19.0%, p = 0.291) Total FbA+DHA NHS HPFS Subtotal (l-squared = 19.0%, p = 0.765) Total FbA+DHA NHS HPFS Subtotal (l-squared = 0.0%, p = 0.765) Total Subtotal (l-squared = 0.0%, p = 0.765)		ES (95% CI) → 0.92 (0.04, 1.81) 0.31 (-0.37, 0.99) 0.62 (0.11, 1.13) 0.58 (0.21, 0.95) - 0.95 (0.17, 1.73) 0.61 (0.00, 1.22) 0.24 (-0.01, 0.49) 0.35 (0.12, 0.57) 0.67 (0.10, 1.24) 0.44 (-0.00, 0.88) 0.18 (0.00, 0.36) 0.25 (0.01, 0.49) 0.25 (0.12, 0.38) 0.52 (0.09, 0.96) 0.26 (-0.08, 0.59) 0.13 (-0.11, 0.37) 0.67 (0.10, 1.24)	Wei 0.88 1.44 2.55 4.82 1.00 1.77 10.2 13.7 2.00 3.41 21.4 12.0 3.9,0 3.50 5.99,0
$ \begin{array}{c} \mbox{Fod-sourced EPA} \\ \mbox{WH} \\ \mbox{WH} \\ \mbox{Subtal (l-squared = 0.0\%, p = 0.549)} \\ \mbox{Fod-sourced DHA} \\ \mbox{MHS} \\ \mbox{HPFS} \\ \mbox{WH} \\ \mbox{Subtal (l-squared = 45.4\%, p = 0.160)} \\ \mbox{Fod-sourced EPA+DHA} \\ \mbox{MHS} \\ \mbox{HPFS} \\ \mbox{WH} \\ \mbox{ScHS} \\ \mbox{Subtal (l-squared = 11.0\%, p = 0.338)} \\ \mbox{Total EPA+DHA} \\ \mbox{MHS} \\ \mbox{HPFS} \\ \mbox{WH} \\ \mbox{Subtal (l-squared = 19.0\%, p = 0.291)} \\ \mbox{Total FA+DHA} \\ \mbox{MHS} \\ \mbox{HPFS} \\ \mbox{WH} \\ \mbox{ScHS} \\ \mbox{Subtal (l-squared = 19.0\%, p = 0.765)} \\ \mbox{Total EPA+DHA} \\ \mbox{MHS} \\ \mbox{HPFS} \\ \mbox{WH} \\ \mbox{ScHS} \\ \mbox{Subtal (l-squared = 0.0\%, p = 0.765)} \\ \mbox{Total EPA+DHA} \\ \mbox{MHS} \\ \mbox{HPFS} \\ \mbox{WH} \\ \mbox{ScHS} \\ \mbox{Subtal (l-squared = 0.0\%, p = 0.765)} \\ \mbox{Total EPA+DHA} \\ \mbox{MHS} \\ \mbox{HPFS} \\ \mbox{WH} \\ \mbox{ScHS} \\ \mbox{Subtal (l-squared = 0.0\%, p = 0.765)} \\ \mbox{Total EPA+DHA} \\ \mbox{MHS} \\ \mbox{HPFS} \\ \mbox{MH} \\ \mbox{ScHS} \\ \mbox{Subtal (l-squared = 0.0\%, p = 0.765)} \\ \mbox{Total EPA+DHA} \\ \mbox{MH} \\ \mbox{HPFS} \\ \mbox{MH} \\ \mbox{ScHS} \\ \mbox{Subtal (l-squared = 0.0\%, p = 0.765)} \\ \mbox{Total EPA+DHA} \\ \mbox{MH} \\ \mbox{HPFS} \\ \mbox{MH} \\ \mbox{ScHS} \\ \mbox{Subtal (l-squared = 0.0\%, p = 0.765)} \\ \mbox{Total EPA+DHA} \\ \mbox{MH} \\ \mbox{HPFS} \\ \mbox{MH} \\ \mbox{ScHS} \\ \mbox{Subtal (l-squared = 0.0\%, p = 0.765)} \\ \mbox{Total EPA+DA} \\ \mbox{MH} \\ \mbox{ScHS} \\ \mbox{Subtal (l-squared = 0.0\%, p = 0.765)} \\ \mbox{Total EPA+DA} \\ \mbox{MH} \\ \mbox{Total EPA+DA} \\ \mbox{MH} \\ \mbox{ScHS} \\ \mbox{ScHS}$		 → 0.92 (0.04, 1.81) 0.31 (-0.37, 0.99) 0.62 (0.11, 1.13) 0.58 (0.21, 0.95) - 0.95 (0.17, 1.73) 0.61 (0.00, 1.22) 0.24 (-0.01, 0.49) 0.35 (0.12, 0.57) 0.67 (0.10, 1.24) 0.44 (-0.00, 0.88) 0.18 (0.00, 0.36) 0.25 (0.01, 0.49) 0.25 (0.12, 0.38) 0.52 (0.09, 0.96) 0.26 (-0.08, 0.59) 0.13 (-0.11, 0.37) 	0.88 1.44 2.55 1.06 1.77 10.2 13.3 2.06 3.41 21.4 39.0 3.50 5.99
HPS 0.32 (0.37, 0.99) 1.022 (0.11, 1.13) 22 Subtotal (I-squared = 0.0%, p = 0.549) 0.88 (0.21, 0.37) 11 Prod-sourced DHA 0.85 (0.21, 0.37) 11 HPS 0.85 (0.21, 0.37) 11 WHI 0.85 (0.21, 0.37) 11 Subtotal (I-squared = 45.4%, p = 0.160) 0.35 (0.12, 0.57) 13 Food-sourced EPA+DHA 0.67 (0.10, 1.24) 22 NHS 0.67 (0.10, 1.24) 24 HPFS 0.44 (0.00, 0.88) 3.0 WHI 0.52 (0.09, 0.96) 33 Subtotal (I-squared = 11.0%, p = 0.338) 0.28 (0.01, 0.49) 10 Total EPA+DHA 0.52 (0.09, 0.96) 33 NHS 0.52 (0.09, 0.96) 33 HPFS 0.31 (0.10, 0.72) 33 WHI Subtotal (I-squared = 19.0%, p = 0.291) 0.31 (0.10, 0.72) 33 Total fish NHS 0.31 (0.10, 0.72) 33 HPFS 0.32 (0.06, 0.69) 51 0.32 (0.06, 0.69) 51 Subtotal (I-squared = 0.0%, p = 0.765) 0.32 (0.06, 0.69) 33 0.28 (0.04, 0.52) 12 UH		 0.32 (0.07, 0.99) 0.31 (-0.37, 0.99) 0.62 (0.11, 1.13) 0.58 (0.21, 0.95) 0.95 (0.17, 1.73) 0.61 (0.00, 1.22) 0.24 (-0.01, 0.49) 0.35 (0.12, 0.57) 0.67 (0.10, 1.24) 0.44 (-0.00, 0.88) 0.18 (0.00, 0.36) 0.25 (0.01, 0.49) 0.25 (0.12, 0.38) 0.52 (0.09, 0.96) 0.26 (-0.08, 0.59) 0.13 (-0.11, 0.37) 	1.00 1.01 1.01 1.77 10.1 13.1 2.00 3.41 21.4 12.0 3.50 5.99
WHI 0.62 (0.11, 1.13) 2.1 Subtotal (I-squared = 0.0%, p = 0.549) 0.58 (0.21, 0.95) 4.1 Food-sourced DHA NHS 0.95 (0.17, 1.73) 11 HPFS 0.95 (0.17, 1.73) 11 WHI 0.95 (0.17, 1.73) 11 Subtotal (I-squared = 45.4%, p = 0.160) 0.35 (0.12, 0.57) 13 Food-sourced EPA+DHA 0.67 (0.10, 1.24) 21 NHS 0.41 (0.00, 0.36) 22 Subtotal (I-squared = 11.0%, p = 0.338) 0.25 (0.12, 0.35) 33 Total EPA+DHA 0.52 (0.09, 0.96) 33 NHS 0.52 (0.09, 0.96) 33 HPFS 0.25 (0.12, 0.35) 33 WHI 0.31 (0.11, 0.37) 12 Subtotal (I-squared = 19.0%, p = 0.291) 0.23 (0.08, 0.41) 21 Total EPA+DHA 0.31 (0.10, 0.72) 33 WHI 0.32 (0.06, 0.69) 4.1 Subtotal (I-squared = 0.0%, p = 0.765) 0.32 (0.06, 0.69) 4.1 VHH 0.31 (0.14, 0.49) 21 Jostotal (I-squared = 0.0%, p = 0.765) 0.32 (0.06, 0.52) 0.31 (0.14, 0.49) Jubtotal (I-squared =		0.62 (0.11, 1.13) 0.58 (0.21, 0.95) - 0.95 (0.17, 1.73) 0.61 (0.00, 1.22) 0.24 (-0.01, 0.49) 0.35 (0.12, 0.57) 0.67 (0.10, 1.24) 0.44 (-0.00, 0.88) 0.18 (0.00, 0.36) 0.25 (0.01, 0.49) 0.25 (0.12, 0.38) 0.52 (0.09, 0.96) 0.26 (-0.08, 0.59) 0.13 (-0.11, 0.37)	2.5 4.8 1.0 1.7 10. 13. 2.0 3.4 21. 12. 39. 3.5 5.9
Subtolal (I-squared = 0.0%, p = 0.549) Food-sourced DHA NHS HPFS Subtolal (I-squared = 45.4%, p = 0.160) Food-sourced EPA+DHA NHS HPFS Subtolal (I-squared = 11.0%, p = 0.338) Total EPA+DHA NHS HPFS WHI Subtolal (I-squared = 19.0%, p = 0.291) Total EPA+DHA NHS HPFS Subtolal (I-squared = 19.0%, p = 0.291) Total fish NHS HPFS Subtolal (I-squared = 0.0%, p = 0.765) Figure 1 180x180mm (120 x 120 DPI)		 0.58 (0.21, 0.95) 0.95 (0.17, 1.73) 0.61 (0.00, 1.22) 0.24 (-0.01, 0.49) 0.35 (0.12, 0.57) 0.67 (0.10, 1.24) 0.44 (-0.00, 0.88) 0.18 (0.00, 0.36) 0.25 (0.01, 0.49) 0.25 (0.12, 0.38) 0.52 (0.09, 0.96) 0.26 (-0.08, 0.59) 0.13 (-0.11, 0.37) 	4.8 1.0 1.7 10. 13. 2.0 3.4 21. 12. 39. 3.5 5.9
Food-sourced DHA NHS HPFS WHI Subtotal (I-squared = 45.4%, p = 0.160) Food-sourced EPA+DHA NHS HPFS WHI Subtotal (I-squared = 11.0%, p = 0.338) Total FDA NHS HPFS Subtotal (I-squared = 19.0%, p = 0.291) Total fish NHS HPFS Subtotal (I-squared = 19.0%, p = 0.291) Total fish NHS HPFS Subtotal (I-squared = 0.0%, p = 0.765)		 0.95 (0.17, 1.73) 0.61 (0.00, 1.22) 0.24 (-0.01, 0.49) 0.35 (0.12, 0.57) 0.67 (0.10, 1.24) 0.44 (-0.00, 0.88) 0.18 (0.00, 0.36) 0.25 (0.01, 0.49) 0.25 (0.12, 0.38) 0.52 (0.09, 0.96) 0.26 (-0.08, 0.59) 0.13 (-0.11, 0.37) 0.25 (0.12, 0.14) 	1.0 1.7 10. 13. 2.0 3.4 21. 12. 39. 3.5 5.9
NHS HPFS WH Subtotal (l-squared = 45.4%, p = 0.160) Food-sourced EPA+DHA NHS HPFS WHI SchS Subtotal (l-squared = 11.0%, p = 0.338) Total EPA+DHA NHS HPFS WHI Subtotal (l-squared = 19.0%, p = 0.291) Total fish NHS HPFS WHI Subtotal (l-squared = 19.0%, p = 0.291) Total fish NHS HPFS WHI Subtotal (l-squared = 0.0%, p = 0.765)		 0.95 (0.17, 1.73) 0.61 (0.00, 1.22) 0.24 (-0.01, 0.49) 0.35 (0.12, 0.57) 0.67 (0.10, 1.24) 0.44 (-0.00, 0.88) 0.18 (0.00, 0.36) 0.25 (0.12, 0.38) 0.25 (0.12, 0.38) 0.52 (0.09, 0.96) 0.26 (-0.08, 0.59) 0.13 (-0.11, 0.37) 0.25 (0.12, 0.36) 	1.00 1.74 10 13. 2.00 3.4 21. 12. 39. 3.50 5.90
HPFS 0.61 (0.00; 122) 1.1 Subtotal (I-squared = 45.4%, p = 0.160) 0.35 (0.12, 0.57) 13 Food-sourced EPA+DHA 0.67 (0.10, 124) 2.1 NHS 0.67 (0.00, 0.88) 5.2 WH 0.67 (0.10, 124) 2.1 Subtotal (I-squared = 11.0%, p = 0.338) 0.67 (0.10, 49) 12 Total EPA+DHA 0.52 (0.09, 0.96) 3.1 NHS 0.52 (0.09, 0.96) 3.1 HPFS 0.31 (0.11, 0.37) 12 Subtotal (I-squared = 19.0%, p = 0.291) 0.32 (0.05, 0.41) 21 Total EPA+DHA 0.31 (0.10, 0.72) 33 NHS HPFS 0.32 (0.06, 0.69) 4.1 WHI 0.32 (0.06, 0.90) 4.1 0.32 (0.06, 0.90) 4.1 Subtotal (I-squared = 0.0%, p = 0.765) 0.29 2 2 Figure 1 180x180mm (120 x 120 DPI) 120 DPI)		0.61 (0.00, 1.22) 0.24 (-0.01, 0.49) 0.35 (0.12, 0.57) 0.67 (0.10, 1.24) 0.44 (-0.00, 0.88) 0.18 (0.00, 0.36) 0.25 (0.01, 0.49) 0.25 (0.12, 0.38) 0.52 (0.09, 0.96) 0.26 (-0.08, 0.59) 0.13 (-0.11, 0.37)	1.7 10. 13. 2.0 3.4 21. 12. 39. 3.5 5.9
Subtotal (I-squared = 45.4%, p = 0.160) Food-sourced EPA+DHA NHS HPFS Subtotal (I-squared = 11.0%, p = 0.338) Total EPA+DHA NHS HPFS Subtotal (I-squared = 19.0%, p = 0.291) Total fish NHS HPFS Subtotal (I-squared = 19.0%, p = 0.291) Total fish NHS HPFS Subtotal (I-squared = 0.0%, p = 0.765) Figure 1 180x180mm (120 x 120 DPI)		0.35 (0.12, 0.57) 0.67 (0.10, 1.24) 0.44 (-0.00, 0.88) 0.18 (0.00, 0.36) 0.25 (0.01, 0.49) 0.25 (0.12, 0.38) 0.52 (0.09, 0.96) 0.26 (-0.08, 0.59) 0.13 (-0.11, 0.37)	13. 2.0 3.4 21. 12. 39. 3.5 5.9
Food-sourced EPA+DHA 0.67 (0.10, 1.24) 2.4 HPFS 0.44 (0.00, 0.88) 3.5 Subtotal (I-squared = 11.0%, p = 0.338) 0.25 (0.12, 0.38) 3.5 Total EPA+DHA 0.52 (0.09, 0.96) 3.1 NHS 0.52 (0.09, 0.96) 3.1 HPFS 0.52 (0.05, 0.41) 2.1 Subtotal (I-squared = 19.0%, p = 0.291) 0.23 (0.05, 0.41) 2.1 Total fish 0.31 (0.10, 0.72) 3.3 HPFS 0.31 (0.10, 0.72) 3.3 WH 0.31 (0.10, 0.72) 3.3 SCHS 0.32 (0.06, 0.69) 4.1 WH 0.31 (0.10, 0.72) 3.3 SCHS 0.32 (0.06, 0.69) 4.1 WH 0.28 (0.04, 0.52) 12 SCHS 0.31 (0.14, 0.49) 21 HPFS 0.31 (0.14, 0.49) 21 HPFS 0.31 (0.14, 0.49) 21 Subtotal (I-squared = 0.0%, p = 0.765) 0.32 0.28 HPFS 0.31 (0.14, 0.49) 21 HPFS 0.31 (0.14, 0.49) 21 HPFS 0.31 (0.14, 0.49) 21	++++++++++++++++++++++++++++++++++++++	0.67 (0.10, 1.24) 0.44 (-0.00, 0.88) 0.18 (0.00, 0.36) 0.25 (0.01, 0.49) 0.25 (0.12, 0.38) 0.52 (0.09, 0.96) 0.26 (-0.08, 0.59) 0.13 (-0.11, 0.37)	2.0 3.4 21. 39. 3.5 5.9
NHS 0.67 (0.10, 1.24) 2.4 HPFS 0.44 (+000, 0.88) 3.4 WHI 0.25 (0.01, 0.49) 12 Subtotal (I-squared = 11.0%, p = 0.338) 0.25 (0.12, 0.38) 38 Total EPA+DHA 0.52 (0.09, 0.96) 3.3 HPFS 0.26 (+0.08, 0.59) 5.1 WHI 0.52 (0.09, 0.96) 3.3 Subtotal (I-squared = 19.0%, p = 0.291) 0.23 (0.05, 0.41) 21 Total fish 0.31 (-0.10, 0.72) 3.3 NHS 0.32 (+0.06, 0.69) 4.3 HPFS 0.32 (+0.06, 0.69) 4.3 WHI 0.32 (+0.00, 0.69) 4.3 Subtotal (I-squared = 0.0%, p = 0.291) 0.32 (+0.00, 0.69) 4.3 WHI 0.31 (+0.10, 0.72) 3.3 SCHS 0.32 (+0.00, 0.69) 4.3 WHI 0.32 (+0.00, 0.69) 4.3 Subtotal (I-squared = 0.0%, p = 0.765) 0.39 2 Figure 1 180x180mm (120 x 120 DPI) 10.14 (+0.49)		0.67 (0.10, 1.24) 0.44 (-0.00, 0.88) 0.18 (0.00, 0.36) 0.25 (0.01, 0.49) 0.25 (0.12, 0.38) 0.52 (0.09, 0.96) 0.26 (-0.08, 0.59) 0.13 (-0.11, 0.37)	2.0 3.4 21. 39. 3.5 5.9
HPFS WHI ScHS Subtotal (I-squared = 11.0%, p = 0.338) Total EPA+DHA NHS HPFS WHI Subtotal (I-squared = 19.0%, p = 0.291) Total fish NHS HPFS Subtotal (I-squared = 19.0%, p = 0.291) Total fish NHS HPFS Subtotal (I-squared = 0.0%, p = 0.765) Figure 1 180x180mm (120 x 120 DPI)		0.44 (-0.00, 0.88) 0.18 (0.00, 0.36) 0.25 (0.01, 0.49) 0.25 (0.12, 0.38) 0.52 (0.09, 0.96) 0.26 (-0.08, 0.59) 0.13 (-0.11, 0.37)	2.0 3.4 21. 39. 3.5 5.9
WHI 0.18 (0.00, 0.36) 21 Subtotal (I-squared = 11.0%, p = 0.338) 0.25 (0.12, 0.38) 39 Total EPA+DHA 0.52 (0.09, 0.96) 3.3 HPFS 0.26 (0.08, 0.59) 5.5 WHI 0.23 (0.05, 0.41) 21 Subtotal (I-squared = 19.0%, p = 0.291) 0.23 (0.05, 0.41) 21 Total fish 0.31 (0.10, 0.72) 3.3 HPFS 0.32 (0.06, 0.69) 4.3 WHI 0.32 (0.06, 0.69) 4.3 SCHS 0.31 (0.14, 0.49) 21 WHI 0.31 (0.14, 0.49) 21 Jubtotal (I-squared = 0.0%, p = 0.765) 0.29 2 Figure 1 180x180mm (120 x 120 DPI) 180x120 DPI)	++0++	0.18 (0.00, 0.36) 0.25 (0.01, 0.49) 0.25 (0.12, 0.38) 0.52 (0.09, 0.96) 0.26 (-0.08, 0.59) 0.13 (-0.11, 0.37)	21. 12. 39. 3.5 5.9
ScHS Subtotal (I-squared = 11.0%, p = 0.338) Total EPA+DHA NHS HPFS WHI Subtotal (I-squared = 19.0%, p = 0.291) Total fish NHS HPFS WHI SCHS Subtotal (I-squared = 0.0%, p = 0.765)		0.25 (0.01, 0.49) 0.25 (0.12, 0.38) 0.52 (0.09, 0.96) 0.26 (-0.08, 0.59) 0.13 (-0.11, 0.37)	12. 39. 3.5 5.9
Total EPA+DHA 0.52 (0.9, 0.96) 3.1 NHS 0.52 (0.09, 0.96) 5.1 WHI 0.26 (-0.08, 0.59) 5.1 Subtotal (I-squared = 19.0%, p = 0.291) 0.23 (0.05, 0.41) 21 Total fish 0.31 (-0.10, 0.72) 3.1 NHS 0.32 (-0.06, 0.69) 4.1 HPFS 0.32 (-0.06, 0.69) 4.1 WHI 0.32 (-0.06, 0.69) 4.1 SCHS 0.32 (-0.04, 0.52) 12 WHI 0.32 (-0.04, 0.52) 12 Subtotal (I-squared = 0.0%, p = 0.765) 0.29 2 Figure 1 180x180mm (120 x 120 DPI) 120 DPI)		0.52 (0.09, 0.96) 0.26 (-0.08, 0.59) 0.13 (-0.11, 0.37)	3.5 5.9
Total EPA+DHA NHS HPFS WHI Subtotal (I-squared = 19.0%, p = 0.291) Total fish NHS HPFS WHI Subtotal (I-squared = 0.0%, p = 0.765) Image: Part of the square		0.52 (0.09, 0.96) 0.26 (-0.08, 0.59) 0.13 (-0.11, 0.37)	3.5 5.9
NHS HPFS WHI Subtotal (I-squared = 19.0%, p = 0.291) Total fish NHS HPFS WHI SCHS Subtotal (I-squared = 0.0%, p = 0.765) I I I I I I I I I I I I I I I I I I		0.52 (0.09, 0.96) 0.26 (-0.08, 0.59) 0.13 (-0.11, 0.37)	3.5 5.9
WHI 0.20 (0.00, 0.03) 0.21 (0.11, 0.37) 12 Subtotal (I-squared = 19.0%, p = 0.291) 0.23 (0.05, 0.41) 21 NHS 0.31 (0.10, 0.72) 3.1 HPFS 0.32 (0.06, 0.69) 4.1 WHI 0.32 (0.06, 0.69) 4.1 SCHS 0.32 (0.04, 0.22) 12 Subtotal (I-squared = 0.0%, p = 0.765) 0.23 (0.04, 0.22) 12 Image: the second secon		0.13 (-0.11, 0.37)	5.9
Subtotal (I-squared = 19.0%, p = 0.291) Total fish NHS HPFS WHI SCHS Subtotal (I-squared = 0.0%, p = 0.765)	\diamond	0.00 10.05 0.44	12.
Total fish 0.31 (-0.10, 0.72) 3.3 HPFS 0.32 (-0.06, 0.69) 4.3 WHI 0.81 (-0.13, 1.75) 0.3 ScHS 0.81 (-0.14, 0.49) 21 -2 0 0.29 2 Figure 1 180x180mm (120 x 120 DPI)		0.23 (0.05, 0.41)	21.
NHS HPFS WHI SCHS Subtotal (I-squared = 0.0%, p = 0.765) I I I I I I I I I I I I I I I I I I			
HPFS WHI SCHS Subtotal (I-squared = 0.0%, p = 0.765) -2 -2		0.31 (-0.10, 0.72)	3.9
WHI SCHS Subtotal (I-squared = 0.0%, p = 0.765) -2	· · ·	0.32 (-0.06, 0.69)	4.7
Subtotal (I-squared = 0.0%, p = 0.765) -2 -2 -2 -2 -2 -2 -2 -2 -2 -2		- 0.81 (-0.13, 1.75) 0.28 (0.04, 0.52)	0.7
Figure 1 180x180mm (120 x 120 DPI)	\diamond	0.31 (0.14, 0.49)	21.
Figure 1 180x180mm (120 x 120 DPI)			
Figure 1 180x180mm (120 x 120 DPI)	0 0.29	2	
Figure 1 180x180mm (120 x 120 DPI)			
180x180mm (120 x 120 DPI)	Figure 1		
180X180mm (120 X 120 DP1)	(120 x 120 DDI)		
	JMM (120 X 120 DPI)		
		0 0.29 Figure 1 mm (120 x 120 DPI)	Figure 1 mm (120 x 120 DPI)

60

Figure 1

245x138mm (150 x 150 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

248x140mm (150 x 150 DPI)

249x142mm (150 x 150 DPI)

••			-		-					
	Reference				DAF					
Position ¹	SNP	Alleles ²	CFU	CHR	GI	NHS	HPFS	WHI	SCHS	PBS
	number		CEU	CIID	UI	1115	III I S	,, III	Sens	
chr11:61627960	rs74771917	C/T	0.025	0.16	0.98	/	/	/	/	2.67
chr11:61631510	rs3168072	A/T	0.017	0.18	0.98	/	/	/	/	2.64
chr11:61632310	rs12577276	A/G	0.017	0.18	0.98	/	/	/	/	2.64
chr11:61641717	rs7115739	G/T	0.017	0.22	0.98	0.004	0.004	/	/	2.54
chr11:61624414	rs174602	C/T	0.80	0.73	0.01	0.82	0.81	/	/	2.11
chr11:61597212	rs174570	C/T	0.16	0.34	0.99	0.15	0.15	0.14	0.35	2.06

Supplemental table 1. Annotation for the top six SNPs under positive selection in Greenlandic Inuit

¹Positions refer to human genome assembly hg19.

²Alleles are coded as ancestral/derived states.

PBS, the population branch statistic; DAF, derived allele frequency; CEU, European ancestry; CHB, an

Chinese; GI, Greenlandic Inuit

DAFs for each population (CEU, CHB, and GI) and PBS values are reported, along with the genomic position for each SNP.

 BMJ Open

	FADS NHS			HPFS			WHI		SCHS		Pooled	
Adiposity (kg/m)	SNPs	Beta ± SE	Р	Beta ± SE	Р	Beta ± SE	Р	Beta ± SE	Р	Beta ± SE	Р	
Baseline BMI	rs174570	0.03 ± 0.10	0.733	-0.05 ± 0.09	0.538	-0.06±0.17	0.72	0.24±0.08	0.002	0.08±0.05	0.06	
Baseline BMI	rs174602	0.08 ± 0.10	0.418	-0.05 ± 0.08	0.536	/		/		0.00 ± 0.03	0.559	
Baseline BMI	rs7115739	0.25 ± 0.52	0.634	-0.77 ± 0.43	0.077	/		/		-0.35 ± 0.14	0.196	
Long-term BMI change	rs174570	-0.05 ± 0.06	0.401	0.01 ± 0.05	0.917	-0.02±0.09	0.77	-0.02±0.08	0.85	-0.02±0.03	0.94	
Long-term BMI change	rs174602	-0.14 ± 0.06	0.009	0.04 ± 0.05	0.413	/		/		-0.04 ± 0.01	0.025	
Long-term BMI change	rs7115739	0.45 ± 0.29	0.124	-0.23 ± 0.26	0.359	/		/		0.06 ± 0.08	0.183	
Long-term BMI change:	BMI change	from 1990 to 2	2000.									
Numbers of T carriers/No	on-T carriers	in the NHS. H	PFS. WF	H. and SCHS	are 1698	3/9625, 1025/	5808. 8	876/5378, and	1842/34	422. respective	elv.	
Effect size (ES) volues of	ο θ acofficier	eta for relation	ahin hat	$\frac{1}{2}$	Y - comiont	ra174570 (ad	lditi	model) and a	dimoniter	,, poor		
Sheet size (ES) values al	e p coefficier		ship betv	ween the <i>FADS</i>	varialit	18174370 (at		inouer) and a	uiposity.			
The general linear model	was used to	test the genetic	e associa	tion of FADS	variants	with long-ter	m char	nges in BMI a	ıfter adjı	istment for age	e, sourc	
of genotyping data												

2	
1	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20	
29	
50 21	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
42	
ΔΛ	
44	
45	
46	
4/	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
50	
20	
59	
60	

Supplemental table 3 Genetic association of FADS variant with long-term changes in body weigh
according to long chain n-3 PUFAs and fish intakes

Caborta	Difference in lo	ong-term change	es in weight,	D for interestion
Conorts		kg		P for interaction
Total Fish, serving/day	≤1/wk	1~6/wk	$\geq 1/d$	
NHS	-0.69±0.64	-0.13±0.49	1.78±1.64	0.05
HPFS	-0.99±0.85	0.54±0.53	1.52±1.69	0.12
WHI	-0.22±0.42	0.16±0.34	1.26±1.57	0.13
SCHS	-0.42±0.29	-0.44±0.28	0.20±0.29	0.08
Pooled	-0.44±0.22	-0.10±0.18	0.31±0.28	0.01
Food-sourced EPA, g/day	T 1	Τ2	Т3	
NHS	-0.77±0.62	-0.25±0.72	0.53±0.64	0.06
HPFS	-1.19±0.82	0.75±0.73	0.72±0.74	0.41
WHI	-0.19±0.42	0.24±0.47	0.14±0.48	0.20
Pooled	-0.50±0.32	0.24±0.34	0.37±0.34	0.10
Food-sourced DHA, g/day	T1	Т2	Т3	
NHS	-0.53±0.62	-0.39±0.70	0.53±0.65	0.01
HPFS	-1.06±0.82	0.49±0.71	0.89±0.76	0.09
WHI	-0.20±0.43	0.22±0.42	0.30±0.50	0.26
Pooled	-0.43±0.32	0.15±0.32	0.49±0.35	0.01
Food-sourced EPA+DHA, g/day	T1	Τ2	Т3	
NHS	-0.56±0.63	-0.32±0.68	0.49±0.66	0.01
HPFS	-1.25±0.83	0.68±0.73	0.84 ± 0.74	0.09
WHI	-0.02±0.43	0.16±0.44	0.14±0.49	0.23
SCHS	-0.47±0.29	-0.16±0.28	-0.03±0.29	0.10

BMJ Open

Pooled	-0.56±0.25	-0.09±0.24	0.14±0.25	0.005
Total EPA+DHA, g/day	T1	T2	Т3	
NHS	-0.58±0.63	-0.30±0.68	0.46±0.66	0.02
HPFS	-1.20±0.82	0.75±0.70	0.86±0.77	0.18
WHI	-0.48±0.47	0.64±0.43	0.04 ± 0.47	0.15
Pooled	-0.64±0.34	0.45±0.32	0.32±0.34	0.02

Data are β coefficients \pm SE.

Numbers of T carriers/Non-T carriers in the NHS, HPFS, WHI, and SCHS are 1698/9625, 1025/5808, 876/5378, and 1842/3422, respectively.

Frequency of fish intake: ≤ 1 serving per week, 1~6 servings per week, and 1 serving per day

Data on baseline fish and fatty acids consumptions were assessed in 1990 (NHS) and 1990 (HPFS).

Data on body weight were assessed in 1990 and 2000 in NHS and 1990 and 2000 in HPFS.

The general linear model was used to test the genetic association with long-term changes in body weight according to baseline long chain n-3 PUFAs and fish intakes after adjustment for age, source of genotyping data, baseline body weight, smoking, alcohol intake, physical activity, total energy intake, alternate healthy eating index, television watching, sugar sweetened beverage, fried food consumption. Data from three or four cohorts pooled by means of fixed effects meta-analyses (if $P \ge 0.05$ for heterogeneity between studies).

4
5
6
7
/ 0
8
9
10
11
12
13
14
15
10
10
17
18
19
20
21
22
25
23
24
25
26
27
28
29
20
30
31
32
33
34
35
36
20
37
38
39
40
41
42
42
رب ۸۸
44
45
46
47
48
49
50
50
51
52
53
54
55
56
57
57
58
59
60

Supplemental table 4 Associations of long chain n-3 PUFAs and fish intakes with long-term change
in body weight according to FADS genotypes

Cohorts		Long-term changes in weight, kg			P for trend
Total Fish, serving/day		≤1/wk	1~6/wk	$\geq 1/d$	
NHS	Non T carriers	4.91±0.34	5.78±0.24	7.00±0.79	0.008
	T carriers	4.45±0.61	5.64±0.46	9.26±1.44	0.001
HPFS	Non T carriers	0.44±0.06	0.52±0.04	0.56±0.12	0.99
	T carriers	0.25±0.10	0.53±0.07	0.76±0.21	0.08
WHI	Non T carriers	-0.25±0.23	-0.43±0.18	-0.91±0.93	0.50
	T carriers	-0.56±0.37	-0.25±0.28	1.30±1.71	0.13
SCHS	Non T carriers	-3.15±0.23	-3.50±0.21	-3.38±0.21	0.48
	T carriers	-3.68±0.20	-3.41±0.19	-3.34±0.20	0.16
Food-source	ed EPA, g/day	T1	T2	Т3	
NHS	Non T carriers	4.89±0.33	5.89±0.33	5.95±0.33	0.24
	T carriers	4.45±0.59	5.52±0.63	6.46±0.61	0.34
HPFS	Non T carriers	0.50±0.05	0.54±0.05	0.45±0.05	0.15
	T carriers	0.29±0.10	0.54±0.09	0.52±0.09	0.66
WHI	Non T carriers	-0.30±0.25	-0.54±0.24	-0.29±0.24	0.42
	T carriers	-0.51±0.39	-0.36±0.37	-0.15±0.38	0.14
Food-source	ed DHA, g/day	T1	T2	Т3	
NHS	Non T carriers	4.78±0.33	5.56±0.34	6.32±0.33	0.14
	T carriers	4.50±0.60	5.07±0.63	6.77±0.61	0.004
HPFS	Non T carriers	0.48±0.05	0.54±0.05	0.46±0.06	0.40
	T carriers	0.27±0.10	0.50±0.09	0.59±0.09	0.15
WHI	Non T carriers	-0.41±0.25	-0.25±0.24	-0.45±0.25	0.51
	T carriers	-0.71±0.39	-0.15±0.37	-0.16±0.39	0.18
-------------	------------------	------------	------------	------------	--------
Food-source	d EPA+DHA, g/day	T1	T2	Т3	
NHS	Non T carriers	4.69±0.34	5.45±0.33	6.51±0.33	0.02
	T carriers	4.44±0.61	5.00±0.61	6.92±0.61	0.0003
HPFS	Non T carriers	0.48±0.05	0.53±0.05	0.47±0.05	0.93
	T carriers	0.26±0.10	0.49±0.09	0.59±0.09	0.08
WHI	Non T carriers	-0.44±0.24	-0.23±0.23	-0.43±0.24	0.47
	T carriers	-0.52±0.38	-0.15±0.37	-0.33±0.38	0.15
SCHS	Non T carriers	-3.44±0.21	-3.58±0.22	-3.05±0.21	0.89
	T carriers	-3.73±0.19	-3.57±0.19	-3.12±0.19	0.12
Total EPA+I	DHA, g/day	T1	T2	Т3	
NHS	Non T carriers	4.74±0.34	5.55±0.32	6.36±0.34	0.81
	T carriers	4.49±0.61	5.16±0.60	6.70±0.61	0.03
HPFS	Non T carriers	0.49±0.05	0.53±0.05	0.47±0.06	0.24
	T carriers	0.26±0.10	0.51±0.09	0.58±0.09	0.33
WHI	Non T carriers	0.32±0.27	-0.84±0.23	-0.60±0.28	0.19
	T carriers	-0.26±0.45	-0.21±0.37	-0.02±0.11	0.08

Data on baseline fish and fatty acids consumptions were assessed in 1990 (NHS) and 1990 (HPFS). Numbers of T carriers/Non-T carriers in the NHS, HPFS, WHI, and SCHS are 1698/9625, 1025/5808, 876/5378, and 1842/3422, respectively.

Data on body weight were assessed in 1990 and 2000 in NHS and 1990 and 2000 in HPFS.

The general linear model was used to test the associations of long chain n-3 PUFAs and fish intakes with long-term changes in body weight by *FADS* genotypes after adjustment for age, source of genotyping data, baseline body weight, smoking, alcohol intake, physical activity, total energy intake, alternate healthy eating index, television watching, sugar sweetened beverage, fried food consumption.

Data from two cohorts pooled by means of fixed effects meta-analyses (if $P \ge 0.05$ for heterogeneity between studies) or random effects meta-analyses (if P < 0.05 for heterogeneity between studies).

כ ⊿
4
5
6
7
8
9
10
11
12
12
17
14
15
16
17
18
19
20
21
22
23
23
24 25
25
26
27
28
29
30
31
32
33
31
25
22
30
37
38
39
40
41
42
43
44
45
46
-+0 //7
4/
48
49
50
51
52
53
54
55
56
50
5/
58
59
60

Supplemental Table 5 Associations of long chain n-3 PUFAs and fish intakes with long-term changes in BMI according to *FADS* genotypes

D:-4-		Long chain	n-3 PUFAs and fish	1 intakes	D f (P for
Diets	FADS genotypes	Categories of diets			P for trend	interaction*
Food-sourced	EPA, g/day	T1	T2	Т3		
NHS	Non-T carriers	0.82±0.06	1.00±0.06	1.01±0.06	0.24	0.05
	T carriers	0.72±0.10	0.94±0.11	1.10±0.11	0.29	
HPFS	Non-T carriers	0.48±0.05	0.54±0.05	0.47 ± 0.05	0.72	0.37
	T carriers	0.23±0.11	0.54±0.10	0.52±0.09	0.45	
WHI	Non-T carriers	0.10±0.09	0.09±0.09	0.45±0.09	0.21	0.02
	T carriers	-0.08±0.15	0.23±0.15	0.46±0.15	0.003	
Pooled	Non-T carriers	0.54±0.04	0.63±0.04	0.65±0.04	0.35	0.01
	T carriers	0.39±0.07	0.63±0.07	0.70±0.06	0.01	
Food-sourced	DHA, g/day	T1	T2	Т3		
NHS	Non-T carriers	0.80±0.06	0.94±0.06	1.08±0.06	0.14	0.009
	T carriers	0.74±0.10	0.83±0.11	1.17±0.10	0.002	
HPFS	Non-T carriers	0.46±0.05	0.54±0.05	0.49±0.05	0.99	0.05
	T carriers	0.24±0.10	0.49±0.10	0.58±0.09	0.05	
WHI	Non-T carriers	0.03±0.09	0.20±0.09	0.42±0.09	0.03	0.06
	T carriers	-0.10±0.15	0.33±0.15	0.39±0.15	0.006	
Pooled	Non-T carriers	0.51±0.04	0.63±0.04	0.68±0.04	0.1	0.002
	T carriers	0.38±0.06	0.58±0.07	0.77±0.06	7×10 ⁻⁴	

Data are means \pm SE.

¹P for interaction was generated from dominant model of *FADS* rs174570 (CC vs CT+TT).

Numbers of T carriers/Non-T carriers in the NHS, HPFS, WHI, and SCHS are 1698/9625, 1025/5808, 876/5378, and 1842/3422, respectively.

Data on BMI, long chain n-3 PUFAs consumptions were assessed at baseline in the NHS (1990), the HPFS (1990), the WHI (1994-1998), and the SCHS (1993-1998), respectively.

Data on follow-up BMI was assessed in 2000 in the NHS and HPFS, in the sixth follow-up year in the

BMJ Open

WHI, and from 2006 to 2010 in the SCHS, respectively.

Long-term BMI changes were calculated based on the changes in BMI from baseline to follow-up year in the four cohorts, respectively.

The general linear model was used to test the associations of long chain n-3 PUFAs and fish intakes with long-term changes in BMI by *FADS* genotypes after adjustment for age, source of genotyping data, baseline BMI, smoking, alcohol intake, physical activity, total energy intake, alternate healthy eating index, television watching, sugar sweetened beverage, fried food consumption.

The results were pooled by means of fixed effects meta-analyses (if $P \ge 0.05$ for heterogeneity between studies).

Registration: www. clinicaltrials.gov. Registration ID: NCT03348566

STROBE Statement-	-checklist of i	ems that should	be included in	reports of ob	servational studies
-------------------	-----------------	-----------------	----------------	---------------	---------------------

	Item No	Recommendation
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract (p. 3)
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found (p. 3)
Introduction		
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported (n , 4)
Objectives	3	State specific objectives, including any prespecified hypotheses (p. 4)
Methods		
Study design	4	Present key elements of study design early in the paper (p. 5)
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection (p. 5)
Participants	6	 (a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up Case-control study—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls Cross-sectional study—Give the eligibility criteria, and the sources and methods of selection of participants (p. 5)
		(b) Cohort study—For matched studies, give matching criteria and number of exposed and unexposed Case-control study—For matched studies, give matching criteria and the number of controls per case (p. 5)
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable (p. 5)
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group (p. 5)
Bias	9	Describe any efforts to address potential sources of bias (p. 5 & 6)
Study size	10	Explain how the study size was arrived at (p. 6 & 7)
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why (p. 7)
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding (p. 7-9)
		(b) Describe any methods used to examine subgroups and interactions (p. 9)
		(c) Explain how missing data were addressed (p. 19)
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed
		<i>Case-control study</i> —If applicable, explain how matching of cases and controls was addressed
		<i>Cross-sectional study</i> —If applicable, describe analytical methods taking account of sampling strategy (p. 9)
		(<u>e</u>) Describe any sensitivity analyses (p. 9)
Continued on next page		

For peer review only - http://bmjopen!bmj.com/site/about/guidelines.xhtml

Results		
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and
		analysed (p. 10)
		(b) Give reasons for non-participation at each stage (p. 10)
		(c) Consider use of a flow diagram (p. 10)
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information
data		on exposures and potential confounders (p. 10)
		(b) Indicate number of participants with missing data for each variable of interest (p. 10)
		(c) Cohort study—Summarise follow-up time (eg, average and total amount) (p. 10)
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time (p. 10)
		Case-control study-Report numbers in each exposure category, or summary measures of
		exposure (p. 10)
		Cross-sectional study—Report numbers of outcome events or summary measures (p. 10)
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their
		precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and
		why they were included (p. 10)
		(b) Report category boundaries when continuous variables were categorized (p. 10)
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful
		time period (p. 10)
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity
		analyses (p. 10)
Discussion		
Key results	18	Summarise key results with reference to study objectives (p. 11)
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision.
		Discuss both direction and magnitude of any potential bias (p. 115)
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity
		of analyses, results from similar studies, and other relevant evidence (p. 11)
Generalisability	21	Discuss the generalisability (external validity) of the study results (p. 11)
Other informati	on	
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable,
-		for the original study on which the present article is based $(\mathbf{p}, 14)$

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Fish and marine fatty acids interacted with genetic variants of FADS gene in influencing long-term weight gain

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-022877.R1
Article Type:	Research
Date Submitted by the Author:	17-Aug-2018
Complete List of Authors:	Huang, Tao; Peking University School of Public Health, Epidemiology and Biostatistics Wang, Tiange ; Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University Heianza, Yoriko ; Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University Wiggs, Janey ; Harvard Medical School, Massachusetts Eye and Ear Infirmary Sun, Dianjianyi ; School of Public Health and Tropical Medicine, Tulane University Han, Liyuan ; School of Public Health and Tropical Medicine, Tulane University Choi, Hyon-Kyoo ; Massachusetts General Hospital - Harvard Medical School Center for Nervous System Repair Chai, Jin Fang ; National University Singapore Yong Loo Lin School of Medicine Sim, Xueling ; Epidemiology Domain Saw Swee Hock School of Public Health, National University of Singapore Khor, Chiea Chuen ; Epidemiology Domain Saw Swee Hock School of Public Health, National University of Singapore Friedlander, Yechiel ; Hebrew University-Hadassah Braun School of Public Health Chan, Andrew T. ; Division of Gastroenterology, Massachusetts General Hospital Curhan, Gary ; Department of Epidemiology, Harvard School of Public Health Vivo, Immaculata De ; Department of Epidemiology, Harvard School of Public Health Vivo, Immaculata De ; Department of Epidemiology, Harvard School of Public Health Vivo, Immaculata De ; Department of Epidemiology, Harvard School of Public Health Vivo, Immaculata De ; Department of Padeiatrics National University of Singapore Heng, Chew Kiat ; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School Yuan, Jian-min ; Division of Cancer Control and Population Sciences, University of Pittsburgh Cancer Institute Hu, Frank B. ; Department of Nutrition, Harvard School of Public Health Koh, Woon Puay ; Duke-NUS Medical School Qi, Lu; Tulane University, Department of Epidemiology, School of Public

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
- ·	

	Health and Tropical Medicine,
Primary Subject Heading :	Nutrition and metabolism
Secondary Subject Heading:	Diabetes and endocrinology, Epidemiology, Genetics and genomics, Public health
Keywords:	NUTRITION & DIETETICS, GENETICS, EPIDEMIOLOGY, obesity, gene-diet interaction

SCHOLARONE[™] Manuscripts

Fish and marine fatty acids interacted with genetic variants of FADS gene in influencing long-term weight gain Tao Huang^{1,2,3*}, Tiange Wang⁴, Yoriko Heianza⁵, Janey Wiggs⁶, Dianjianyi Sun⁵, Liyuan Han⁵, Hyon-Kyoo Choi⁷, Jin Fang Chai⁸, Xueling Sim⁸, Chiea Chuen Khor^{9,10}, Yechiel Friedlander¹¹, Andrew T. Chan¹², Gary Curhan¹³, Immaculata De Vivo¹³, Rob Martinu. van Dam^{8,14}, Chew Kiat Heng¹⁵, Charles S. Fuchs^{16,17}, Louis R. Pasquale¹⁸, Jian-min Yuan^{19,20}, Frank B. Hu^{14, 16}, Woon Puay Koh^{8, 21}, Lu Qi^{5, 14, 16}* ¹ Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China. ² Department of Global Health, School of Public Health, Peking University, China. ³ Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, China. ⁴ Shanghai Institute of Endocrine and Metabolic Diseases, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. ⁵ Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 1724 New Orleans, LA 70112. ⁶ Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA 02115, USA. ⁷ Department of Rheumatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA. ⁸ Epidemiology Domain, Saw Swee Hock School of Public Health, National University of Singapore, Singapore, 117549. ⁹ Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore. ¹⁰. Department of Biochemistry, Yong Loo Lin School of Medicine, , National University of Singapore, Singapore. ^{11.}Unit of Epidemiology, Hebrew University-Hadassah Braun School of Public Health, POB 12272, Jerusalem 91120, Israel. ¹². Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA. ¹³. Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA. ¹⁴. Department of Nutrition, Harvard School of Public Health, Boston, MA 02115, USA.

¹⁵ Department of Paediatrics, National University of Singapore NUHS Tower Block, Level 12, 1E Kent Ridge Road Singapore 119228.

BMJ Open

¹⁶. Department of Medicine, Brigham and Women's Hospital and Harvard Medical School Boston, MA 02115, USA.

^{17.} The Center for Gastrointestinal Cancer, Dana-Farber Cancer Institute, Boston, USA.

^{18.}Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.

¹⁹. Division of Cancer Control and Population Sciences, University of Pittsburgh Cancer Institute, Pittsburgh, PA,

USA.

²⁰. Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA.

²¹. Duke-NUS Medical School, Singapore, Singapore.

Registration: www. clinicaltrials.gov. Registration ID: NCT03348566

Running title: Genetic adaptation, fish, and weight change

Word count: 3420

*Correspondence and requests for reprint:

Dr. Tao Huang. Department of Epidemiology and Biostatistics, School of Public Health, Peking University,

Beijing, China. Email: huangtao@bjmu.edu.cn

Dr. Lu Qi. Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane

University. 1440 Canal Street, Suite 1724, New Orleans, LA 70112

Telephone: 504-988-3549;

Email: lqi1@tulane.edu; luqi@hsph.harvard.edu

	BMJ Open
	3
1	Abstract
2	Objective: We tested whether genetic variants near fatty acid desaturases gene (FADS) cluster, which
3	were recently identified to be signatures of adaptation to fish- and n-3 PUFAs-rich diet, interacted with
4	these dietary factors on change in body mass index (BMI).
5	Design: Three FADS variants were examined for gene-diet interactions on long-term (~10 years) changes
6	in BMI and body weight were tested in three prospective cohort studies.
7	Setting: Population based study
8	Participants: 11,323 women from the Nurses' Health Study (NHS), 6,833 men from the Health
9	Professionals Follow-up Study (HPFS), and replicated in 6,254 women from the Women's Health
10	Initiative (WHI), and 5,264 Chinese from the Singapore Chinese Health Study (SCHS).
11	Main outcomes: Long-term (~10 years) changes in BMI and body weight
12	Results: In the NHS and HPFS cohorts, food-sourced n-3 PUFAs intake showed interactions with the
13	FADS rs174570 on changes of BMI (P for interaction = 0.02 in NHS, 0.05 in HPFS, and 0.007 in
14	combined). Such interactions were replicated in two independent cohorts WHI and SCHS (P for
15	interaction = 0.04 in WHI, 0.02 in SCHS, and 0.001 in combined). The genetic associations of the <i>FADS</i>
16	rs174570 with changes in BMI increased across the tertiles of n-3 PUFAs in all the cohorts. Fish intake
17	also accentuated the genetic associations of the FADS rs174570 with long-term changes in BMI (pooled P
18	for interaction = 0.006). Viewed differently, long chain n-3 PUFAs intake showed stronger association
19	with long-term changes in BMI among the rs174570 T carriers (beta = 0.79 kg/m^2 per g, P = 3×10^{-5}) than
20	the rs174570 non-T carriers (beta=0.16 kg/m ² per g, $P = 0.08$). Similar results were observed for fish
21	intake.
22	Conclusions: Our analyses provide replicable evidence that long chain n-3 PUFAs and fish intakes may
23	interact with the FADS variant on long-term weight gain.
24	
25	Article summary
26	Strengths and limitations of this study
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 5 of 45

BMJ Open

1		
2 3 4	27	• This is the first study with consistent results from 4 well-established prospective cohorts of different
5 6	28	racial populations such as Caucasians with European ancestry and Singapore Chinese.
7 8	29	• The consistent results from these independent cohorts demonstrated the robustness of our findings.
9 10	30	• Unlike cross-sectional studies, our prospective analysis minimized the potential reverse causation.
11 12	31	
13 14	32	Introduction
15 16	33	Diet rich in fish and marine fatty acids especially long chain n-3 polyunsaturated fatty acids (PUFAs) has
17 18 19	34	shown beneficial effects on cardiometabolic health ¹² , however, data from population studies on the
20 21	35	associations between such diet and body weight are inconsistent ³⁴ . Emerging evidence suggests genetic
22 23	36	variations may play a role in modifying the relation between dietary factors and body weight ⁵⁻⁷ .
24 25	37	
26 27	38	A recent study of Inuit identified genetic signatures of adaptation to diets rich in fish and n-3 PUFAs ⁸ . The
28 29	39	strong signals locate in a cluster of fatty acid desaturases gene (FADS) that determine PUFAs levels ⁸ .
30 31	40	People living in the Arctic region have been found to be genetically prone to develop obesity ⁹¹⁰ as survival
32 33	41	strength for energy storage ¹¹¹² . Interestingly, the identified <i>FADS</i> genetic signatures of diet adaptation have
34 35 36	42	been also related to adiposity in the Inuit population ⁸ . Of note, due to long-standing selection pressure, the
30 37 38	43	identified FADS signatures differ in frequency of selective allele across various populations such as
39 40	44	Europeans and Asians ¹³ , in coincidence with varying levels of fish/marine fatty acids consumption, and
41 42	45	adiposity patterns in these populations ¹⁴ . We therefore hypothesized that the genetic signatures might
43 44	46	interact with fish and marine PUFAs intakes on body weight ¹³ .
45 46	47	
47 48	48	The present study tested the interactions between n-3 PUFAs and fish intakes and variants in FADS gene
49 50	49	cluster, genetic signatures of adaptation to fish- and n-3 PUFAs-rich diet, in relation to long-term changes in
51 52	50	body mass index (BMI) in two US prospective cohorts: the Nurses' Health Study (NHS) and the Health
53 54 55	51	Professionals Follow-up Study (HPFS). We replicated the findings in two independent, prospective cohorts
56 57 58	52	the Women's Health Initiative (WHI) and the Singapore Chinese Health Study (SCHS).
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Methods **Discovery cohorts** The Nurses' Health Study The NHS began in 1976, when 121,700 female registered nurses aged 30-55 y residing in 11 states were recruited to complete a baseline questionnaire about their lifestyle and medical history¹⁵. The current analysis baseline was set in 1990 for the NHS. We included 11,323 women of European ancestry. Informed consent was obtained from all participants. The DNA extraction methods, quality control measures, SNPs genotyping and imputation when performed have been described in detail elsewhere ¹⁶⁻²². All participants with baseline long chain n-3 PUFAs and fish consumptions and covariates data, baseline and endpoint BMI data, and genotyping data available based on previous GWASs were included ¹⁶⁻²¹. The study protocol was approved by the institutional review boards of Brigham and Women's Hospital and Harvard School of Public Health. The Health Professionals Follow-up Study

The HPFS was initiated in 1986, and was composed of 51,529 male dentists, pharmacists, veterinarians, optometrists, osteopathic physicians, and podiatrists, aged 40-75 y at baseline. The male participants returned a baseline questionnaire about detailed medical history, lifestyle, and usual diet ²³. In the current analysis, we used 1990 as baseline in the HPFS, when the earliest complete dietary data were collected. Our analysis included 6,833 men whose genotype data were available. Informed consent was obtained from all participants. The DNA extraction methods, quality control measures, SNPs genotyping and imputation when performed have been described in detail elsewhere ¹⁶⁻²². All participants with baseline long chain n-3 PUFAs and fish consumptions and covariates data, baseline and endpoint BMI data, and genotyping data available based on previous GWASs were included ¹⁶⁻²¹. The study protocol was approved by the institutional review boards of Brigham and Women's Hospital and Harvard School of Public Health.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

80 The Women's Health Initiative (WHI)

Replication cohorts

The Women's Health Initiative (WHI) is a large, multiethnic, 40-center study funded by the National Heart, Lung, and Blood Institute (NHLBI) that focuses on strategies for preventing heart disease, breast and colorectal cancer, and osteoporotic fractures in postmenopausal women. A full description of the WHI study is presented elsewhere ^{24 25}. For the analyses, all participants with baseline long chain n-3 PUFAs and fish consumptions and covariates data, baseline and endpoint BMI data, and genotyping data available based on previous GWASs were included. Finally, we included 6,254 Caucasians women with European ancestry who participated in the WHI clinical trial studies at baseline (1994-1998) and at sixth-year follow-up and for whom DNA was measured. The genomic DNA samples were processed according to standard Affymetrix procedures for processing of the assay. The Affymetrix Human SNP Array 6.0 (Affymetrix®, Inc Santa Clara, CA) was used for genome wide SNP genotyping. Human subjects review committees at each participating institution reviewed and approved the study, and all women gave written informed consent.

93 The Singapore Chinese Health Study (SCHS) cohort

The design of Singapore Chinese Health Study (SCHS) has been previously described in detail ²⁶. Briefly, between 1993 and 1998, 63,257 Chinese men and women between ages of 45 and 74 years living in Singapore were enrolled into the cohort study ²⁷. Two follow-up interviews were conducted via telephone among surviving participants between 1999 and 2004, and again between 2006 and 2010 to update information on body weight, selected lifestyle factors and medical history. All participants have given informed consent. The study was approved by the Institutional Review Boards of the National University of Singapore and the University of Pittsburgh, and the study was carried out in accordance with the approved guidelines. All participants with baseline long chain n-3 PUFAs and fish consumptions and covariates data, baseline and endpoint BMI data available were included. Among these participants, genome-wide genotyping for 2615 incident diabetes cases and 2615 matched controls was performed at the Genome Institute of Singapore according to the manufacturer's recommendations using an Affymetrix ASI (Asian)

105 Axiom array. Genotype calling was performed by the Affymetrix Corporation ²⁸. Genome-wide

106 genotyping for 717 incident myocardial infarction (MI) cases and 644 controls was performed for SCHS

107 samples using the Illumina HumanOmni ZhongHua-8 Bead Chip²⁹.

108 Among these two case-control studies nested within the cohort, 5,264 subjects with genotyping data had

both weight reported at both baseline and follow-up 2 interviews, and were included in this analysis.

1 Assessment of measures of body mass index

Height and body weight were assessed by questionnaire at baseline, and weight information was requested
on follow-up questionnaire in all 4 cohorts. Self-reported weights were highly correlated with directly
measured values (r=0.97 in HPFS and NHS) in a validation study ³⁰. BMI was calculated as body weight
(kg)/height (m²). We defined long-term changes in BMI as changes in BMI from 1990 to 2000 in the NHS
and HPFS cohorts ³¹, and from baseline (1993) to sixth year follow-up in the WHI ^{24 25}, and from baseline
(1998) to second follow-up (2004) in the SCHS.

119 Assessment of diets and other covariates

Questionnaires were used to collect information on a medical history and diet/lifestyle factors in all 4 cohorts. Total fish, n-3 PUFAs, supplemental use of fish oil, alcohol, sugar sweetened beverages, fried food intakes, and other dietary factors at baseline were assessed by validated food frequency questionnaires (FFQ) in the NHS and HPFS ^{32 33}. A 165-item validated semi-guantitative FFQ was used to collect dietary data and supplemental use of fish oil in the SCHS²⁷. Dietary data and supplemental use of fish oil were obtained from a self-administered baseline 122-items validated FFQ in the WHI³⁴. Alternate health eating index was previously calculated in the NHS, HPFS ³⁵, WHI, and SCHS respectively. Physical activity was expressed as metabolic equivalents per week by incorporating the reported time spent on various activities, and the intensity level of each activity. The validity of the self-reported physical activity data has been described previously in the NHS and HPFS³⁶. In the WHI, an estimated metabolic equivalent (MET) level for each type of activity was assigned from a compendium of activities ³⁷. Physical activity was assessed

60

BMJ Open

1		с С
2		
3 4	131	using eight continuous categories ranging from never to 31 hours or more in an average week spent doing
5 6	132	strenuous sports; vigorous work; and moderate activities in the SCHS ²⁶ .
7 8	133	
9 10	134	The FADS variants selection and genotyping
11 12	135	Three of the 6 FADS single-nucleotide polymorphisms (SNPs) reported in a recent scan of Inuit genomes
13 14	136	for signatures of adaptation ⁸ were derived from genome-wide scans available in the NHS, HPFS. We
15 16 17	137	assumed that each SNP in the panel acts independently in an additive manner. We coded the SNPs as
17 18 10	138	following: rs174570 (TT=2, TC=1, CC=0); rs174602 (TT=2, TC=1, CC=0); rs7115739 (TT=2, TG=1,
20 21	139	GG=0). The FADS rs174570 was extracted from GWAS data in the WHI and SCHS cohorts for replication
22 23	140	(Supplemental Table 1).
24 25	141	
26 27	142	Patient and Public Involvement
28 29	143	patients and or public were not involved.
30 31	144	
32 33	145	Statistical analyses
34 35 36	146	We examined the associations of the FADS variants (rs174570, rs174602, rs7115739) with adiposity
30 37 38	147	measures and long-term changes in BMI using general linear models. Interactions between the FADS
39 40	148	variants (rs174570, rs174602, rs7115739) and baseline fish intake, and total or food-sourced long chain n-3
41		
42	149	PUFAs intakes on long-term changes in BMI were tested by including a multiplicative interaction term in
42 43 44	149 150	PUFAs intakes on long-term changes in BMI were tested by including a multiplicative interaction term in the models in the NHS and HPFS. The significant results for rs174570 were replicated in the WHI and
42 43 44 45 46	149 150 151	PUFAs intakes on long-term changes in BMI were tested by including a multiplicative interaction term in the models in the NHS and HPFS. The significant results for rs174570 were replicated in the WHI and SCHS. Potential confounders considered in multivariable models were age, baseline physical activity,
42 43 44 45 46 47 48	149 150 151 152	PUFAs intakes on long-term changes in BMI were tested by including a multiplicative interaction term in the models in the NHS and HPFS. The significant results for rs174570 were replicated in the WHI and SCHS. Potential confounders considered in multivariable models were age, baseline physical activity, baseline television watching, baseline smoking, baseline alcohol intake, baseline alternate healthy eating
42 43 44 45 46 47 48 49 50	149 150 151 152 153	PUFAs intakes on long-term changes in BMI were tested by including a multiplicative interaction term in the models in the NHS and HPFS. The significant results for rs174570 were replicated in the WHI and SCHS. Potential confounders considered in multivariable models were age, baseline physical activity, baseline television watching, baseline smoking, baseline alcohol intake, baseline alternate healthy eating index, and baseline total energy intake, sugar sweetened beverages (if available), fried food intake (if
42 43 44 45 46 47 48 49 50 51 52 52	149 150 151 152 153 154	PUFAs intakes on long-term changes in BMI were tested by including a multiplicative interaction term in the models in the NHS and HPFS. The significant results for rs174570 were replicated in the WHI and SCHS. Potential confounders considered in multivariable models were age, baseline physical activity, baseline television watching, baseline smoking, baseline alcohol intake, baseline alternate healthy eating index, and baseline total energy intake, sugar sweetened beverages (if available), fried food intake (if available). We further tested the genetic associations with long-term changes in BMI according to long
42 43 44 45 46 47 48 49 50 51 52 53 54 55	149 150 151 152 153 154 155	PUFAs intakes on long-term changes in BMI were tested by including a multiplicative interaction term in the models in the NHS and HPFS. The significant results for rs174570 were replicated in the WHI and SCHS. Potential confounders considered in multivariable models were age, baseline physical activity, baseline television watching, baseline smoking, baseline alcohol intake, baseline alternate healthy eating index, and baseline total energy intake, sugar sweetened beverages (if available), fried food intake (if available). We further tested the genetic associations with long-term changes in BMI according to long chain n-3 PUFAs and fish intakes, and associations of long chain n-3 PUFAs and fish intakes with long-term

confounders. Results across cohorts were pooled with inverse variance weighted meta-analyses by fixed

effects models (if $P \ge 0.05$ for heterogeneity between studies) or random effects models (if P < 0.05 for heterogeneity between studies). Hardy-Weinberg equilibrium was tested using Chi-square test. All reported P values are nominal and two sided. Statistical analyses were performed in SAS 9.3 (SAS Institute, Cary, NC, USA). Results Baseline characteristics of all participants in the NHS, HPFS, WHI and SCHS cohorts Table 1 shows the baseline characteristics for all participants in the NHS, HPFS, WHI, and SCHS cohorts. The present study included 11,323 women with genetic data from the NHS cohort, 6,833 men with genetic data from the HPFS cohort, 6,254 women from the WHI, and 5,264 Chinese from the SCHS. The distribution of the FADS genetic variants in the 4 cohorts was shown in **Supplemental table 1**. We did not observe any significant genetic association between the FADS rs174570 genotype and baseline BMI, and long-term changes in BMI in three US cohorts (P > 0.05), however, we found that the *FADS* genotype was significantly associated with baseline BMI in the SCHS (P = 0.002) (Supplemental table 2). Genetic associations with long-term changes in BMI according to LC n-3 PUFAs/fish intakes We first tested interactions between the FADS genetic variants (rs174570, rs174602, rs7115739) and intakes of various sourced long chain n-3 PUFAs and fish in the NHS and HPFS cohorts. We found that only FADS rs174570 (C/T, with T as the common allele in Inuit, but rare allele in Europeans and Asians) showed significant interaction with LC n-3 PUFAs/fish intakes. Food-sourced n-3 PUFAs (Eicosapentaenoic acid (EPA) + Docosahexaenoic acid (DHA)) intake consistently magnified the genetic association with long-term changes in BMI (P for interaction = 0.02 in NHS, 0.05 in HPFS, and 0.007 in combined cohorts) (Figure 1). We successfully replicated our results in the WHI cohort (P for interaction = 0.04) and the SCHS cohort (P for interaction = 0.02).

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 11 of 45

1

60

BMJ Open

2 3	183	The pooled analyses of the 3 US (Caucasian) populations or all 4 cohorts showed that high intakes of
4 5	184	food-sourced n-3 PUFAs intake (P for interaction = 0.008 and 0.009, respectively) significantly
6 7	185	accentuated the genetic association of the $F4DS$ genotypes with long-term changes in BMI (Figure 2) No.
8	105	accentuated the genetic association of the TADS genotypes with long-term changes in Divit (Figure 2). No
9 10	186	significant heterogeneity in the interaction effect was observed among these cohorts. Differences in
11 12	187	long-term changes of BMI per T allele were -0.105 (SE 0.067), 0.027 (SE 0.064), and 0.120 (SE 0.067)
13 14	188	kg/m ² across three tertiles of food-sourced n-3 PUFAs in pooled results from all the 4 cohorts.
15 16	189	
17 18 10	190	Individual food-sourced n-3 PUFAs such as EPA (pooled P for interaction=0.01) and DHA (pooled P for
19 20 21	191	interaction=0.003) showed similar interaction patterns; and the interactions remained significant when
22 23	192	supplemented n-3 PUFAs were considered (pooled P for interaction=0.007) (Figure 2).
24 25	193	
26 27	194	In addition, fish intake showed similar, though less significant, interaction patterns with the FADS
28 29	195	genotype on long-term changes in BMI in the NHS (P for interaction=0.16), HPFS (P for
30 31	196	interaction=0.09), WHI (P for interaction=0.09), SCHS (P for interaction=0.03) and combined results
32 33	197	(pooled P for interaction=0.006), and the differences in BMI changes per T allele were -0.096 (SE 0.071),
34 35	198	0.041 (SE 0.052), and 0.251 (SE 0.151) kg/m ² across three categories (≤ 1 serving/week, 1~6
36 37	199	servings/week, and ≥ 1 serving/day) of fish intake in combined results from all the 4 cohorts.
38 39	200	
40 41 42	201	In addition, we did not observe significant interaction between two other genetic variants in FADS cluster
43 44	202	(rs174602 and rs7115739) and long chain n-3 PUFAs/fish intakes in relation to long-term changes in BMI
45 46	203	in the NHS and HPFS cohorts. Similar interactions for long-term changes in body weight were observed
47 48	204	(Supplemental table 3 & 4).
49 50	205	
51 52	206	Long chain n-3 PUFAs/fish intakes and long-term changes in BMI according to the FADS genotype
53 54	207	We found that individuals who consumed the highest food-sourced n-3 PUFAs (EPA+DHA; T3) had
55 56 57 58	208	significantly greater increase of BMI (mean \pm SE = 0.74 \pm 0.06, kg/m ²) than did those who consumed the
J7		

lowest (T1) (mean \pm SE = 0.39 \pm 0.07, kg/m²) among the T allele carriers, whereas the corresponding BMI changes were 0.68 \pm 0.03 kg/m² and 0.49 \pm 0.03 kg/m², respectively, among the non-T carriers in 4 cohorts combined (**Table 2 & Supplemental table 5**). Similarly, we observed different associations between fish intake and BMI changes among the T allele carriers (P = 1.5×10⁻⁶) and non-carriers (P = 0.01) in the pooled results from these US cohorts. No significant heterogeneity in the interaction effect was observed among the cohorts. **Figure 3** presents the predicted long-term changes in BMI from food-sourced n-3 PUFAs and fish intake according to the T carriers and the non-T carriers. Results from the NHS, HPFS and WHI cohorts

consistently showed that the associations of food-sourced n-3 PUFAs and fish intakes with long-term changes in BMI were stronger among the T carriers than those among the non-T carriers. In the pooled results, the beta \pm SE for associations of food-sourced n-3 PUFAs (**Figure 3**) and fish intake (**Figure 4**) with long-term changes in BMI were 0.79 ± 0.19 kg/m² per g (P = 0.000003) and 0.64 ± 0.16 kg/m² per serving (P = 0.00002) among the T carriers, and whereas the corresponding beta \pm SE were 0.16 ± 0.10 kg/m² per g (P = 0.08) and 0.18 ± 0.08 kg/m² per serving (P = 0.01) among the non-T carriers.

225 Discussion

In 4 large prospective cohorts of the US and Chinese populations, we found reproducible evidence that long chain n-3 PUFAs and fish intakes accentuated the genetic association of the *FADS* genotypes with long-term changes in BMI. In addition, our results showed that the *FADS* rs174570 T allele carriers gained more weight than the non-carriers when they had higher long chain n-3 PUFAs and fish intakes.

Large prospective cohort studies examining the associations of fish or n-3 PUFAs with body weight and
obesity risk generated conflicting results ^{3 4}. In addition, several randomized controlled trials
(RCTs) supported the protective effects of fish, fish oils, or/and n-3 PUFAs intake on weight-loss ³⁸⁻⁴⁰, but
the benefit was not evident in other trials ⁴¹⁻⁴³. The results from the current study lent support to our

BMJ Open

12

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
27	
22 22	
23	
27	
25	
20	
27 28	
20	
29	
3U 31	
31	
32	
33	
34	
35	
36	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
40	
4/	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

hypothesis that the heterogeneous associations between fish or n-3 PUFAs and body weight might be at 235 236 least partly due to gene-diet interactions.

238 We found that the genetic associations between the FADS rs174570 and long-term BMI change were 239 stronger along with increasing intakes of long chain n-3 PUFAs and fish. Viewed from a different angle, the magnitude of associations of fish and long chain n-3 PUFAs intakes with BMI changes varied among 240 individuals with different genotypes. The FADS rs174570 was recently identified from a study of the Inuit, 241 who had high fish/n-3 PUFAs intakes⁸. The high frequency of T allele in Inuit reflects genetic adaptation to 242 243 the special fish- and n-3 PUFA rich diet. Interestingly, the identified FADS genetic signatures of diet adaptation have been also related to adiposity in this population. Our data indicated that the signature allele 244 245 (T) was related differently with weight changes (decrease or increase), depending on the levels of fish/n-3 PUFAs intakes. In people with high fish/n-3 PUFAs intakes, carrying the signature allele predisposed to 246 greater weight gain and an increased risk of obesity; while carriers of this allele tended to have less body 247 248 weight when they are exposed to diet low in fish and n-3 PUFAs.

249

We found that individual food-sourced n-3 PUFAs such as EPA and DHA showed similar interaction 250 patterns in relation to long-term changes in BMI; and the interactions also remained significant when 251 252 supplemented n-3 PUFAs were considered. In addition, our results indicated that the interactions of 253 fish/n-3 PUFAs intakes and the FADS genotype were persistent across different racial populations such as Europeans and Asians. Our data suggest that the interactions between n-3 PUFAs and the FADS genotype is 254 robust for fatty acids from various sources. 255

256

257 The mechanisms underlying the observed gene-diet interactions remain unclear, however, such 258 interactions are biologically plausible. It has long been known that the FADS genes such as FADS1 and FADS2 encode delta-5 and delta-6 desaturases respectively, which are the important 259 rate-limiting steps in the endogenous formation of long-chain PUFA such as EPA and DHA from linoleic 260

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2
3
4
5
6
7
2 2
0
9 10
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1

acid (n-6) and α -linolenic acid (n-3)⁴⁴. The selected allele of *FADS* rs174570 is significantly associated 261 with an increase in the concentration of n-3 fatty acids upstream in the n-3 synthesis pathway⁴⁴. In 262 263 addition, it has been reported that dietary n-3 PUFAs might regulate adipocyte FADS expression and function⁴⁵. In addition, storage of energy and body fat is very important for the Arctic population, who are 264 regularly exposed to the extreme low temperature and fishes rich in n-3 PUFAs ^{11 12}. Under natural 265 selection, these people are genetically prone to high fish intake to keep body fat ⁹¹⁰. Therefore, it's not 266 surprising that high fish or n-3 PUFAs intake accentuated genetic susceptibility to obesity among people 267 carrying selective *FADS* signature ^{46 47}. Our findings support the view that extra n-3 PUFAs may not do 268 much benefit at all for Europeans with selective FADS signature^{8 13}. 269 270 Strengths 271 Several strengths of this study merit mention. To our knowledge, this is the first study with consistent results from 4 well-established prospective cohorts of different racial populations such as Caucasians with 272 European ancestry and Singapore Chinese. The consistent results from these independent cohorts 273 demonstrated the robustness of our findings. Other major strengths include the prospective design, the large 274 275 sample size, use of long-term change of BMI, and replication of the results. Although we prospectively 276 analyzed the data, we cannot exclude the possibility of reverse causality as this is a study on dietary intake 277 and BMI or weight change from the baseline, which by default builds in the starting point (i.e. the cross 278 sectional association). 279 Limitations 280 However, several limitations need to be acknowledged. First, dietary fatty acids, fish, and adiposity measures were self-reported, measurement errors in these variables are inevitable; however, the food 281

frequency questionnaires and adiposity measures data have been well validated ^{27 30 32-34}. Second,

confounding by other unmeasured or unknown factors might exist, although we have carefully adjusted for

284 multiple dietary and lifestyle factors. Third, a causal relation among long chain n-3 PUFAs and fish

consumption, and adiposity cannot be inferred from an observational study. Fourth, all subjects with genetic

286 data were selected in each cohort. The source of genotyping data was diverse (e.g. sub-cohort, case control

1		17
2 3 4	287	studies), therefore, subject selection might be a major source of bias. Fifth, we acknowledge that the
5 6	288	different methods in measuring anthropometric traits, genetic variants and food intake across cohorts might
7 8	289	introduce bias in the present analyses. Finally, the participants included in our study were middle aged and
9 10	290	older adults of Caucasians with European ancestry in the US and Chinese in Singapore, and it is unknown
11 12	291	whether our findings could be generalized to other demographic or ethnic groups.
13 14	292	Conclusions
15 16	293	In summary, our data provides reproducible evidence from 4 multiethnic cohorts that high long chain n-3
17 18	294	PUFAs and fish intakes accentuate the genetic association of the FADS with adiposity. These findings
19 20	295	emphasize the importance of considering precision nutritional interventions on prevention and treatment
21 22	296	of obesity.
23 24 25	297	
25 26 27	298	Contributors: TH and LQ designed the study and wrote the first draft. TH analyzed the data. FBH
27 28 29	299	provided statistical expertise. TW, YH, DS, LH, CSF, JW, LRP, AT, GC, IDV, HKC, JF, XS, CCK, YF, RM,
30 31	300	HCK, JY, KWP, and LQ were involved in data collection. TH and LQ are guarantors. All authors
32 33	301	contributed to the interpretation of the results and critical revision of the manuscript for important
34 35	302	intellectual content and approved the final version of the manuscript.
36 37	303	We acknowledge Dr. Gary C. Curhan's contribution to the genetic data.
38 39	304	
40 41	305	Funding
42 43	306	This study was supported by grants HL126024, HL034594, DK100383, DK091718, HL071981,
44 45 46	307	HL073168, CA87969, CA49449, CA055075, HL34594, HL088521, U01HG004399, DK080140,
40 47 48	308	P30DK46200, U01CA137088, U54CA155626, DK58845, DK098311, U01HG004728, EY015473,
49 50	309	CA134958, DK70756 and DK46200 from the National Institutes of Health, with additional support for
51 52	310	genotyping from Merck Research Laboratories, North Wales, PA. LQ is a recipient of the American Heart
53 54	311	Association Scientist Development Award (0730094N). LRP is supported by the Arthur Ashley Williams
55 56 57	312	Foundation and a Harvard Ophthalmology Scholar Award (Harvard Medical School) from the Harvard
58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2		
3 4	313	Glaucoma Center of Excellence. ATC is a Damon Runyon Cancer Foundation Clinical Investigator. The
5 6 7 8 9 10 11 12	314	SCHS study is supported by the National Institutes of Health, USA (NCI R01 CA144034, UM1
	315	CA182876, R01 DK080720), the Singapore National Medical Research Council (NMRC 1270/2010), the
	316	HUJ-CREATE Programme of the National Research Foundation, Singapore (Project Number 370062002)
	317	and Biomedical Research Council, Singapore. The funding sources had no role in the design or conduct of
13 14	318	the study; collection, management, analysis, and interpretation of the data; or preparation, review, or
15 16	319	approval of the manuscript.
17 18	320	
19 20 21	321	Declaration of interests: All authors have no conflict of interest to declare. No support from any
21 22 23	322	organization for the submitted work; no financial relationships with any organizations that might have an
23 24 25	323	interest in the submitted work in the previous three years, no other relationship or activity that could
26 27	324	appear to have influenced the submitted work.
28 29	325	
30 31	326	
32 33	327	Data sharing
34 35	328	No additional data available.
36 37		
38 39		
40 41 42		
42 43		
44 45		
46 47		
48		
49		
50 51		
52		
53		
54		
55		
56		
57 58		
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

References

- 1. Del Gobbo LC, Imamura F, Aslibekyan S, Marklund M, Virtanen JK, Wennberg M, et al. omega-3 Polyunsaturated Fatty Acid Biomarkers and Coronary Heart Disease: Pooling Project of 19 Cohort Studies. *JAMA internal medicine* 2016;176(8):1155-66.
- 2. Hu FB, Bronner L, Willett WC, Stampfer MJ, Rexrode KM, Albert CM, et al. Fish and omega-3 fatty acid intake and risk of coronary heart disease in women. *Jama* 2002;287(14):1815-21.
- 3. He K, Rimm EB, Merchant A, Rosner BA, Stampfer MJ, Willett WC, et al. Fish consumption and risk of stroke in men. *Jama* 2002;288(24):3130-6.
- 4. Iso H, Rexrode KM, Stampfer MJ, Manson JE, Colditz GA, Speizer FE, et al. Intake of fish and omega-3 fatty acids and risk of stroke in women. *Jama* 2001;285(3):304-12.
- 5. Qi L, Cho YA. Gene-environment interaction and obesity. *Nutrition reviews* 2008;66(12):684-94.
- 6. Qi Q, Chu AY, Kang JH, Huang J, Rose LM, Jensen MK, et al. Fried food consumption, genetic risk, and body mass index: gene-diet interaction analysis in three US cohort studies. *BMJ* 2014;348:g1610.
- 7. Qi Q, Chu AY, Kang JH, Jensen MK, Curhan GC, Pasquale LR, et al. Sugar-sweetened beverages and genetic risk of obesity. *The New England journal of medicine* 2012;367(15):1387-96.
- 8. Fumagalli M, Moltke I, Grarup N, Racimo F, Bjerregaard P, Jorgensen ME, et al. Greenlandic Inuit show genetic signatures of diet and climate adaptation. *Science* 2015;349(6254):1343-7.
- 9. Hegele RA, Anderson C, Young TK, Connelly PW. G-protein beta3 subunit gene splice variant and body fat distribution in Nunavut Inuit. *Genome research* 1999;9(10):972-7.
- 10. Hegele RA, Huff MW, Young TK. Common genomic variation in LMNA modulates indexes of obesity in Inuit. *The Journal of clinical endocrinology and metabolism* 2001;86(6):2747-51.
- 11. Jorgensen ME, Bjeregaard P, Borch-Johnsen K. Diabetes and impaired glucose tolerance among the inuit population of Greenland. *Diabetes Care* 2002;25(10):1766-71.
- 12. Jorgensen ME, Glumer C, Bjerregaard P, Gyntelberg F, Jorgensen T, Borch-Johnsen K. Obesity and central fat pattern among Greenland Inuit and a general population of Denmark (Inter99): relationship to metabolic risk factors. *International journal of obesity and related metabolic disorders : journal of the International Association for the Study of Obesity* 2003;27(12):1507-15.
- 13. Tishkoff S. GENETICS. Strength in small numbers. Science 2015;349(6254):1282-3.
- 14. Dewailly E, Blanchet C, Lemieux S, Sauve L, Gingras S, Ayotte P, et al. n-3 Fatty acids and cardiovascular disease risk factors among the Inuit of Nunavik. *The American journal of clinical nutrition* 2001;74(4):464-73.
- 15. Colditz GA, Manson JE, Hankinson SE. The Nurses' Health Study: 20-year contribution to the understanding of health among women. *Journal of women's health / the official publication of the Society for the Advancement of Women's Health Research* 1997;6(1):49-62.
- 16. Cornelis MC, Monda KL, Yu K, Paynter N, Azzato EM, Bennett SN, et al. Genome-wide meta-analysis identifies regions on 7p21 (AHR) and 15q24 (CYP1A2) as determinants of habitual caffeine consumption. *PLoS genetics* 2011;7(4):e1002033.
- 17. Jensen MK, Pers TH, Dworzynski P, Girman CJ, Brunak S, Rimm EB. Protein interaction-based genome-wide analysis of incident coronary heart disease. *Circulation. Cardiovascular genetics* 2011;4(5):549-56.
- 18. Wiggs JL, Kang JH, Yaspan BL, Mirel DB, Laurie C, Crenshaw A, et al. Common variants near CAV1 and CAV2 are associated with primary open-angle glaucoma in Caucasians from the USA. *Human molecular genetics* 2011;20(23):4707-13.
- 19. Hunter DJ, Kraft P, Jacobs KB, Cox DG, Yeager M, Hankinson SE, et al. A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. *Nature genetics* 2007;39(7):870-4.
- 20. Qi L, Cornelis MC, Kraft P, Stanya KJ, Linda Kao WH, Pankow JS, et al. Genetic variants at 2q24 are associated with susceptibility to type 2 diabetes. *Hum Mol Genet* 2010;19(13):2706-15.
- 21. Kottgen A, Albrecht E, Teumer A, Vitart V, Krumsiek J, Hundertmark C, et al. Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. *Nature genetics* 2013;45(2):145-54.
- 22. Peters U, Jiao S, Schumacher FR, Hutter CM, Aragaki AK, Baron JA, et al. Identification of Genetic Susceptibility Loci for Colorectal Tumors in a Genome-Wide Meta-analysis. *Gastroenterology* 2013;144(4):799-807 e24.
- 23. Rimm EB, Giovannucci EL, Willett WC, Colditz GA, Ascherio A, Rosner B, et al. Prospective study of alcohol consumption and risk of coronary disease in men. *Lancet* 1991;338(8765):464-8.

- 24. Anderson GL, Manson J, Wallace R, Lund B, Hall D, Davis S, et al. Implementation of the Women's Health Initiative study design. *Annals of epidemiology* 2003;13(9 Suppl):S5-17.
- 25. Design of the Women's Health Initiative clinical trial and observational study. The Women's Health Initiative Study Group. *Controlled clinical trials* 1998;19(1):61-109.
- 26. Yuan JM, Stram DO, Arakawa K, Lee HP, Yu MC. Dietary cryptoxanthin and reduced risk of lung cancer: the Singapore Chinese Health Study. *Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology* 2003;12(9):890-8.
- 27. Hankin JH, Stram DO, Arakawa K, Park S, Low SH, Lee HP, et al. Singapore Chinese Health Study: development, validation, and calibration of the quantitative food frequency questionnaire. *Nutrition and cancer* 2001;39(2):187-95.
- 28. Chen Z, Pereira MA, Seielstad M, Koh WP, Tai ES, Teo YY, et al. Joint effects of known type 2 diabetes susceptibility loci in genome-wide association study of Singapore Chinese: the Singapore Chinese health study. *PloS one* 2014;9(2):e87762.
- 29. Dorajoo R, Sun Y, Han Y, Ke T, Burger A, Chang X, et al. A genome-wide association study of n-3 and n-6 plasma fatty acids in a Singaporean Chinese population. *Genes & nutrition* 2015;10(6):53.
- 30. Rimm EB, Stampfer MJ, Colditz GA, Chute CG, Litin LB, Willett WC. Validity of self-reported waist and hip circumferences in men and women. *Epidemiology* 1990;1(6):466-73.
- 31. Huang T, Zheng Y, Qi Q, Xu M, Ley SH, Li Y, et al. DNA methylation variants at HIF3A locus, B vitamins intake, and long-term weight change: gene-diet interactions in two US cohorts. *Diabetes* 2015.
- 32. Willett WC, Sampson L, Stampfer MJ, Rosner B, Bain C, Witschi J, et al. Reproducibility and validity of a semiquantitative food frequency questionnaire. *Am J Epidemiol* 1985;122(1):51-65.
- 33. Rimm EB, Giovannucci EL, Stampfer MJ, Colditz GA, Litin LB, Willett WC. Reproducibility and validity of an expanded self-administered semiquantitative food frequency questionnaire among male health professionals. Am J Epidemiol 1992;135(10):1114-26; discussion 27-36.
- 34. Patterson RE, Kristal AR, Tinker LF, Carter RA, Bolton MP, Agurs-Collins T. Measurement characteristics of the Women's Health Initiative food frequency questionnaire. *Annals of epidemiology* 1999;9(3):178-87.
- 35. Chiuve SE, Fung TT, Rimm EB, Hu FB, McCullough ML, Wang M, et al. Alternative dietary indices both strongly predict risk of chronic disease. *The Journal of nutrition* 2012;142(6):1009-18.
- 36. Wolf AM, Hunter DJ, Colditz GA, Manson JE, Stampfer MJ, Corsano KA, et al. Reproducibility and validity of a self-administered physical activity questionnaire. *Int J Epidemiol* 1994;23(5):991-9.
- 37. Langer RD, White E, Lewis CE, Kotchen JM, Hendrix SL, Trevisan M. The Women's Health Initiative Observational Study: baseline characteristics of participants and reliability of baseline measures. *Annals of epidemiology* 2003;13(9 Suppl):S107-21.
- 38. Kabir M, Skurnik G, Naour N, Pechtner V, Meugnier E, Rome S, et al. Treatment for 2 mo with n 3 polyunsaturated fatty acids reduces adiposity and some atherogenic factors but does not improve insulin sensitivity in women with type 2 diabetes: a randomized controlled study. *The American journal of clinical nutrition* 2007;86(6):1670-9.
- 39. Munro IA, Garg ML. Prior supplementation with long chain omega-3 polyunsaturated fatty acids promotes weight loss in obese adults: a double-blinded randomised controlled trial. *Food & function* 2013;4(4):650-8.
- 40. Thorsdottir I, Tomasson H, Gunnarsdottir I, Gisladottir E, Kiely M, Parra MD, et al. Randomized trial of weight-loss-diets for young adults varying in fish and fish oil content. *Int J Obes (Lond)* 2007;31(10):1560-6.
- 41. Munro IA, Garg ML. Dietary supplementation with n-3 PUFA does not promote weight loss when combined with a very-low-energy diet. *The British journal of nutrition* 2012;108(8):1466-74.
- 42. Crochemore IC, Souza AF, de Souza AC, Rosado EL. omega-3 polyunsaturated fatty acid supplementation does not influence body composition, insulin resistance, and lipemia in women with type 2 diabetes and obesity. *Nutrition in clinical practice : official publication of the American Society for Parenteral and Enteral Nutrition* 2012;27(4):553-60.
- 43. Bender N, Portmann M, Heg Z, Hofmann K, Zwahlen M, Egger M. Fish or n3-PUFA intake and body composition: a systematic review and meta-analysis. *Obesity reviews : an official journal of the International Association* for the Study of Obesity 2014;15(8):657-65.
- 44. Ameur A, Enroth S, Johansson A, Zaboli G, Igl W, Johansson AC, et al. Genetic adaptation of fatty-acid metabolism: a human-specific haplotype increasing the biosynthesis of long-chain omega-3 and omega-6

1	
2	
4	Tatty acids. Am J Hum Genet 2012;90(5):809-20. AF Paleton IC Matravadia & Gaudia N. Helloway GP. Mutch DM. Polyunsaturated fatty acid regulation of adipocyte
5	FADS1 and FADS2 expression and function Obesity (Silver Spring) 2015:23(4):725-8
6	46. Smith GI, Julliand S. Reeds DN, Sinacore DR, Klein S. Mittendorfer B. Fish oil-derived n-3 PUFA therapy increases
7	muscle mass and function in healthy older adults. The American journal of clinical nutrition
8	2015;102(1):115-22.
9	47. Jourdan C, Kloiber S, Nieters A, Seiler H, Himmerich H, Kohli MA, et al. Gene-PUFA interactions and obesity risk.
10	The British journal of nutrition 2011;106(8):1263-72.
12	
13	
14	
15	
16	
1/	
10	
20	
21	
22	
23	
24	
25	
27	
28	
29	
30	
31 32	
33	
34	
35	
36	
3/	
30 39	
40	
41	
42	
43	
44 45	
46	
47	
48	
49	
50	
51 52	
53	
54	
55	
56	
57	
58 59	
<i></i>	

	NHS ¹	HPFS	WHI	SCHS
	n=11,323	n=6,833	n=6,254	n=5,264
Age (year)	57 ± 9	57 ± 11	68 ± 5	56 ± 7
Female (%)	100	0	100	58.7
Body weight (kg)	70.1 ± 14.9	82.8 ± 12.5	73.7 ± 15.0	60.3 ± 9.8
Body mass index (kg/m ²)	26.2 ± 5.1	25.9 ± 3.3	28.3 ± 5.5	23.4 ± 3.3
Alcohol consumption (g/day)	5.14 ± 9.23	10.97 ± 15.05	6.00 ± 11.96	1.97 ± 8.02
Physical activity (MET-h/week)	19.3 ± 22.1	36.9 ± 39.5	11.6 ± 13.1	0.5 ± 1.0^{2}
Television watching (h/week)	17.5 ± 14.8	10.5 ± 8.2	/	2.2 ± 0.8
Current smokers (n, (%))	1557(13.8)	493(7.3)	407(15.0)	1364(20.0)
Total energy intake (kcal/day)	1766 ± 502	1949 ± 578	1602 ± 654	1606 ± 573
Alternative health eating index score	53.4 ± 10.8	53.8 ± 11.4	53.5 ± 10.6	55.8 ± 8.2
Sugar sweetened beverage intake (servings/day)	0.13 ± 0.39	0.23 ± 0.48	0.39 ± 0.82	0.69 ± 2.40^3
Total fried food (servings/day)	0.12 ± 0.20	0.22 ± 0.28	/	/
Fish intake (servings/day)	0.31 ± 0.29	0.33 ± 0.30	0.23 ± 0.20	0.16 ± 0.07
Food-sourced EPA (g/day)	0.08 ± 0.14	0.12 ± 0.20	0.04 ± 0.04	/
Food-sourced DHA (g/day)	0.17 ± 0.14	0.22 ± 0.19	0.07 ± 0.07	/
Food-sourced EPA+DHA (g/day)	0.23 ± 0.19	0.31 ± 0.25	0.11 ± 0.10	0.33 ± 0.20
Total EPA+DHA (g/day)	0.26 ± 0.27	0.35 ± 0.37	0.38 ± 0.48	/

Table 1 Baseline characteristics of all participants in the NHS, HPFS, WHI, and SCHS cohorts.

¹Plus-minus values are means \pm SD. ²Hours per week of moderate activity in the SCHS. ³Glasses per week of soda intake in the SCHS.

EPA: 20:5n-3; DHA: 22:6n-3; MET denotes metabolic equivalents. Total EPA+DHA includes food-sourced and supplemental EPA+DHA.

Data on BMI, long chain n-3 PUFAs and fish consumptions were assessed at baseline in the NHS (1990), the HPFS (1990), the WHI (1994-1998), and the SCHS (1993-1998), respectively. Television watching assessed in 1992 for NHS and in 1990 for HPFS.

BMJ Open

Table 2 Associations of long chain n-3 PUFAs and fish intakes with long-term changes in BMI according to FADS genotypes

		Th	ree categories	of		P for
	FADS genotypes	long chain n	-3 PUFAs and	fish intakes	P for trend	interaction*
Total fish, serving/day		$\leq 1/wk$	1~6/wk	$\geq 1/d$		
NHS	Non-T carriers	0.82±0.06	0.98±0.04	1.15±0.13	0.006	0.03
	T carriers	0.73±0.11	0.95±0.08	1.55±0.25	0.0007	
HPFS	Non-T carriers	0.43±0.05	0.52±0.04	0.59±0.12	0.73	0.03
	T carriers	0.21±0.11	0.52±0.07	0.79±0.22	0.02	
WHI	Non-T carriers	0.11±0.08	0.28±0.06	0.28±0.34	0.04	0.09
	T carriers	0.02±0.15	0.29±0.11	0.94±0.67	0.01	
SCHS	Non-T carriers	-3.08±0.19	-3.00±0.17	-3.35±0.18	0.32	0.01
	T carriers	-3.61±0.17	-3.10±0.15	-3.25±0.17	0.13	
Pooled ¹	Non-T carriers	0.50±0.03	0.67±0.03	0.81 ± 0.08	0.01	0.0007
	T carriers	0.38±0.07	0.63±0.05	1.11±0.16	2×10 ⁻⁴	
Food-sourced EPA+DHA, g/day		Tertile1	Tertile2	Tertile3		
NHS	Non-T carriers	0.79±0.06	0.92±0.05	1.11±0.06	0.01	0.005
	T carriers	0.71±0.10	0.84±0.11	1.19±0.11	0.0001	
HPFS	Non-T carriers	0.46±0.05	0.53±0.05	0.49±0.05	0.79	0.02
	T carriers	0.23±0.11	0.48±0.10	0.58±0.09	0.02	
WHI	Non-T carriers	0.02 ± 0.08	0.21±0.08	0.41±0.08	0.06	0.04
	T carriers	-0.03±0.15	0.29±0.14	0.35±0.15	0.004	
SCHS	Non-T carriers	-3.32±0.17	-3.15±0.18	-2.99±0.17	0.16	0.035
	T carriers	-3.55±0.16	-3.34±0.16	-3.05±0.16	0.02	
Pooled ¹	Non-T carriers	0.49±0.03	0.64±0.03	0.68±0.03	0.01	0.0003
	T carriers	0.39±0.07	0.57±0.06	0.74 ± 0.06	1.5×10 ⁻⁶	
Total EPA+DHA, g/day	7	Tertile1	Tertile2	Tertile3		

2	1
/	
_	_

NHS	Non-T carriers	0.79±0.06	0.94±0.05	1.08±0.06	0.8	0.01
	T carriers	0.72±0.11	0.87±0.10	1.16±0.11	0.02	
HPFS	Non-T carriers	0.47±0.05	0.53±0.05	0.49±0.05	0.88	0.13
	T carriers	0.23±0.10	0.50±0.09	0.57±0.10	0.16	
WHI	Non-T carriers	0.39±0.10	0.04±0.08	0.23±0.10	0.42	0.27
	T carriers	0.04±0.18	0.28±0.15	0.28±0.16	0.84	
Pooled ¹	Non-T carriers	0.57±0.04	0.62±0.03	0.67±0.04	0.65	0.005
	T carriers	0.39±0.07	0.60±0.06	0.74 ± 0.07	0.01	

Data are means \pm SE for long term changes in BMI.

Total EPA+DHA include food-sourced and supplemental EPA+DHA.

¹P for interaction was generated from dominant model of *FADS* rs174570 (CC vs CT+TT).

Numbers of T carriers/Non-T carriers in the NHS, HPFS, WHI, and SCHS are 1698/9625, 1025/5808, 876/5378, and 1842/3422, respectively.

Data on BMI, long chain n-3 PUFAs and fish consumptions were assessed at baseline in the NHS (1990), the HPFS (1990), the WHI (1994-1998), and the SCHS (1993-1998), respectively.

Data on follow-up BMI was assessed in 2000 in the NHS and HPFS, in the sixth follow-up year in the

WHI, and from 2006 to 2010 in the SCHS, respectively.

Long-term BMI changes were calculated based on the changes in BMI from baseline to follow-up year in the four cohorts, respectively.

The general linear model was used to test the associations of long chain n-3 PUFAs and fish intakes with long-term changes in BMI by *FADS* genotypes after adjustment for age, source of genotyping data, baseline BMI, smoking, alcohol intake, physical activity, total energy intake, alternate healthy eating index, television watching, sugar sweetened beverage, fried food consumption.

The results were pooled by means of fixed effects meta-analyses (if $P \ge 0.05$ for heterogeneity between studies).

Figure Legends

Figure 1 Genetic variant of *FADS* rs174570, long chain n-3 PUFAs and fish intakes and long-term BMI changes

Effect size (ES) (95% CI) values are β coefficients for interaction between the *FADS* variant rs174570 (additive model) and diets from results of the NHS, HPFS, WHI, and SCHS cohorts.

Data on BMI, long chain n-3 PUFAs (food sourced EPA+ DHA and total EPA+ DHA (food and

supplemental use)) and fish consumptions were assessed at baseline in the NHS (1990), the HPFS (1990),

the WHI (1994-1998), and the SCHS (1993-1998), respectively.

Data on follow-up BMI was assessed in 2000 in the NHS and HPFS, in the sixth follow-up year in the

WHI, and from 2006 to 2010 in the SCHS, respectively.

Long-term BMI changes were calculated based on the changes in BMI from baseline to follow-up year in the four cohorts, respectively.

The general linear model was used to test the *FADS* variant-diets interaction by including a multiplicative interaction term in the models after adjustment for age, source of genotyping data, baseline BMI, smoking, alcohol intake, physical activity, total energy intake, alternate healthy eating index, television watching, sugar sweetened beverage, fried food consumption.

The results were pooled by means of fixed effects meta-analyses (if $P \ge 0.05$ for heterogeneity between studies).

Figure 2 Genetic association of *FADS* variant rs174570 with long-term BMI change according to long chain n-3 PUFAs and fish intakes

Pooled-EUR: data from NHS, HPFS, and WHI were pooled.

Pooled Multiethnic: data from NHS, HPFS, WHI and SCHS were pooled.

Data are β coefficients \pm SE.

Numbers of participants across three categories (≤1/wk/1~6/wk/≥1/d) of fish intake in the NHS, HPFS,

WHI, and SCHS are 1618/8465/1239, 977/5108/748, 894/4675/684, and 752/3935/576, respectively.

Frequency of fish intake: ≤ 1 serving per week, 1~6 servings per week, and 1 serving per day Data on BMI, long chain n-3 PUFAs (food sourced EPA+ DHA and total EPA+ DHA (food and supplemental use)) and fish consumptions were assessed at baseline in the NHS (1990), the HPFS (1990), the WHI (1994-1998), and the SCHS (1993-1998), respectively.

Data on follow-up BMI was assessed in 2000 in the NHS and HPFS, in the sixth follow-up year in the WHI, and from 2006 to 2010 in the SCHS, respectively.

The general linear model was used to test the genetic association of the *FADS* variant (additive model) with long-term changes in BMI by frequency of fish intake and tertiles of LC fatty acids after adjustment for age, source of genotyping data, baseline BMI, smoking, alcohol intake, physical activity, total energy intake, alternate healthy eating index, television watching, sugar sweetened beverage, fried food consumption. The results were pooled by means of fixed effects meta-analyses (if $P \ge 0.05$ for heterogeneity between studies).

Figure 3 Predicted long-term changes in BMI from long chain n-3 PUFAs intake according to *FADS* genotypes

Numbers of T carriers/Non-T carriers in the NHS, HPFS, and WHI are 1698/9625, 1025/5808, and 876/5378, respectively.

Black circles for T allele carriers and open circle for non-T-carriers.

The general linear model was used to test the associations of long chain n-3 PUFAs intake with long-term changes in BMI according to *FADS* genotypes after adjustment for age, source of genotyping data, baseline BMI, smoking, alcohol intake, physical activity, total energy intake, alternate healthy eating index, television watching, sugar sweetened beverage, fried food consumption.

The data on food-sourced EPA+DHA was pooled from the NHS and HPFS cohorts. Data from US cohorts was pooled by means of fixed effects meta-analyses (if $P \ge 0.05$ for heterogeneity between studies).

BMJ Open

Figure 4 Predicted long-term changes in BMI from fish intake according to FADS genotypes

Numbers of T carriers/Non-T carriers in the NHS, HPFS, and WHI are 1698/9625, 1025/5808, and 876/5378, respectively.

Black circles for T allele carriers and open circle for non-T-carriers.

The general linear model was used to test the associations of and fish intake with long-term changes in BMI according to *FADS* genotypes after adjustment for age, source of genotyping data, baseline BMI, smoking, alcohol intake, physical activity, total energy intake, alternate healthy eating index, television watching, sugar sweetened beverage, fried food consumption.

The data on total fish intake was pooled from the NHS, HPFS, and WHI cohorts. Data from US cohorts was pooled by means of fixed effects meta-analyses (if P ≥ 0.05 for heterogeneity between studies).

2	
3	
4	
5	
6	
7	
8	
9	
1	0
1	1
1	2
1	3
1	4
1	5
1	6
1	7
1	8
1	9
2	0
2	1
2	2
2	3
2	4
2	5
2	6
2	7
2	8
2	9
3	0

1

31 32 33

34

35 36

37 38 39

40 41

42 43

44 45 46

47 48

49 50

51 52

53 54 55

56

57 58

59 60

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

FADS-Diets Interaction Cohort ES (95% CI) Weight Food-sourced EPA NHS 0.92 (0.04, 1.81) 0.31 (-0.37, 0.99) 0.62 (0.11, 1.13) 17.5 29.6 52.9 HPFS WHI Subtotal (I-squared = 0.0%, p = 0.549) 0.58 (0.21, 0.95) Food-sourced DHA NHS 0.95 (0.17, 1.73) 0.61 (0.00, 1.22) 0.24 (-0.01, 0.49) 0.35 (0.12, 0.57) 8.3 13.6 78.2 HPFS WHI Subtotal (I-squared = 45.4%, p = 0.160) Food-sourced EPA+DHA 0.67 (0.10, 1.24) 0.44 (-0.00, 0.88) 0.18 (0.00, 0.36) 0.25 (0.01, 0.49) 0.25 (0.12, 0.38) NHS HPFS WHI 11.7 19.8 20.5 48.1 SCHS Subtotal (I-squared = 11.0%, p = 0.338) Total EPA+DHA NHS HPFS WHI Subtotal (I-squared = 19.0%, p = 0.291) 0.52 (0.09, 0.96) 0.26 (-0.08, 0.59) 0.13 (-0.11, 0.37) 0.23 (0.05, 0.41) 16.2 27.8 55.9 Total fish NHS HPFS WHI 0.31 (-0.10, 0.72) 0.32 (-0.06, 0.69) 0.81 (-0.13, 1.75) 18.5 21.9 3.5 56.1 0.28 (0.04, 0.52) 0.31 (0.14, 0.49) SCHS Subtotal (I-squared = 0.0%, p = 0.765) -2 2 0 0.29

254x190mm (200 x 200 DPI)

60

p=0.09 p=0.02 p=0.06

NA

ĩ

ł

 $T1(\leq 1/wk)$

 $T1(\leq 1/wk)$

WHI

T2(1~6/wk)

 $\begin{array}{c} p=0.006\\ p=0.01\\ p=0.009\\ p=0.009\\ p=0.006 \end{array}$

 $T3(\geq 1/d)$

ed EPA

d sourced DHA ood sourced EPA+DHA otal EPA+DHA

T2(1~6/wk) T3(≥1/d)

58 59 60

2.0 Predicted 10-y changes in BMI, kg/m² 1.8 T carriers 1.6 $\beta \pm SE = 0.79 \pm 0.19$ 1.4 P = 0.0000031.2 1.0 0.8 Non-T carriers $\beta \pm SE = 0.16 \pm 0.10$ 0.6 P = 0.080.4 0.2 0.0 0.0 0.5 1.0 1.5 2.0 2.5 Food sourced EPA+DHA, g/day

254x190mm (200 x 200 DPI)

254x190mm (200 x 200 DPI)

2
2
3
4
5
6
7
/
8
9
10
11
11
12
13
14
15
15
16
17
18
19
20
20
21
22
23
24
24
25
26
27
28
20
29
30
31
32
22
33
34
35
36
27
57
38
39
40
41
40
42
43
44
45
16
40
4/
48
49
50
50 E 1
21
52
53
54
55
55
56
57
58

1

Supplemental table 1. Annotation for the top six SNPs under positive selection in Greenlandic Inuit

	Reference		DAF							
Position ¹	SNP identification number	Alleles ²	CEU	СНВ	GI	NHS	HPFS	WHI	SCHS	PBS
chr11:61627960	rs74771917	C/T	0.025	0.16	0.98	/	/	/	/	2.67
chr11:61631510	rs3168072	A/T	0.017	0.18	0.98	/	/	/	/	2.64
chr11:61632310	rs12577276	A/G	0.017	0.18	0.98	/	/	/	/	2.64
chr11:61641717	rs7115739	G/T	0.017	0.22	0.98	0.004	0.004	/	/	2.54
chr11:61624414	rs174602	C/T	0.80	0.73	0.01	0.82	0.81	/	/	2.11
chr11:61597212	rs174570	C/T	0.16	0.34	0.99	0.15	0.15	0.14	0.35	2.06

¹Positions refer to human genome assembly hg19.

²Alleles are coded as ancestral/derived states.

PBS, the population branch statistic; DAF, derived allele frequency; CEU, European ancestry; CHB, an

Chinese; GI, Greenlandic Inuit

DAFs for each population (CEU, CHB, and GI) and PBS values are reported, along with the genomic position for each SNP.
BMJ Open

Outcomes (l_{12}/m^2)	FADS	NHS		HPFS		WHI		SCHS		Pooled	
Outcomes (kg/m ⁻)	SNPs	Beta ± SE	Р	Beta ± SE	Р	Beta ± SE	Р	Beta ± SE	Р	Beta ± SE	Р
Baseline BMI	rs174570	0.03 ± 0.10	0.733	-0.05 ± 0.09	0.538	-0.06±0.17	0.72	0.24±0.08	0.002	0.08±0.05	0.06
Baseline BMI	rs174602	0.08 ± 0.10	0.418	$\textbf{-0.05}\pm0.08$	0.536	/		/		0.00 ± 0.03	0.55
Baseline BMI	rs7115739	0.25 ± 0.52	0.634	$\textbf{-0.77} \pm 0.43$	0.077	/		/		$\textbf{-0.35}\pm0.14$	0.19
Long-term BMI change	rs174570	-0.05 ± 0.06	0.401	0.01 ± 0.05	0.917	-0.02±0.09	0.77	-0.02 ± 0.08	0.85	-0.02±0.03	0.94
Long-term BMI change	rs174602	-0.14 ± 0.06	0.009	0.04 ± 0.05	0.413	/		/		$\textbf{-0.04} \pm 0.01$	0.02
Long-term BMI change	rs7115739	0.45 ± 0.29	0.124	-0.23 ± 0.26	0.359	/		/		0.06 ± 0.08	0.18
ong-term BMI change: Jumbers of T carriers/No Effect size (ES) values an The general linear model	BMI change for β coefficier was used to	from 1990 to 2 in the NHS, HI nts for relations test the genetic	000. PFS, WF ship betv e associa	II, and SCHS aveen the <i>FADS</i> tion of <i>FADS</i> ave	are 1698 5 variant variants	%/9625, 1025/ rs174570 (ad with long-ter	5808, 8 Iditive 1 m chan	76/5378, and model) and ad ages in BMI a	l 1842/3 diposity. ıfter adju	422, respective ustment for age	ely. e, sou

	Difference in lo	P for interactic		
		kg		r for interaction
Total Fish, serving/day	≤1/wk	1~6/wk	$\geq 1/d$	
NHS	-0.69±0.64	-0.13±0.49	1.78±1.64	0.05
HPFS	-0.99±0.85	0.54±0.53	1.52±1.69	0.12
WHI	-0.22±0.42	0.16±0.34	1.26±1.57	0.13
SCHS	-0.42±0.29	-0.44±0.28	0.20±0.29	0.08
Pooled	-0.44±0.22	-0.10±0.18	0.31±0.28	0.01
Food-sourced EPA, g/day	T 1	T2	T3	
NHS	-0.77±0.62	-0.25±0.72	0.53±0.64	0.06
HPFS	-1.19±0.82	0.75±0.73	0.72±0.74	0.41
WHI	-0.19±0.42	0.24±0.47	0.14±0.48	0.20
Pooled	-0.50±0.32	0.24±0.34	0.37±0.34	0.10
Food-sourced DHA, g/day	T1	T2	T3	
NHS	-0.53±0.62	-0.39±0.70	0.53±0.65	0.01
HPFS	-1.06±0.82	0.49±0.71	0.89±0.76	0.09
WHI	-0.20±0.43	0.22±0.42	0.30±0.50	0.26
Pooled	-0.43±0.32	0.15±0.32	0.49±0.35	0.01
Food-sourced EPA+DHA, g/day	T1	T2	T3	
NHS	-0.56±0.63	-0.32±0.68	0.49±0.66	0.01
HPFS	-1.25±0.83	0.68±0.73	0.84±0.74	0.09
WHI	-0.02±0.43	0.16±0.44	0.14±0.49	0.23
SCHS	-0.47±0.29	-0.16±0.28	-0.03±0.29	0.10

Supplemental table 3 Genetic association of *FADS* variant with long-term changes in body weight according to long chain n-3 PUFAs and fish intakes

Pooled	-0.56±0.25	-0.09±0.24	0.14±0.25	0.005
Total EPA+DHA, g/day	T1	T2	Т3	
NHS	-0.58±0.63	-0.30±0.68	0.46 ± 0.66	0.02
HPFS	-1.20±0.82	0.75 ± 0.70	0.86 ± 0.77	0.18
WHI	-0.48 ± 0.47	0.64±0.43	0.04 ± 0.47	0.15
Pooled	-0.64±0.34	0.45±0.32	0.32±0.34	0.02

Data are β coefficients \pm SE.

Numbers of T carriers/Non-T carriers in the NHS, HPFS, WHI, and SCHS are 1698/9625, 1025/5808, 876/5378, and 1842/3422, respectively.

Frequency of fish intake: ≤ 1 serving per week, 1~6 servings per week, and 1 serving per day

Data on baseline fish and fatty acids consumptions were assessed in 1990 (NHS) and 1990 (HPFS).

Data on body weight were assessed in 1990 and 2000 in NHS and 1990 and 2000 in HPFS.

The general linear model was used to test the genetic association with long-term changes in body weight according to baseline long chain n-3 PUFAs and fish intakes after adjustment for age, source of genotyping data, baseline body weight, smoking, alcohol intake, physical activity, total energy intake, alternate healthy eating index, television watching, sugar sweetened beverage, fried food consumption. Data from three or four cohorts pooled by means of fixed effects meta-analyses (if $P \ge 0.05$ for heterogeneity between studies).

3
1
-
2
6
7
8
9
10
11
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
25
25
26
27
28
29
30
31
27
32
33
34
35
36
37
38
20
39
40
41
42
43
44
45
16
40
4/
48
49
50
51
52
52
55
54
55
56
57
58
59
60
00

Supplemental table 4 Associations of long chain n-3 PUFAs and fish intakes with long-term change	es
in body weight according to FADS genotypes	

≥1/d	
7.00±0.79	0.008
9.26±1.44	0.001
0.56±0.12	0.99
0.76±0.21	0.08
-0.91±0.93	0.50
1.30±1.71	0.13
-3.38±0.21	0.48
-3.34±0.20	0.16
T3	
5.95±0.33	0.24
6.46±0.61	0.34
0.45±0.05	0.15
0.52±0.09	0.66
-0.29±0.24	0.42
-0.15±0.38	0.14
Т3	
6.32±0.33	0.14
6.77±0.61	0.004
0.46±0.06	0.40
0.59±0.09	0.15
	T3 5.95 ± 0.33 6.46 ± 0.61 0.45 ± 0.05 0.52 ± 0.09 -0.29 ± 0.24 -0.15 ± 0.38 T3 6.32 ± 0.33 6.77 ± 0.61 0.46 ± 0.06

	T carriers	-0.71±0.39	-0.15±0.37	-0.16±0.39	0.18
Food-source	d EPA+DHA, g/day	T1	T2	Т3	
NHS	Non T carriers	4.69±0.34	5.45±0.33	6.51±0.33	0.02
	T carriers	4.44±0.61	5.00±0.61	6.92±0.61	0.0003
HPFS	Non T carriers	0.48±0.05	0.53±0.05	0.47 ± 0.05	0.93
	T carriers	0.26±0.10	$0.49{\pm}0.09$	0.59±0.09	0.08
WHI	Non T carriers	-0.44±0.24	-0.23±0.23	-0.43±0.24	0.47
	T carriers	-0.52±0.38	-0.15±0.37	-0.33±0.38	0.15
SCHS	Non T carriers	-3.44±0.21	-3.58±0.22	-3.05±0.21	0.89
	T carriers	-3.73±0.19	-3.57±0.19	-3.12±0.19	0.12
Total EPA+	DHA, g/day	T 1	T2	Т3	
NHS	Non T carriers	4.74±0.34	5.55±0.32	6.36±0.34	0.81
	T carriers	4.49±0.61	5.16±0.60	6.70±0.61	0.03
HPFS	Non T carriers	0.49±0.05	0.53±0.05	0.47±0.06	0.24
	T carriers	0.26±0.10	0.51±0.09	0.58±0.09	0.33
WHI	Non T carriers	0.32±0.27	-0.84±0.23	-0.60±0.28	0.19
	T carriers	-0.26±0.45	-0.21±0.37	-0.02±0.11	0.08

Data on baseline fish and fatty acids consumptions were assessed in 1990 (NHS) and 1990 (HPFS). Numbers of T carriers/Non-T carriers in the NHS, HPFS, WHI, and SCHS are 1698/9625, 1025/5808, 876/5378, and 1842/3422, respectively.

Data on body weight were assessed in 1990 and 2000 in NHS and 1990 and 2000 in HPFS.

The general linear model was used to test the associations of long chain n-3 PUFAs and fish intakes with long-term changes in body weight by *FADS* genotypes after adjustment for age, source of genotyping data, baseline body weight, smoking, alcohol intake, physical activity, total energy intake, alternate healthy eating index, television watching, sugar sweetened beverage, fried food consumption.

Data from two cohorts pooled by means of fixed effects meta-analyses (if $P \ge 0.05$ for heterogeneity between studies) or random effects meta-analyses (if P < 0.05 for heterogeneity between studies).

4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Supplemental Table 5 Associations of long chain n-3 PUFAs and fish intakes with long-term changes in BMI according to *FADS* genotypes

D: /		Long chain	n-3 PUFAs and fish	ı intakes		P for
Diets	FADS genotypes	(Categories of diets		P for trend	interaction*
Food-sourced	EPA, g/day	T1	T2	T3		
NHS	Non-T carriers	$0.82{\pm}0.06$	1.00±0.06	1.01 ± 0.06	0.24	0.05
	T carriers	0.72±0.10	0.94±0.11	1.10±0.11	0.29	
HPFS	Non-T carriers	$0.48{\pm}0.05$	0.54±0.05	$0.47{\pm}0.05$	0.72	0.37
	T carriers	0.23±0.11	0.54±0.10	0.52±0.09	0.45	
WHI	Non-T carriers	0.10±0.09	0.09±0.09	0.45±0.09	0.21	0.02
	T carriers	-0.08±0.15	0.23±0.15	0.46±0.15	0.003	
Pooled	Non-T carriers	0.54±0.04	0.63±0.04	0.65 ± 0.04	0.35	0.01
	T carriers	0.39±0.07	0.63±0.07	$0.70{\pm}0.06$	0.01	
Food-sourced	DHA, g/day	T1	T2	T3		
NHS	Non-T carriers	0.80±0.06	0.94±0.06	1.08 ± 0.06	0.14	0.009
	T carriers	0.74±0.10	0.83±0.11	1.17 ± 0.10	0.002	
HPFS	Non-T carriers	0.46±0.05	0.54±0.05	$0.49{\pm}0.05$	0.99	0.05
	T carriers	0.24±0.10	0.49±0.10	0.58±0.09	0.05	
WHI	Non-T carriers	0.03±0.09	0.20±0.09	0.42±0.09	0.03	0.06
	T carriers	-0.10±0.15	0.33±0.15	0.39±0.15	0.006	
Pooled	Non-T carriers	0.51±0.04	0.63±0.04	0.68±0.04	0.1	0.002
	T carriers	0.38±0.06	0.58±0.07	0.77±0.06	7×10 ⁻⁴	

Data are means \pm SE.

¹P for interaction was generated from dominant model of *FADS* rs174570 (CC vs CT+TT).

Numbers of T carriers/Non-T carriers in the NHS, HPFS, WHI, and SCHS are 1698/9625, 1025/5808, 876/5378, and 1842/3422, respectively.

Data on BMI, long chain n-3 PUFAs consumptions were assessed at baseline in the NHS (1990), the HPFS (1990), the WHI (1994-1998), and the SCHS (1993-1998), respectively.

Data on follow-up BMI was assessed in 2000 in the NHS and HPFS, in the sixth follow-up year in the

BMJ Open

WHI, and from 2006 to 2010 in the SCHS, respectively.

Long-term BMI changes were calculated based on the changes in BMI from baseline to follow-up year in the four cohorts, respectively.

The general linear model was used to test the associations of long chain n-3 PUFAs and fish intakes with long-term changes in BMI by *FADS* genotypes after adjustment for age, source of genotyping data, baseline BMI, smoking, alcohol intake, physical activity, total energy intake, alternate healthy eating index, television watching, sugar sweetened beverage, fried food consumption.

The results were pooled by means of fixed effects meta-analyses (if $P \ge 0.05$ for heterogeneity between studies).

Registration: www. clinicaltrials.gov. Registration ID: NCT03348566

TABLE 1. STREGA reporting recommendations, extended from STROBE Statement

Item	ltem number	STROBE Guideline	Extension for Genetic Association Studies (STREGA)
Title and Abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract. (p. 3)	
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found. $(p. 3)$	
Introduction			
Background rationale	2	Explain the scientific background and rationale for the investigation being reported. (p. 4)	
Objectives	3	State specific objectives, including any pre-specified hypotheses.	State if the study is the first report of a genetic association, a replication effort, or both. (p. 3)
Methods			
Study design	4	Present key elements of study design early in the paper. (p. 5)	

ltem	ltem number	STROBE Guideline	Extension for Genetic Association Studies (STREGA)
Setting	5	Describe the setting, locations and relevant dates, including periods of recruitment, exposure, follow-up, and data collection. $(p. 3)$	
Participants	6	 (a) Cohort study – Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up. (p. 5) Case-control study – Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls. Cross-sectional study – Give the eligibility criteria, and the sources and methods of selection of participants. (b) Cohort study – For matched studies, give matching criteria and number of exposed and unexposed. Case-control study – For matched studies, give matching criteria and the number of controls per case 	Give information on the criteria and methods for selection of subsets of participants from a larger study, when relevant. (p. 5)
Variables	7	(a) Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable. (p. 5)	(b) Clearly define genetic exposures (genetic variants using a widely-used nomenclature system. Identify variables likely to k associated with population stratification (confounding by ethnic origin). (p. 5)

ltem	ltem number	STROBE Guideline	Extension for Genetic Association Studies (STREGA)
Data sources measurement	8*	(a) For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group. (p. 5)	(b) Describe laboratory methods, including source and storage of DNA, genotyping methods and platforms (including the allele calling algorithm used, and its version), error rates and call rates. State the laboratory/centre where genotyping was done. Describe comparability of laboratory methods if there is more than one group. Specify whether genotypes were assigned using all of the data from the study simultaneously or in smaller batches. (p. 5)
Bias	9	(a) Describe any efforts to address potential sources of bias. (p. 5 &6)	(b) For quantitative outcome variables, specify if any investigation of potential bias resulting from pharmacotherapy was undertaken. If relevant, describe the nature and magnitude of the potential bias, and explain what approach was used to deal

	number		Extension for Genetic Association Studies (STREGA)
			<i>with this.</i> (p. 5 &6)
Study size	10	Explain how the study size was arrived at. (p. 5 &6)	
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen, and why. (p. 7)	<i>If applicable, describe how effects of treatment were dealt with.</i> (p. 7)
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding. (p. 7-9)	State software version used and options (or settings) chosen. (p. 9)
		(b) Describe any methods used to examine subgroups and interactions. (p. 9)	
		(c) Explain how missing data were addressed. (p. 9)	
		(d) Cohort study – If applicable, explain how loss to follow-up was addressed. (p. 9)	
		Case-control study – If applicable, explain how matching of cases and controls was addressed.	
		Cross-sectional study – If applicable, describe analytical methods taking account of sampling strategy.	

ltem	ltem number	STROBE Guideline	Extension for Genetic Association Studies (STREGA)
		(e) Describe any sensitivity analyses. (p. 9)	
		Hardy-Weinberg equilibrium was tested using Chi-square test. (p. 9)	(f) State whether Hardy- Weinberg equilibrium was considered and, if so, how.
		We assumed that each SNP in the panel acts independently in an additive manner. We coded the SNPs as following: rs174570 (TT=2, TC=1, CC=0); rs174602 (TT=2, TC=1, CC=0); rs7115739 (TT=2, TG=1, GG=0). (p. 8&9)	(g) Describe any methods used for inferring genotypes or haplotypes.
		er.	<i>(h) Describe any methods used to assess or address population stratification.</i> (p. 9)
		01/	<i>(i) Describe any methods used to address multiple comparisons or to control risk of false positive findings.</i> (p. 9)
			(j) Describe any methods used to address and correct for relatedness among subjects(p. 9)

ltem	ltem number	STROBE Guideline	Extension for Genetic Association Studies (STREGA)
Results			
Participants	13*	(a) Report the numbers of individuals at each stage of the study – e.g., numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed. (p. 10)	Report numbers of individuals in whom genotyping was attempted and numbers of individuals in whom genotyping was successful. (p. 10)
		(b) Give reasons for non-participation at each stage. (p. 10)	
		(c) Consider use of a flow diagram. (p. 10)	
Descriptive data	14 *	(a) Give characteristics of study participants (e.g., demographic, clinical, social) and information on exposures and potential confounders. (p. 10)	Consider giving information by genotype. (p. 10)
		(b) Indicate the number of participants with missing data for each variable of interest. (p. 10)	
		(c) Cohort study – Summarize follow-up time, e.g. average and total amount. (p. 10)	
		For peer review only - http://bmiopen.bmi.com/site/about/guidelines.xhtml	

item	ltem number	STROBE Guideline	Extension for Genetic Association Studies (STREGA)
Outcome data	15 *	Cohort study- Report numbers of outcome events or summary measures over time.	Report outcomes (phenotypes) for each genotype category over time
		Case-control study – Report numbers in each exposure category, or summary measures of exposure.	Report numbers in each genotype category
		Cross-sectional study – Report numbers of outcome events or summary measures.	Report outcomes (phenotypes) for each genotype category
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (e.g., 95% confidence intervals). Make clear which confounders were adjusted for and why they were included. (p. 10)	
		(b) Report category boundaries when continuous variables were categorized. $(p. 10)$	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period. (p. 10)	
			(d) Report results of any adjustments for multiple

ltem number	STROBE Guideline	Extension for Genetic Association Studies (STREGA)
	\wedge	comparisons. (p. 10)
17	 (a) Report other analyses done – e.g., analyses of subgroups and interactions, and sensitivity analyses. (p. 10) 	
		<i>(b) If numerous genetic exposures (genetic variants were examined, summarize results from all analyses undertaken.</i> (p. 10)
	en la	(c) If detailed results are available elsewhere, state how they can be accessed. (p. 10)
	5/1	
18	Summarize key results with reference to study objectives. (p. 11)	
19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias. (p. 11)	
	Item number	Item number 3110000 Suitemine 17 (a) Report other analyses done – e.g., analyses of subgroups and interactions, and sensitivity analyses. (p. 10) 17 (a) Report other analyses done – e.g., analyses of subgroups and interactions, and sensitivity analyses. (p. 10) 18 Summarize key results with reference to study objectives. (p. 11) 19 Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias. (p. 11)

Item	ltem number	STROBE Guideline	Extension for Genetic Association Studies (STREGA)
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence. (p. 11)	
Generalizability	21	Discuss the generalizability (external validity) of the study results. (p. 11)	
Other Information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based. ($p. 14$)	

STREGA = STrengthening the REporting of Genetic Association studies; STROBE = STtrengthening the Reporting of Observational Studies in Epidemiology.

* Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

BMJ Open

Fish and marine fatty acids intakes modified the genetic effects of the FADS gene on long-term weight gain: a genediet interaction analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-022877.R2
Article Type:	Research
Date Submitted by the Author:	13-Mar-2019
Complete List of Authors:	Huang, Tao; Peking University, Department of Epidemiology and Biostatistics Wang, Tiange ; Shanghai Jiao Tong University, Shanghai Institute of Endocrine and Metabolic Diseases Heianza, Yoriko ; Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University Wiggs, Janey ; Harvard Medical School, Department of Ophthalmology Sun, Dianjianyi ; School of Public Health and Tropical Medicine, Tulane University Choi, Hyon-Kyoo ; Massachusetts General Hospital - Harvard Medical School Center for Nervous System Repair Chai, Jin Fang ; National University Singapore Yong Loo Lin School of Medicine Sim, Xueling ; National University of Singapore, Epidemiology Domain, Saw Swee Hock School of Public Health Khor, Chiea Chuen ; National University of Singapore, Department of Biochemistry, Yong Loo Lin School of Medicine Friedlander, Yechiel ; Hebrew University, Unit of Epidemiology Chan, Andrew T. ; Massachusetts General Hospital, Division of Gastroenterology Curhan, Gary ; Harvard University T H Chan School of Public Health, Department of Epidemiology Vivo, Immaculata De ; Harvard University of Singapore, Department of Epidemiology Heng, Chew Kiat ; National University of Singapore, Department of Epidemiology Heng, Chew Kiat ; National University of Singapore, Department of Paediatrics Fuchs, Charles ; Harvard Medical School, Department of Medicine, Brigham and Women's Hospital Pasquale, Louis R. ; Harvard Medical School, Channing Division of Network Medicine, Department of Medicine Yuan, Jian-min ; University of Pittsburgh, Division of Cancer Control and Population Sciences Hu, Frank B. ; Harvard University T H Chan School of Public Health, Department of Epidemiology Koh, Woon Puay ; National University of Singapore, Department of Epidemiology Qi, Lu; Tulane University, Department of Epidemiology, School of Public

1
2
3
Δ
5
ر د
0
/
8
9
10
11
12
13
14
15
16
17
18
10
20
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
25
26
30 27
3/
38
39
40
41
42
43
44
45
46
47

	Health and Tropical Medicine
Primary Subject Heading :	Nutrition and metabolism
Secondary Subject Heading:	Diabetes and endocrinology, Epidemiology, Genetics and genomics, Public health
Keywords:	NUTRITION & DIETETICS, GENETICS, EPIDEMIOLOGY, obesity, gene-diet interaction

SCHOLARONE[™] Manuscripts

Fish and marine fatty acids intakes modified the genetic effects of the FADS gene on long-term weight gain: a gene-diet interaction analysis Tao Huang^{1,2,3*}, Tiange Wang⁴, Yoriko Heianza⁵, Janey Wiggs⁶, Dianjianyi Sun⁵, Hyon-Kyoo Choi⁷, Jin Fang Chai⁸, Xueling Sim⁸, Chiea Chuen Khor^{9,10}, Yechiel Friedlander¹¹, Andrew T. Chan¹², Gary Curhan¹³, Immaculata De Vivo¹³, Rob Martinu. van Dam^{8,14}, Chew Kiat Heng¹⁵, Charles S. Fuchs^{16,17}, Louis R. Pasquale¹⁸, Jian-min Yuan^{19,20}, Frank B. Hu^{14, 16}, Woon Puay Koh^{8, 21}, Lu Qi^{5, 14, 16*} ^{1.} Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China. ² Department of Global Health, School of Public Health, Peking University, China. ³ Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, China. ⁴ Shanghai Institute of Endocrine and Metabolic Diseases, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. ⁵. Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 1724 New Orleans, LA 70112. ⁶Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA 02115, USA. ⁷ Department of Rheumatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA. ⁸ Epidemiology Domain, Saw Swee Hock School of Public Health, National University of Singapore, Singapore, 117549. ⁹.Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore. ¹⁰. Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore. ^{11.}Unit of Epidemiology, Hebrew University-Hadassah Braun School of Public Health, POB 12272, Jerusalem 91120, Israel. ¹².Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA. ¹³.Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA. ¹⁴. Department of Nutrition, Harvard School of Public Health, Boston, MA 02115, USA. ^{15.}Department of Paediatrics, National University of Singapore NUHS Tower Block, Level 12, 1E Kent Ridge Road

Singapore 119228.

BMJ Open

¹⁶. Department of Medicine, Brigham and Women's Hospital and Harvard Medical School Boston, MA 02115, USA.

¹⁷. The Center for Gastrointestinal Cancer, Dana-Farber Cancer Institute, Boston, USA.

^{18.}Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.

¹⁹ Division of Cancer Control and Population Sciences, University of Pittsburgh Cancer Institute, Pittsburgh, PA,

USA.

²⁰. Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA.

²¹.Duke-NUS Medical School, Singapore, Singapore.

Registration: www. clinicaltrials.gov. Registration ID: NCT03348566

Running title: Genetic adaptation, fish, and weight change

Word count: 3420

*Correspondence and requests for reprint:

Dr. Tao Huang. Department of Epidemiology and Biostatistics, School of Public Health, Peking

University, Beijing, China. Email: huangtao@bjmu.edu.cn

Dr. Lu Qi. Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane

University. 1440 Canal Street, Suite 1724, New Orleans, LA 70112

Telephone: 504-988-3549;

Email: lqi1@tulane.edu; luqi@hsph.harvard.edu

	BMJ Open
	3
1	Abstract
2	Objective: We tested whether genetic variants near fatty acid desaturases gene (FADS) cluster, which
3	were recently identified to be signatures of adaptation to fish- and n-3 PUFAs-rich diet, interacted with
4	these dietary factors on change in body mass index (BMI).
5	Design: Three <i>FADS</i> variants were examined for gene-diet interactions on long-term (~10 years) changes
6	in BMI and body weight in four prospective cohort studies.
7	Setting: Population based study
8	Participants: 11,323 women from the Nurses' Health Study (NHS), 6,833 men from the Health
9	Professionals Follow-up Study (HPFS), and replicated in 6,254 women from the Women's Health
10	Initiative (WHI), and 5,264 Chinese from the Singapore Chinese Health Study (SCHS).
11	Main outcomes: Long-term (~10 years) changes in BMI and body weight
12	Results: In the NHS and HPFS cohorts, food-sourced n-3 PUFAs intake showed interactions with the
13	FADS rs174570 on changes of BMI (P for interaction = 0.02 in NHS, 0.05 in HPFS, and 0.007 in
14	combined). Such interactions were replicated in two independent cohorts WHI and SCHS (P for
15	interaction = 0.04 in WHI, 0.02 in SCHS, and 0.001 in combined). The genetic associations of the FADS
16	rs174570 with changes in BMI increased across the tertiles of n-3 PUFAs in all the cohorts. Fish intake
17	also accentuated the genetic associations of the FADS rs174570 with long-term changes in BMI (pooled P
18	for interaction = 0.006). Viewed differently, long chain n-3 PUFAs intake showed stronger association
19	with long-term changes in BMI among the rs174570 T carriers (beta = 0.79 kg/m^2 per g, P = 3×10^{-5}) than
20	the rs174570 non-T carriers (beta=0.16 kg/m ² per g, $P = 0.08$). Similar results were observed for fish
21	intake.
22	Conclusions: Our hypothesis-driven analyses provide replicable evidence that long chain n-3 PUFAs and
23	fish intakes may interact with the FADS variant on long-term weight gain. Further investigation is needed
24	to confirm our findings in other cohorts.
25	
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2						
3 4	27	Article summary				
5 28 6 7 8 29 10 30	28	Strengths and limitations of this study				
	29	• This is the first study with consistent results from 4 well-established prospective cohorts of different				
	30	racial populations such as Caucasians and Singapore Chinese. The consistent results from these				
11 12	31	independent cohorts demonstrated the robustness of our findings.				
13 14	32	• Other major strengths include the prospective design, the large sample size, use of long-term change				
15 16	33	of BMI, and replication of the results.				
17 18	34	• Dietary fatty acids, fish, and adiposity measures were self-reported, measurement errors in these				
19 20 21	35	variables are inevitable.				
21 22 23	36	• Confounding by other unmeasured or unknown factors might exist, although we have carefully				
24 25	37	adjusted for multiple dietary and lifestyle factors.				
26 27	38	• We acknowledge that the different methods in measuring anthropometric traits, genetic variants and				
28 29	39	food intake across cohorts might introduce bias in the present analyses.				
30 31	40					
32 33						
34 35						
36 37						
38 39 40						
40 41 42						
43 44						
45 46						
47 48						
49 50						
51 52						
53 54						
55 56						
57 58						
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml				

42 Introduction

Diets rich in fish and marine fatty acids, especially long chain n-3 polyunsaturated fatty acids (PUFAs)
has shown beneficial effects on cardiometabolic health ¹². However, data from population studies on the
associations between such diet and body weight are inconsistent ³⁴. Emerging evidence suggests genetic
variations may play a role in modifying the relation between dietary factors and body weight ⁵⁻⁷.

A recent study of Inuit identified genetic signatures of adaptation to diets rich in fish and n-3 PUFAs⁸. The strong signals locate in a cluster of fatty acid desaturases genes (FADS) that determine PUFAs levels ⁸. People living in the Arctic region have been found to be genetically prone to develop obesity ^{9 10} as survival strength for energy storage¹¹¹². Interestingly, the identified FADS genetic signatures of diet adaptation have been also related to adiposity in the Inuit population⁸. Of note, due to long-standing selection pressure, the identified FADS signatures differ in frequency of selective allele across various populations such as Europeans and Asians ¹³, in coincidence with varying levels of fish/marine fatty acids consumption, and adjointly patterns in these populations 14 . We therefore hypothesized that the genetic signatures might interact with fish and marine PUFAs intakes on body weight ¹³.

The present study tested the interactions between n-3 PUFAs and fish intakes and variants in *FADS* gene
cluster, genetic signatures of adaptation to fish- and n-3 PUFAs-rich diet, in relation to long-term changes
in body mass index (BMI) in two US prospective cohorts: the Nurses' Health Study (NHS) and the Health
Professionals Follow-up Study (HPFS). We replicated the findings in two independent, prospective
cohorts the Women's Health Initiative (WHI, US) and the Singapore Chinese Health Study (SCHS).

64 Methods

65 Discovery cohorts

66 The Nurses' Health Study

Page 7 of 46

BMJ Open

The NHS began in 1976, when 121,700 female registered nurses aged 30-55 y residing in 11 states were recruited to complete a baseline questionnaire about their lifestyle and medical history ¹⁵. The current analysis baseline was set in 1990 for the NHS. We included 11,323 women of European ancestry. Informed consent was obtained from all participants. The DNA extraction methods, quality control measures, SNPs genotyping and imputation when performed have been described in detail elsewhere ¹⁶⁻²². All participants with baseline long chain n-3 PUFAs and fish consumptions and covariates data, baseline and endpoint BMI data, and genotyping data available based on previous GWASs were included ¹⁶⁻²¹. The study protocol was approved by the institutional review boards of Brigham and Women's Hospital and Harvard School of Public Health.

77 The Health Professionals Follow-up Study

The HPFS was initiated in 1986, and was composed of 51,529 male dentists, pharmacists, veterinarians, optometrists, osteopathic physicians, and podiatrists, aged 40-75 y at baseline. The male participants returned a baseline questionnaire about detailed medical history, lifestyle, and usual diet ²³. In the current analysis, we used 1990 as baseline in the HPFS, when the earliest complete dietary data were collected. Our analysis included 6,833 men whose genotype data were available. Informed consent was obtained from all participants. The DNA extraction methods, quality control measures, SNPs genotyping and imputation when performed have been described in detail elsewhere ¹⁶⁻²². All participants with baseline long chain n-3 PUFAs and fish consumptions and covariates data, baseline and endpoint BMI data, and genotyping data available based on previous GWASs were included ¹⁶⁻²¹. The study protocol was also approved by the institutional review boards of Brigham and Women's Hospital and Harvard School of Public Health.

90 Replication cohorts

91 The Women's Health Initiative (WHI)

The Women's Health Initiative (WHI) is a large, multiethnic, 40-center study funded by the National Heart, Lung, and Blood Institute (NHLBI) that focuses on strategies for preventing heart disease, breast and colorectal cancer, and osteoporotic fractures in postmenopausal women. A full description of the WHI study is presented elsewhere ^{24 25}. For the analyses, all participants with baseline long chain n-3 PUFAs and fish consumption and covariate data, baseline and endpoint BMI data, and genotyping data available based on previous GWASs were included. Finally, we included 6,254 Caucasians women who participated in the WHI clinical trial studies at baseline (1994-1998) and at sixth-year follow-up and for whom DNA was measured. The genomic DNA samples were processed according to standard Affymetrix procedures for processing of the assay. The Affymetrix Human SNP Array 6.0 (Affymetrix®, Inc Santa Clara, CA) was used for genome wide SNP genotyping. Human subjects review committees at each participating institution reviewed and approved the study, and all women gave written informed consent.

104 The Singapore Chinese Health Study (SCHS) cohort

The design of Singapore Chinese Health Study (SCHS) has been previously described in detail ²⁶. Briefly, between 1993 and 1998, 63,257 Chinese men and women between ages of 45 and 74 years living in Singapore were enrolled into the cohort study ²⁷. Two follow-up interviews were conducted via telephone among surviving participants between 1999 and 2004, and again between 2006 and 2010 to update information on body weight, selected lifestyle factors and medical history. All participants have given informed consent. The study was approved by the Institutional Review Boards of the National University of Singapore and the University of Pittsburgh, and the study was carried out in accordance with the approved guidelines. All participants with baseline long chain n-3 PUFAs and fish consumptions and covariates data, baseline and endpoint BMI data available were included. Among these participants, genome-wide genotyping for 2615 incident diabetes cases and 2615 matched controls was performed at the Genome Institute of the Singapore according to the manufacturer's recommendations using an Affymetrix ASI (Asian) Axiom array. Genotype calling was performed by the Affymetrix Corporation ²⁸.

Page 9 of 46

58 59

60

BMJ Open

1		
2 3 4	117	Genome-wide genotyping for 717 incident myocardial infarction (MI) cases and 644 controls was
5 6	118	performed for SCHS samples using the Illumina HumanOmni ZhongHua-8 Bead Chip ²⁹ .
7 8	119	Among these two case-control studies nested within the cohort, 5,264 subjects with genotyping data had
9 10	120	weight reported at both baseline and follow-up 2 interviews, and were included in this analysis.
11 12	121	
13 14	122	Assessment of measures of body mass index
15 16	123	Height and body weight were assessed by questionnaire at baseline, and weight information was requested
17 18	124	on follow-up questionnaire in all 4 cohorts. Self-reported weights were highly correlated with directly
19 20 21	125	measured values (r=0.97 in HPFS and NHS) in a validation study ³⁰ . BMI was calculated as body weight
21 22 22	126	(kg)/height (m ²). We defined long-term changes in BMI as changes in BMI from 1990 to 2000 in the NHS
23 24 25	127	and HPFS cohorts ³¹ , and from baseline (1993) to sixth year follow-up in the WHI ^{24 25} , and from baseline
26 27	128	(1998) to second follow-up (2004) in the SCHS.
28 29	129	
30 31	130	Assessment of diets and other covariates
32 33	131	Questionnaires were used to collect information on a medical history and diet/lifestyle factors in all 4
34 35	132	cohorts. Total fish, n-3 PUFAs, supplemental use of fish oil, alcohol, sugar sweetened beverages, fried
36 37	133	food intakes, and other dietary factors at baseline were assessed by validated food frequency
38 39	134	questionnaires (FFQ) in the NHS and HPFS 32 33. A 165-item validated semi-quantitative FFQ was used to
40 41 42	135	collect dietary data and supplemental use of fish oil in the SCHS ²⁷ . Dietary data and supplemental use of
42 43	136	fish oil were obtained from a self-administered baseline 122-items validated FFQ in the WHI ³⁴ . Alternate
45 46	137	health eating index was previously calculated in the NHS, HPFS ³⁵ , WHI, and SCHS. Physical activity
47 48	138	was expressed as metabolic equivalents per week by incorporating the reported time spent on various
49 50	139	activities, and the intensity level of each activity. The validity of the self-reported physical activity data
51 52	140	has been described previously in the NHS and HPFS ³⁶ . In the WHI, an estimated metabolic equivalent
53 54	141	(MET) level for each type of activity was assigned from a compendium of activities ³⁷ . Physical activity
55 56 57		

2		
3 4	142	was assessed using eight continuous categories ranging from never to 31 hours or more in an average
5	143	week spent doing strenuous sports; vigorous work; and moderate activities in the SCHS ²⁶ .
7 8	144	
9 10	145	The FADS variants selection and genotyping
11 12	146	Three of the 6 FADS single-nucleotide polymorphisms (SNPs) reported in a recent scan of Inuit genomes
13 14	147	for signatures of adaptation ⁸ were derived from genome-wide scans available in the NHS, HPFS. We
15 16	148	assumed that each SNP in the panel acts independently in an additive manner. We coded the SNPs as
17 18	149	following: rs174570 (TT=2, TC=1, CC=0); rs174602 (TT=2, TC=1, CC=0); rs7115739 (TT=2, TG=1,
19 20	150	GG=0). The FADS rs174570 was extracted from GWAS data in the WHI and SCHS cohorts for
21 22	151	replication (Supplemental Table 1).
23 24	152	
25 26	153	Patient and Public Involvement
27 28	154	Neither patients nor public were involved
29 30	154	ivertifier patients not public were involved.
31	155	
32 33 24	156	Statistical analyses
34 35 36	157	We examined the associations of the FADS variants (rs174570, rs174602, rs7115739) with adiposity
37 38	158	measures and long-term changes in BMI using multiple linear regression model. Interactions between
39 40	159	the FADS variants (rs174570, rs174602, rs7115739) and baseline fish intake, and total or food-sourced
41 42	160	long chain n-3 PUFAs intakes on long-term changes in BMI were tested by including a multiplicative
43 44	161	interaction term in the models in the NHS and HPFS. The significant results for rs174570 were replicated
45 46	162	in the WHI and SCHS. Potential confounders considered in multivariable models were age, baseline
47 48	163	physical activity, baseline television watching, baseline smoking, baseline alcohol intake, baseline
49 50	164	alternate healthy eating index, and baseline total energy intake, sugar sweetened beverages (if available),
51 52	165	fried food intake (if available). We further tested the genetic associations with long-term changes in BMI
53 54 55	166	according to long chain n-3 PUFAs and fish intakes, and associations of long chain n-3 PUFAs and fish

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 11 of 46

BMJ Open

1		10
2 3 4	167	intakes with long-term changes in BMI according to the FADS genotypes using multiple linear
5 6	168	regression model after adjustment of potential confounders. Linear trend across categories of long chain
7 8	169	n-3 PUFAs and fish intakes was quantified with a Wald test for linear trend by assigning the median value
9 10 11	170	to each category and modeling it as a continuous variable. Results across cohorts were pooled with inverse
12	171	variance weighted meta-analyses by fixed effects models ($P \ge 0.05$ for heterogeneity between studies) ³⁸ .
13 14 15	172	Hardy-Weinberg equilibrium was tested using Chi-square test. All reported P values are nominal and two
16 17	173	sided. Statistical analyses were performed in SAS 9.3 (SAS Institute, Cary, NC, USA).
18 19	174	
20 21	175	Results
22 23	176	Baseline characteristics of all participants in the NHS, HPFS, WHI and SCHS cohorts
24 25	177	Table 1 shows the baseline characteristics for all participants in the NHS, HPFS, WHI, and SCHS cohorts.
26 27	178	The present study included 11,323 women with genetic data from the NHS cohort, 6,833 men with genetic
28 29 20	179	data from the HPFS cohort, 6,254 women from the WHI, and 5,264 Chinese from the SCHS. The
30 31 22	180	distribution of the FADS genetic variants in the 4 cohorts is shown in Supplemental table 1. Chi-square
33 34	181	test showed that the FADS rs174570 is in Hardy-Weinberg equilibrium. We did not observe any
35 36	182	significant genetic association between the FADS rs174570 genotype and baseline BMI, and long-term
37 38	183	changes in BMI in the three US cohorts ($P > 0.05$). However, we found that the <i>FADS</i> genotype was
39 40	184	significantly associated with baseline BMI in the SCHS ($P = 0.002$) (Supplemental table 2).
41 42	185	
43 44	186	Genetic associations with long-term changes in BMI according to LC n-3 PUFAs/fish intakes
45 46	187	We first tested interactions between the FADS genetic variants (rs174570, rs174602, rs7115739) and
47 48 40	188	intakes of variously sourced long chain n-3 PUFAs and fish in the NHS and HPFS cohorts. We found that
49 50 51	189	only FADS rs174570 (C/T, with T as the common allele in Inuit, but rare allele in Europeans and Asians)
52 53	190	showed significant interaction with LC n-3 PUFAs/fish intakes. Food-sourced n-3 PUFAs
54 55	191	(Eicosapentaenoic acid (EPA) + Docosahexaenoic acid (DHA)) intake consistently magnified the genetic
56 57 58	192	association with long-term changes in BMI (P for interaction = 0.02 in NHS, 0.05 in HPFS, and 0.007 in
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
2 3 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 24 25 26 27 28 9 30 31 22 33 4 56 37 8 9 0 11 12 33 4 56 37 8 9 0 11 12 33 4 56 37 8 9 10 11 20 21 22 24 25 26 27 8 9 30 31 32 33 4 56 37 8 9 30 31 32 33 4 56 37 8 9 30 31 32 33 34 56 37 8 9 30 31 32 33 34 56 37 8 9 30 31 32 33 34 56 37 8 9 30 31 32 33 34 35 36 37 30 31 32 33 34 35 36 37 30 31 32 33 34 35 36 37 30 31 32 33 34 35 36 37 30 31 32 33 34 35 36 37 37 30 31 32 33 34 35 37 37 37 37 30 31 32 33 34 35 37 37 30 31 32 33 34 35 37 39 30 31 32 33 34 35 37 39 30 31 32 33 34 35 37 30 31 32 33 34 35 37 37 30 31 32 33 34 35 37 37 37 37 37 37 37 37 37 37 37 37 37	193	combined cohorts) (Figure 1). We successfully replicated our results in the WHI cohort (P for interaction
	194	= 0.04) and the SCHS cohort (P for interaction = 0.02).
	195	
	196	The pooled analyses of the 3 US (Caucasian) samples or all 4 cohorts showed that high intakes of
	197	food-sourced n-3 PUFAs intake (P for interaction = 0.008 and 0.009, respectively) significantly
	198	accentuated the genetic association of the FADS genotypes with long-term changes in BMI (Figure 2). No
	199	significant heterogeneity in the interaction effect was observed among these cohorts. Differences in
	200	long-term changes of BMI per T allele were -0.105 (SE 0.067), 0.027 (SE 0.064), and 0.120 (SE 0.067)
	201	kg/m ² across three tertiles of food-sourced n-3 PUFAs in pooled results from all the 4 cohorts.
	202	
	203	Individual food-sourced n-3 PUFAs such as EPA (pooled P for interaction=0.01) and DHA (pooled P for
	204	interaction=0.003) showed similar interaction patterns; and the interactions remained significant when
	205	supplemented n-3 PUFAs were considered (pooled P for interaction=0.007) (Figure 2).
	206	
	207	In addition, fish intake showed similar, though less significant, interaction patterns with the FADS
	208	genotype on long-term changes in BMI in the NHS (P for interaction=0.16), HPFS (P for
	209	interaction=0.09), WHI (P for interaction=0.09), SCHS (P for interaction=0.03) and combined results
	210	(pooled P for interaction=0.006), and the differences in BMI changes per T allele were -0.096 (SE 0.071),
41 42	211	0.041 (SE 0.052), and 0.251 (SE 0.151) kg/m ² across three categories (≤ 1 serving/week, 1~6
42 43 44 45 46	212	servings/week, and ≥ 1 serving/day) of fish intake in combined results from all the 4 cohorts.
	213	
47 48	214	In addition, we did not observe significant interaction between two other genetic variants in FADS cluster
49 50 51 52	215	(rs174602 and rs7115739) and long chain n-3 PUFAs/fish intakes in relation to long-term changes in BMI
	216	in the NHS and HPFS cohorts. Similar interactions for long-term changes in body weight were observed
53 54	217	(Supplemental table 3 & 4).
55 56 57	218	
58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 13 of 46

BMJ Open

Long chain n-3 PUFAs/fish intakes and long-term changes in BMI according to the FADS genotype We found that individuals who consumed the highest food-sourced n-3 PUFAs (EPA+DHA; T3) had significantly greater increase of BMI (mean \pm SE = 0.74 \pm 0.06, kg/m²) than did those who consumed the lowest (T1) (mean \pm SE = 0.39 \pm 0.07, kg/m²) among the T allele carriers, whereas the corresponding BMI changes were 0.68 ± 0.03 kg/m² and 0.49 ± 0.03 kg/m², respectively, among the non-T carriers in 4 cohorts combined (Table 2 & Supplemental table 5). Similarly, we observed different associations between fish intake and BMI changes among the T allele carriers ($P = 1.5 \times 10^{-6}$) and non-carriers (P = 0.01) in the pooled results from these US cohorts. No significant heterogeneity in the interaction effect was observed among the cohorts.

Figure 3 presents the predicted long-term changes in BMI from food-sourced n-3 PUFAs and fish intake according to the T carriers and the non-T carriers. Results from the NHS, HPFS and WHI cohorts consistently showed that the associations of food-sourced n-3 PUFAs and fish intakes with long-term changes in BMI were stronger among the T carriers than those among the non-T carriers. In the pooled results, the beta \pm SE for associations of food-sourced n-3 PUFAs (Figure 3) and fish intake (Figure 4) with long-term changes in BMI were 0.79 ± 0.19 kg/m² per g (P = 0.000003) and 0.64 ± 0.16 kg/m² per serving (P = 0.00002) among the T carriers, and whereas the corresponding beta \pm SE were 0.16 \pm 0.10 kg/m² per g (P = 0.08) and 0.18 ± 0.08 kg/m² per serving (P = 0.01) among the non-T carriers.

Discussion

In 4 large prospective cohorts of the US and Chinese populations, our hypothesis-driven analyses showed reproducible evidence that long chain n-3 PUFAs and fish intakes accentuated the genetic association of the FADS genotypes with long-term changes in BMI. In addition, our results showed that the FADS rs174570 T allele carriers gained more weight than the non-carriers when they had higher long chain n-3 PUFAs and fish intakes.

Large prospective cohort studies examining the associations of fish or n-3 PUFAs with body weight and obesity risk have generated conflicting results ^{3 4}. In addition, several randomized controlled trials (RCTs) supported the protective effects of fish, fish oils, or/and n-3 PUFAs intake on weight-loss ³⁹⁻⁴¹, but the benefit was not evident in other trials ⁴²⁻⁴⁴. The results from the current study lend support to our hypothesis that the heterogeneous associations between fish or n-3 PUFAs and body weight might be at least partly due to gene-diet interactions.

We found that the genetic associations between the FADS rs174570 and long-term BMI change were stronger along with increasing intakes of long chain n-3 PUFAs and fish. Viewed from a different angle, the magnitude of associations of fish and long chain n-3 PUFAs intakes with BMI changes varied among individuals with different genotypes. The FADS rs174570 was recently identified from a study of the Inuit, who had high fish/n-3 PUFAs intakes⁸. The high frequency of the T allele in Inuit reflects genetic adaptation to the special fish- and n-3 PUFA rich diet. Interestingly, the identified FADS genetic signatures of diet adaptation have been also related to adiposity in this population. Our data indicated that the signature allele (T) was related differently to weight changes (decrease or increase), depending on the levels of fish/n-3 PUFAs intakes. In people with high fish/n-3 PUFAs intakes, carrying the signature allele predisposed to greater weight gain and an increased risk of obesity; while carriers of this allele tended to have less body weight when they are exposed to a diet low in fish and n-3 PUFAs.

We found that individual food-sourced n-3 PUFAs such as EPA and DHA showed similar interaction patterns in relation to long-term changes in BMI; and the interactions also remained significant when supplemented n-3 PUFAs were considered. In addition, our results indicated that the interactions of fish/n-3 PUFAs intakes and the *FADS* genotype were persistent across different racial populations such as Europeans and Asians. Our data suggest that the interactions between n-3 PUFAs and the *FADS* genotype is robust for fatty acids from various sources.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 15 of 46

60

BMJ Open

1		-
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 24 25 26 27 28 9 30 31 32 34	271	The mechanisms underlying the observed gene-diet interactions remain unclear. However, such
	272	interactions are biologically plausible. It has long been known that the FADS genes such as
	273	FADS1 and FADS2 encode delta-5 and delta-6 desaturases respectively, which are the important
	274	rate-limiting steps in the endogenous formation of long-chain PUFA such as EPA and DHA from linoleic
	275	acid (n-6) and α -linolenic acid (n-3) ⁴⁵ . The selected allele of <i>FADS</i> rs174570 is significantly associated
	276	with an increase in the concentration of n-3 fatty acids upstream in the n-3 synthesis pathway ⁴⁵ . Further, it
	277	has been reported that dietary n-3 PUFAs might regulate adipocyte FADS expression and function ⁴⁶ . In
	278	addition, storage of energy and body fat is very important for the Arctic population, who are regularly
	279	exposed to extremely low temperatures and fishes rich in n-3 PUFAs ^{11 12} . Under natural selection,
	280	these people are genetically prone to high fish intake to keep body fat ⁹ ¹⁰ . Therefore, it's not surprising
	281	that high fish or n-3 PUFAs intake accentuated genetic susceptibility to obesity among people carrying
	282	selective FADS signature ^{47 48} . Our findings support the view that extra n-3 PUFAs may not have much
	283	benefit for Europeans with selective FADS signature ^{8 13} .
	284	Strengths
	285	Several strengths of this study merit mention. To our knowledge, this is the first study with consistent
35 36	286	results from 4 well-established prospective cohorts of different racial populations such as Caucasians and
37 38	287	Singapore Chinese. The consistent results from these independent cohorts demonstrated the robustness of
39 40	288	our findings. Other major strengths include the prospective design, the large sample size, use of long-term
41 42	289	change of BMI, and replication of the results. Although we prospectively analyzed the data, we cannot
43 44	290	exclude the possibility of reverse causality as this is a study on dietary intake and BMI or weight change
45 46	291	from the baseline, which by default builds in the starting point (i.e. the cross sectional association).
47 48 40	292	Limitations
49 50 51	293	However, several limitations need to be acknowledged. First, dietary fatty acids, fish, and adiposity
51 52 53 54 55 56 57 58 50	294	measures were self-reported, measurement errors in these variables are inevitable. Despite this, the food
	295	frequency questionnaires and adiposity measures data have been well validated ^{27 30 32-34} . Second,
59		

1 ว	
2 3 4	296
4 5 6	297
7 8	298
9 10	299
10 11 12	300
13 14	301
15 16	302
17 18	303
19 20	304
21 22	305
23 24	306
25 26	307
27 28	308
29 30	309
31 32	310
33 34	211
35 36	212
37 38	312
39 40	313
41 42	314
43 44	315
45 46	316
47 48 40	317
49 50 51	318
52 53	319
54 55	320
56 57	321
58 59	
60	

96	confounding by other unmeasured or unknown factors might exist, although we have carefully adjusted
97	for multiple dietary and lifestyle factors. Third, a causal relation among long chain n-3 PUFAs and fish
98	consumption, and adiposity cannot be inferred from an observational study. Fourth, all subjects with
99	genetic data were selected in each cohort. The source of genotyping data was diverse (e.g. sub-cohort,
00	case control studies), therefore, subject selection might be a major source of bias. Fifth, we acknowledge
801	that the different methods in measuring anthropometric traits, genetic variants and food intake across
802	cohorts might introduce bias in the present analyses. Finally, the participants included in our study were
803	middle aged and older adults of Caucasians in the US and Chinese in Singapore, and it is unknown
804	whether our findings could be generalized to other demographic or ethnic groups.
05	Conclusions
06	In summary, our data provide reproducible evidence from 4 multiethnic cohorts that high long chain n-3
807	PUFAs and fish intakes accentuate the genetic association of the FADS with adiposity. These findings
808	emphasize the importance of considering precision nutritional interventions on prevention and treatment
09	of obesity. We acknowledge that these results are hypothesis-generating and need to be confirmed in
10	additional cohorts.
811	
312	Contributors: TH and LQ designed the study and wrote the first draft. TH analyzed the data. FBH
13	provided statistical expertise. TW, YH, DS, CSF, JW, LRP, AT, GC, IDV, HKC, JF, XS, CCK, YF, RM,
814	HCK, JY, KWP, and LQ were involved in data collection. TH and LQ are guarantors. All authors
15	contributed to the interpretation of the results and critical revision of the manuscript for important
16	intellectual content and approved the final version of the manuscript.
17	We acknowledge Dr. Gary C. Curhan's contribution to the genetic data.
18	
19	Funding
20	This study was supported by grants HL126024, HL034594, DK100383, DK091718, HL071981,
821	HL073168, CA87969, CA49449, CA055075, HL34594, HL088521, U01HG004399, DK080140,

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2 3	322	P30DK46200, U01CA137088, U54CA155626, DK58845, DK098311, U01HG004728, EY015473,
4 5 6	323	CA134958, DK70756 and DK46200 from the National Institutes of Health, with additional support for
0 7 8	324	genotyping from Merck Research Laboratories, North Wales, PA. LQ is a recipient of the American Heart
9 10	325	Association Scientist Development Award (0730094N). LRP is supported by the Arthur Ashley Williams
11 12	326	Foundation and a Harvard Ophthalmology Scholar Award (Harvard Medical School) from the Harvard
13 14 15	327	Glaucoma Center of Excellence. ATC is a Damon Runyon Cancer Foundation Clinical Investigator. The
15 16 17	328	SCHS study is supported by the National Institutes of Health, USA (NCI R01 CA144034, UM1
18 19	329	CA182876, R01 DK080720), the Singapore National Medical Research Council (NMRC 1270/2010), the
20 21	330	HUJ-CREATE Programme of the National Research Foundation, Singapore (Project Number 370062002)
22 23	331	and Biomedical Research Council, Singapore. The funding sources had no role in the design or conduct of
24 25	332	the study; collection, management, analysis, and interpretation of the data; or preparation, review, or
26 27	333	approval of the manuscript.
28 29 20	334	
30 31	335	Declaration of interests: All authors have no conflict of interest to declare. No support from any
32 33	336	organization for the submitted work; no financial relationships with any organizations that might have an
34 35 36	337	interest in the submitted work in the previous three years, no other relationship or activity that could
37 38	338	appear to have influenced the submitted work.
39 40	339	
41 42	340	
43 44	341	Data sharing
45 46	342	Data are available in Harvard school of public health, NHS and HPFS cohorts. All data relevant to the
47 48	343	study are included in the article or uploaded as supplementary information.
49 50		
51		
52		
53		
54 55		
55		

References

- Del Gobbo LC, Imamura F, Aslibekyan S, Marklund M, Virtanen JK, Wennberg M, et al. omega-3 Polyunsaturated Fatty Acid Biomarkers and Coronary Heart Disease: Pooling Project of 19 Cohort Studies. *JAMA internal medicine* 2016;176(8):1155-66.
- 2. Hu FB, Bronner L, Willett WC, Stampfer MJ, Rexrode KM, Albert CM, et al. Fish and omega-3 fatty acid intake and risk of coronary heart disease in women. *Jama* 2002;287(14):1815-21.
- 3. He K, Rimm EB, Merchant A, Rosner BA, Stampfer MJ, Willett WC, et al. Fish consumption and risk of stroke in men. *Jama* 2002;288(24):3130-6.
- 4. Iso H, Rexrode KM, Stampfer MJ, Manson JE, Colditz GA, Speizer FE, et al. Intake of fish and omega-3 fatty acids and risk of stroke in women. *Jama* 2001;285(3):304-12.
- 5. Qi L, Cho YA. Gene-environment interaction and obesity. Nutrition reviews 2008;66(12):684-94.
- 6. Qi Q, Chu AY, Kang JH, Huang J, Rose LM, Jensen MK, et al. Fried food consumption, genetic risk, and body mass index: gene-diet interaction analysis in three US cohort studies. *BMJ* 2014;348:g1610.
- 7. Qi Q, Chu AY, Kang JH, Jensen MK, Curhan GC, Pasquale LR, et al. Sugar-sweetened beverages and genetic risk of obesity. *The New England journal of medicine* 2012;367(15):1387-96.
- 8. Fumagalli M, Moltke I, Grarup N, Racimo F, Bjerregaard P, Jorgensen ME, et al. Greenlandic Inuit show genetic signatures of diet and climate adaptation. *Science* 2015;349(6254):1343-7.
- 9. Hegele RA, Anderson C, Young TK, Connelly PW. G-protein beta3 subunit gene splice variant and body fat distribution in Nunavut Inuit. *Genome research* 1999;9(10):972-7.
- 10. Hegele RA, Huff MW, Young TK. Common genomic variation in LMNA modulates indexes of obesity in Inuit. *The Journal of clinical endocrinology and metabolism* 2001;86(6):2747-51.
- Jorgensen ME, Bjeregaard P, Borch-Johnsen K. Diabetes and impaired glucose tolerance among the inuit population of Greenland. *Diabetes Care* 2002;25(10):1766-71.
- Jorgensen ME, Glumer C, Bjerregaard P, Gyntelberg F, Jorgensen T, Borch-Johnsen K. Obesity and central fat pattern among Greenland Inuit and a general population of Denmark (Inter99): relationship to metabolic risk factors. *International journal of obesity and related metabolic disorders : journal of the International Association for the Study of Obesity* 2003;27(12):1507-15.
- 13. Tishkoff S. GENETICS. Strength in small numbers. *Science* 2015;349(6254):1282-3.
- 14. Dewailly E, Blanchet C, Lemieux S, Sauve L, Gingras S, Ayotte P, et al. n-3 Fatty acids and cardiovascular disease risk factors among the Inuit of Nunavik. *The American journal of clinical nutrition* 2001;74(4):464-73.
- 15. Colditz GA, Manson JE, Hankinson SE. The Nurses' Health Study: 20-year contribution to the understanding of health among women. *Journal of women's health / the official publication of the Society for the Advancement of Women's Health Research* 1997;6(1):49-62.
- 16. Cornelis MC, Monda KL, Yu K, Paynter N, Azzato EM, Bennett SN, et al. Genome-wide meta-analysis identifies regions on 7p21 (AHR) and 15q24 (CYP1A2) as determinants of habitual caffeine consumption. *PLoS genetics* 2011;7(4):e1002033.
- 17. Jensen MK, Pers TH, Dworzynski P, Girman CJ, Brunak S, Rimm EB. Protein interaction-based genome-wide analysis of incident coronary heart disease. *Circulation. Cardiovascular genetics* 2011;4(5):549-56.

- 20. Qi L, Cornelis MC, Kraft P, Stanya KJ, Linda Kao WH, Pankow JS, et al. Genetic variants at 2q24 are associated with susceptibility to type 2 diabetes. *Hum Mol Genet* 2010;19(13):2706-15.
- 21. Kottgen A, Albrecht E, Teumer A, Vitart V, Krumsiek J, Hundertmark C, et al. Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. *Nature genetics* 2013;45(2):145-54.
- 22. Peters U, Jiao S, Schumacher FR, Hutter CM, Aragaki AK, Baron JA, et al. Identification of Genetic Susceptibility Loci for Colorectal Tumors in a Genome-Wide Meta-analysis. *Gastroenterology* 2013;144(4):799-807 e24.
 22. Difference Colorectal Tumors (2013):144(4):799-807 e24.
- 23. Rimm EB, Giovannucci EL, Willett WC, Colditz GA, Ascherio A, Rosner B, et al. Prospective study of alcohol consumption and risk of coronary disease in men. *Lancet* 1991;338(8765):464-8.

60

BMJ Open

1	
2	
3	24. Anderson GL, Manson J, Wallace R, Lund B, Hall D, Davis S, et al. Implementation of the Women's Health
4	Initiative study design. Annals of epidemiology 2003:13(9 Suppl):S5-17.
5	25. Design of the Women's Health Initiative clinical trial and observational study. The Women's Health Initiative
6	Study Group Controlled clinical trials 1998 19(1):61-109
7	26 Yuan IM Stram DO Arakawa K Lee HP Yu MC Dietary cryptoxanthin and reduced risk of lung cancer: the
8	Singapore Chinese Health Study Cancer enidemiology, biomarkers & prevention - a publication of the
0	American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology
10	2003.12(9):890-8
10	27 Hankin JH Stram DO Arakawa K Park S Low SH Lee HP et al Singapore Chinese Health Study
11	development validation and calibration of the quantitative food frequency questionnaire. <i>Nutrition and</i>
12	cancer 2001:39(2):187-95
13	28 Chen Z Pereira MA Sejelstad M Koh WP Taj ES Teo YY et al. Joint effects of known type 2 diabetes
14	suscentibility loci in genome-wide association study of Singapore Chinese the Singapore Chinese health
15	study. PlaS one 2014.9(2):e87762
16	29 Doraioo R Sun Y Han Y Ke T Burger A Chang X et al. A genome-wide association study of n-3 and n-6
17	nlasma fatty acids in a Singaporean Chinese population Genes & nutrition 2015:10(6):53
18	30 Rimm FB Stampfer MI Colditz GA Chute CG Litin LB Willett WC Validity of self-reported waist and hin
19	circumferences in men and women <i>Enidemiology</i> 1990:1(6):466-73
20	31 Huang T Zheng Y Qi Q Xu M Lev SH Li Y et al DNA methylation variants at HIF3A locus B vitamins
21	intake and long-term weight change gene-diet interactions in two US cohorts. <i>Diabetes</i> 2015
22	32 Willett WC Sampson L Stampfer MI Rosner B Bain C Witschi L et al Reproducibility and validity of a
23	semiquantitative food frequency questionnaire Am J Enidemiol 1985-122(1):51-65
24	33 Rimm EB Giovannucci EL Stampfer ML Colditz GA Litin LB Willett WC Reproducibility and validity of an
25	expanded self-administered semiguantitative food frequency questionnaire among male health professionals.
26	Am J Epidemiol 1992:135(10):1114-26: discussion 27-36.
27	34. Patterson RE, Kristal AR, Tinker LF, Carter RA, Bolton MP, Agurs-Collins T. Measurement characteristics of
28	the Women's Health Initiative food frequency questionnaire. Annals of epidemiology 1999;9(3):178-87.
29	35. Chiuve SE, Fung TT, Rimm EB, Hu FB, McCullough ML, Wang M, et al. Alternative dietary indices both
30	strongly predict risk of chronic disease. The Journal of nutrition 2012;142(6):1009-18.
31	36. Wolf AM, Hunter DJ, Colditz GA, Manson JE, Stampfer MJ, Corsano KA, et al. Reproducibility and validity of
32	a self-administered physical activity questionnaire. Int J Epidemiol 1994;23(5):991-9.
33	37. Langer RD, White E, Lewis CE, Kotchen JM, Hendrix SL, Trevisan M. The Women's Health Initiative
34	Observational Study: baseline characteristics of participants and reliability of baseline measures. Annals of
35	epidemiology 2003;13(9 Suppl):S107-21.
36	38. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Statistics in medicine
37	2002;21(11):1539-58.
38	39. Kabir M, Skurnik G, Naour N, Pechtner V, Meugnier E, Rome S, et al. Treatment for 2 mo with n 3
30	polyunsaturated fatty acids reduces adiposity and some atherogenic factors but does not improve insulin
40	sensitivity in women with type 2 diabetes: a randomized controlled study. The American journal of clinical
40	nutrition 2007;86(6):1670-9.
41	40. Munro IA, Garg ML. Prior supplementation with long chain omega-3 polyunsaturated fatty acids promotes
42	weight loss in obese adults: a double-blinded randomised controlled trial. Food & function 2013;4(4):650-8.
45	41. Thorsdottir I, Tomasson H, Gunnarsdottir I, Gisladottir E, Kiely M, Parra MD, et al. Randomized trial of
44	weight-loss-diets for young adults varying in fish and fish oil content. Int J Obes (Lond)
45	2007;31(10):1560-6.
46	42. Munro IA, Garg ML. Dietary supplementation with n-3 PUFA does not promote weight loss when combined
4/	with a very-low-energy diet. The British journal of nutrition 2012;108(8):1466-74.
48	43. Crochemore IC, Souza AF, de Souza AC, Rosado EL. omega-3 polyunsaturated fatty acid supplementation does
49	not influence body composition, insulin resistance, and lipemia in women with type 2 diabetes and obesity.
50	Nutrition in clinical practice : official publication of the American Society for Parenteral and Enteral
51	<i>Nutrition</i> 2012;27(4):553-60.
52	44. Bender N, Portmann M, Heg Z, Hotmann K, Zwahlen M, Egger M. Fish or n3-PUFA intake and body
53	composition: a systematic review and meta-analysis. Obesity reviews : an official journal of the
54	International Association for the Study of Obesity 2014;15(8):657-65.
55	45. Ameur A, Enroth S, Johansson A, Zaboli G, Igl W, Johansson AC, et al. Genetic adaptation of fatty-acid
56	metabolism: a human-specific haplotype increasing the biosynthesis of long-chain omega-3 and omega-6
57	
58	
fatty acids. Am J Hum Genet 2012;90(5):809-20.

- 46. Ralston JC, Matravadia S, Gaudio N, Holloway GP, Mutch DM. Polyunsaturated fatty acid regulation of adipocyte FADS1 and FADS2 expression and function. *Obesity (Silver Spring)* 2015;23(4):725-8.
- 47. Smith GI, Julliand S, Reeds DN, Sinacore DR, Klein S, Mittendorfer B. Fish oil-derived n-3 PUFA therapy increases muscle mass and function in healthy older adults. *The American journal of clinical nutrition* 2015;102(1):115-22.
- Jourdan C, Kloiber S, Nieters A, Seiler H, Himmerich H, Kohli MA, et al. Gene-PUFA interactions and obesity risk. *The British journal of nutrition* 2011;106(8):1263-72.

tor peer terien only

	NHS ¹	HPFS	WHI	SCHS
	n=11,323	n=6,833	n=6,254	n=5,264
Age (year)	57 ± 9	57 ± 11	68 ± 5	56 ± 7
Female (%)	100	0	100	58.7
Body weight (kg)	70.1 ± 14.9	82.8 ± 12.5	73.7 ± 15.0	60.3 ± 9.8
Body mass index (kg/m ²)	26.2 ± 5.1	25.9 ± 3.3	28.3 ± 5.5	23.4 ± 3.3
Alcohol consumption (g/day)	5.14 ± 9.23	10.97 ± 15.05	6.00 ± 11.96	1.97 ± 8.02
Physical activity (MET-h/week)	19.3 ± 22.1	36.9 ± 39.5	11.6 ± 13.1	0.5 ± 1.0^{2}
Television watching (h/week)	17.5 ± 14.8	10.5 ± 8.2	/	2.2 ± 0.8
Current smokers (n, (%))	1557(13.8)	493(7.3)	407(15.0)	1364(20.0)
Total energy intake (kcal/day)	1766 ± 502	1949 ± 578	1602 ± 654	1606 ± 573
Alternative health eating index score	53.4 ± 10.8	53.8 ± 11.4	53.5 ± 10.6	55.8 ± 8.2
Sugar sweetened beverage intake (servings/day)	0.13 ± 0.39	0.23 ± 0.48	0.39 ± 0.82	0.69 ± 2.40^3
Total fried food (servings/day)	0.12 ± 0.20	0.22 ± 0.28	/	/
Fish intake (servings/day)	0.31 ± 0.29	0.33 ± 0.30	0.23 ± 0.20	0.16 ± 0.07
Food-sourced EPA (g/day)	0.08 ± 0.14	0.12 ± 0.20	0.04 ± 0.04	/
Food-sourced DHA (g/day)	0.17 ± 0.14	0.22 ± 0.19	0.07 ± 0.07	/
Food-sourced EPA+DHA (g/day)	0.23 ± 0.19	0.31 ± 0.25	0.11 ± 0.10	0.33 ± 0.20
Total EPA+DHA (g/day)	0.26 ± 0.27	0.35 ± 0.37	0.38 ± 0.48	/

Table 1 Baseline characteristics of all participants in the NHS, HPFS, WHI, and SCHS cohorts.

¹Plus-minus values are means \pm SD. ²Hours per week of moderate activity in the SCHS. ³Glasses per week of soda intake in the SCHS.

EPA: 20:5n-3; DHA: 22:6n-3; MET denotes metabolic equivalents. Total EPA+DHA includes food-sourced and supplemental EPA+DHA.

Data on BMI, long chain n-3 PUFAs and fish consumptions were assessed at baseline in the NHS (1990), the HPFS (1990), the WHI (1994-1998), and the SCHS (1993-1998), respectively. Television watching assessed in 1992 for NHS and in 1990 for HPFS.

Table 2 Associations of long chain n-3 PUFAs and fish intakes with long-term changes in BMI according to FADS genotypes

		Three categories of				P for
	FADS genotypes	long chain n	-3 PUFAs and	l fish intakes	P for trend	interaction*
Total fish, serving/day		$\leq 1/wk$	1~6/wk	$\geq 1/d$		
NHS	Non-T carriers	0.82±0.06	0.98±0.04	1.15±0.13	0.006	0.03
	T carriers	0.73±0.11	0.95 ± 0.08	1.55±0.25	0.0007	
HPFS	Non-T carriers	0.43±0.05	0.52±0.04	0.59±0.12	0.73	0.03
	T carriers	0.21±0.11	0.52 ± 0.07	0.79±0.22	0.02	
WHI	Non-T carriers	0.11±0.08	0.28±0.06	0.28±0.34	0.04	0.09
	T carriers	0.02±0.15	0.29±0.11	0.94±0.67	0.01	
SCHS	Non-T carriers	-3.08±0.19	-3.00±0.17	-3.35±0.18	0.32	0.01
	T carriers	-3.61±0.17	-3.10±0.15	-3.25±0.17	0.13	
Pooled ¹	Non-T carriers	0.50±0.03	0.67±0.03	0.81±0.08	0.01	0.0007
	T carriers	0.38±0.07	0.63±0.05	1.11±0.16	2×10-4	
Food-sourced EPA+DH	IA, g/day	Tertile1	Tertile2	Tertile3		
NHS	Non-T carriers	0.79±0.06	0.92±0.05	1.11±0.06	0.01	0.005
	T carriers	0.71±0.10	0.84±0.11	1.19±0.11	0.0001	
HPFS	Non-T carriers	0.46±0.05	0.53±0.05	0.49±0.05	0.79	0.02
	T carriers	0.23±0.11	0.48±0.10	0.58±0.09	0.02	
WHI	Non-T carriers	0.02 ± 0.08	0.21±0.08	0.41±0.08	0.06	0.04
	T carriers	-0.03±0.15	0.29±0.14	0.35±0.15	0.004	
SCHS	Non-T carriers	-3.32±0.17	-3.15±0.18	-2.99±0.17	0.16	0.035
	T carriers	-3.55±0.16	-3.34±0.16	-3.05±0.16	0.02	
Pooled ¹	Non-T carriers	0.49±0.03	0.64±0.03	0.68±0.03	0.01	0.0003
	T carriers	0.39±0.07	0.57±0.06	0.74±0.06	1.5×10 ⁻⁶	
Total EPA+DHA, g/day	Į.	Tertile1	Tertile2	Tertile3		

NHS	Non-T carriers	0.79±0.06	0.94±0.05	1.08±0.06	0.8	0.01
	T carriers	0.72±0.11	0.87±0.10	1.16±0.11	0.02	
HPFS	Non-T carriers	0.47±0.05	0.53±0.05	0.49±0.05	0.88	0.13
	T carriers	0.23±0.10	0.50±0.09	0.57±0.10	0.16	
WHI	Non-T carriers	0.39±0.10	0.04±0.08	0.23±0.10	0.42	0.27
	T carriers	0.04±0.18	0.28±0.15	0.28±0.16	0.84	
Pooled ¹	Non-T carriers	0.57±0.04	0.62±0.03	0.67±0.04	0.65	0.005
	T carriers	0.39±0.07	0.60±0.06	0.74±0.07	0.01	

Data are means \pm SE for long term changes in BMI.

Total EPA+DHA include food-sourced and supplemental EPA+DHA.

¹P for interaction was generated from dominant model of *FADS* rs174570 (CC vs CT+TT).

Numbers of T carriers/Non-T carriers in the NHS, HPFS, WHI, and SCHS are 1698/9625, 1025/5808, 876/5378, and 1842/3422, respectively.

Data on BMI, long chain n-3 PUFAs and fish consumptions were assessed at baseline in the NHS (1990), the HPFS (1990), the WHI (1994-1998), and the SCHS (1993-1998), respectively.

Data on follow-up BMI was assessed in 2000 in the NHS and HPFS, in the sixth follow-up year in the WHI, and from 2006 to 2010 in the SCHS, respectively.

Long-term BMI changes were calculated based on the changes in BMI from baseline to follow-up year in the four cohorts, respectively.

The multiple linear regression model was used to test the associations of long chain n-3 PUFAs and fish intakes with long-term changes in BMI by *FADS* genotypes after adjustment for age, source of genotyping data, baseline BMI, smoking, alcohol intake, physical activity, total energy intake, alternate healthy eating index, television watching, sugar sweetened beverage, fried food consumption.

The results were pooled by means of fixed effects meta-analyses ($P \ge 0.05$ for heterogeneity between studies).

Figure Legends

Figure 1 Genetic variant of *FADS* rs174570, long chain n-3 PUFAs and fish intakes and long-term BMI changes

Effect size (ES) (95% CI) values are β coefficients for interaction between the *FADS* variant rs174570 (additive model) and diets from results of the NHS, HPFS, WHI, and SCHS cohorts.

Data on BMI, long chain n-3 PUFAs (food sourced EPA+ DHA and total EPA+ DHA (food and

supplemental use)) and fish consumptions were assessed at baseline in the NHS (1990), the HPFS (1990),

the WHI (1994-1998), and the SCHS (1993-1998), respectively.

Data on follow-up BMI was assessed in 2000 in the NHS and HPFS, in the sixth follow-up year in the

WHI, and from 2006 to 2010 in the SCHS, respectively.

Long-term BMI changes were calculated based on the changes in BMI from baseline to follow-up year in the four cohorts, respectively.

The multiple linear regression model was used to test the *FADS* variant-diets interaction by including a multiplicative interaction term in the models after adjustment for age, source of genotyping data, baseline BMI, smoking, alcohol intake, physical activity, total energy intake, alternate healthy eating index,

television watching, sugar sweetened beverage, fried food consumption.

The results were pooled by means of fixed effects meta-analyses ($P \ge 0.05$ for heterogeneity between studies).

Figure 2 Genetic association of *FADS* variant rs174570 with long-term BMI change according to long chain n-3 PUFAs and fish intakes

Pooled-EUR: data from NHS, HPFS, and WHI were pooled.

Pooled Multiethnic: data from NHS, HPFS, WHI and SCHS were pooled.

Data are β coefficients \pm SE.

Numbers of participants across three categories (≤1/wk/1~6/wk/≥1/d) of fish intake in the NHS, HPFS,

WHI, and SCHS are 1618/8465/1239, 977/5108/748, 894/4675/684, and 752/3935/576, respectively.

BMJ Open

Frequency of fish intake: ≤ 1 serving per week, 1~6 servings per week, and 1 serving per day

Data on BMI, long chain n-3 PUFAs (food sourced EPA+ DHA and total EPA+ DHA (food and supplemental use)) and fish consumptions were assessed at baseline in the NHS (1990), the HPFS (1990), the WHI (1994-1998), and the SCHS (1993-1998), respectively. Data on follow-up BMI was assessed in 2000 in the NHS and HPFS, in the sixth follow-up year in the WHI, and from 2006 to 2010 in the SCHS, respectively. The multiple linear regression model was used to test the genetic association of the *FADS* variant (additive model) with long-term changes in BMI by frequency of fish intake and tertiles of LC fatty acids after adjustment for age, source of genotyping data, baseline BMI, smoking, alcohol intake, physical activity, total energy intake, alternate healthy eating index, television watching, sugar sweetened beverage, fried food consumption. The results were pooled by means of fixed effects meta-analyses ($P \ge 0.05$ for heterogeneity between studies).

Figure 3 Predicted long-term changes in BMI from long chain n-3 PUFAs intake according to *FADS* genotypes

Numbers of T carriers/Non-T carriers in the NHS, HPFS, and WHI are 1698/9625, 1025/5808, and 876/5378, respectively.

Black circles for T allele carriers and open circle for non-T-carriers.

The multiple linear regression model was used to test the associations of long chain n-3 PUFAs intake with long-term changes in BMI according to *FADS* genotypes after adjustment for age, source of genotyping data, baseline BMI, smoking, alcohol intake, physical activity, total energy intake, alternate healthy eating index, television watching, sugar sweetened beverage, fried food consumption.

The data on food-sourced EPA+DHA was pooled from the NHS and HPFS cohorts. Data from US cohorts was pooled by means of fixed effects meta-analyses ($P \ge 0.05$ for heterogeneity between studies).

Figure 4 Predicted long-term changes in BMI from fish intake according to FADS genotypes

Numbers of T carriers/Non-T carriers in the NHS, HPFS, and WHI are 1698/9625, 1025/5808, and 876/5378, respectively.

Black circles for T allele carriers and open circle for non-T-carriers.

The multiple linear regression model was used to test the associations of and fish intake with long-term changes in BMI according to *FADS* genotypes after adjustment for age, source of genotyping data, baseline BMI, smoking, alcohol intake, physical activity, total energy intake, alternate healthy eating index, television watching, sugar sweetened beverage, fried food consumption.

The data on total fish intake was pooled from the NHS, HPFS, and WHI cohorts. Data from US cohorts was pooled by means of fixed effects meta-analyses (if $P \ge 0.05$ for heterogeneity between studies).

FADS-Diets Interaction Cohort	ES (95% CI)	% Weight
Food-sourced EPA	0.92 (0.04 1.81)	17.5
HPES	0.31 (-0.37, 0.99)	29.6
WHI .	0.62 (0.11 1.13)	52.9
Subtotal (I-squared = 0.0%, p = 0.549)	0.58 (0.21, 0.95)	
Food-sourced DHA		
NHS -	0.95 (0.17, 1.73)	8.3
HPFS	- 0.61 (0.00, 1.22)	13.6
WHI	0.24 (-0.01, 0.49)	78.2
Subtotal (I-squared = 45.4%, p = 0.160)	0.35 (0.12, 0.57)	
Food-sourced EPA+DHA		
NHS	0.67 (0.10, 1.24)	11.7
HPFS	0.44 (-0.00, 0.88)	19.8
WHI	0.18 (0.00, 0.36)	20.5
SCHS	0.25 (0.01, 0.49)	48.1
Subtotal (I-squared = 11.0%, p = 0.338)	0.25 (0.12, 0.38)	
Total EPA+DHA		
NHS	0.52 (0.09, 0.96)	16.2
HPFS	0.26 (-0.08, 0.59)	27.8
WHI	0.13 (-0.11, 0.37)	55.9
Subtotal (I-squared = 19.0%, p = 0.291)	0.23 (0.05, 0.41)	
Total fish		
NHS +++	0.31 (-0.10, 0.72)	18.5
HPFS +++	0.32 (-0.06, 0.69)	21.9
WHI	0.81 (-0.13, 1.75)	3.5
SCHS	0.28 (0.04, 0.52)	56.1
Subtotal (I-squared = 0.0%, p = 0.765)	0.31 (0.14, 0.49)	

-2

254x190mm (200 x 200 DPI)

0 0.29

0.4 0.4 p=0.09 p=0.02 p=0.06 HPFS WHI =0.13 NHS ----• p=0.30 ----0.3 0.3 p=0.04 =0.04 NA 0.2 0.2 0.1 0.10.0 0.0 -0.1 -0.1 -0.2 -0.2 ĩ -0.3 -0.3 ł -0.4 -0.4 Tl(≤l/wk) T2(1~6/wk) T3(≥1/d) T3(≥1/d) $T1(\leq 1/wk)$ T2(1~6/wk) $T3(\geq 1/d)$ T1(≤1/wk) T2(1~6/wk) p=0.006 p=0.01 p=0.009 p=0.009 0.4 0.4 p=0.03 p=0.01 p=0.003 p=0.008 p=0.008 p=0.02 p=0.03 SCHS Pooled-EUR 0.4 0.2 0.1 0.0 0.3 _____p=0.02 0.2 0.1 0.0 -0.1 -0.1 -0.2 -0.3 -0.4 -0.2 ed EPA -0.3 rced DHA at sourced EPA+DHA tal EPA+DH* -0.4 -0.5 -0.5 -0.6 -0.6 $T1(\leq 1/wk)$ T2(1~6/wk) T3(≥1/d) T1(≤1/wk) T3(≥1/d) T2(1~6/wk) T3(≥1/d) T2(1~6/wk) $T1(\leq 1/wk)$

254x190mm (200 x 200 DPI)

59

254x190mm (200 x 200 DPI)

51 52 53 54 55

56

2.0 Predicted 10-y changes in BMI, kg/m² 1.8 T carriers $\beta \pm SE = 0.64 \pm 0.16$ 1.6 P = 0.000021.4 1.2 1.0 Non-T carriers 0.8 $\beta \pm SE = 0.18 \pm 0.08$ 0.6 P = 0.010.4 0.2 0.0 1.0 1.5 2.0 0.5 2.5 3.0 0.0 Total fish intake, servings/day

254x190mm (200 x 200 DPI)

3
4
5
ر د
0
/
8
9
10
11
12
13
11
14
10
10
17
18
19
20
21
22
23
24
27
25
20
2/
28
29
30
31
32
33
34
25
26
30
37
38
39
40
41
42
43
44
45
75 16
40
4/
48
49
50
51
52
53
54
55
56
50
5/
58
59

60

Supplemental table 1. Annotation for the top six SNPs under positive selection in Greenlandic Inuit

	Reference				DAF					
Position ¹	SNP identification number	Alleles ²	CEU	СНВ	GI	NHS	HPFS	WHI	SCHS	PBS
chr11:61627960	rs74771917	C/T	0.025	0.16	0.98	/	/	/	/	2.67
chr11:61631510	rs3168072	A/T	0.017	0.18	0.98	/	/	/	/	2.64
chr11:61632310	rs12577276	A/G	0.017	0.18	0.98	/	/	/	/	2.64
chr11:61641717	rs7115739	G/T	0.017	0.22	0.98	0.004	0.004	/	/	2.54
chr11:61624414	rs174602	C/T	0.80	0.73	0.01	0.82	0.81	/	/	2.11
chr11:61597212	rs174570	C/T	0.16	0.34	0.99	0.15	0.15	0.14	0.35	2.06

¹Positions refer to human genome assembly hg19.

²Alleles are coded as ancestral/derived states.

PBS, the population branch statistic; DAF, derived allele frequency; CEU, European ancestry; CHB, an

Chinese; GI, Greenlandic Inuit

DAFs for each population (CEU, CHB, and GI) and PBS values are reported, along with the genomic position for each SNP.

Supplemental table 2 Main effect of the FADS variants on adiposity in the four cohorts

Outcomes (kg/m^2)	FADS	NHS		HPFS		WHI		SCH	S	Poolec	1
Outcomes (kg/m/)	SNPs	Beta ± SE	Р	Beta ± SE	Р	Beta ± SE	Р	Beta ± SE	Р	Beta ± SE	Р
Baseline BMI	rs174570	0.03 ± 0.10	0.733	$\textbf{-0.05}\pm0.09$	0.538	-0.06±0.17	0.72	0.24±0.08	0.002	0.08 ± 0.05	0.06
Baseline BMI	rs174602	0.08 ± 0.10	0.418	$\textbf{-0.05} \pm 0.08$	0.536	/		/		0.00 ± 0.03	0.559
Baseline BMI	rs7115739	0.25 ± 0.52	0.634	$\textbf{-0.77} \pm 0.43$	0.077	/		/		$\textbf{-0.35}\pm0.14$	0.196
Long-term BMI change	rs174570	-0.05 ± 0.06	0.401	0.01 ± 0.05	0.917	-0.02 ± 0.09	0.77	-0.02 ± 0.08	0.85	-0.02 ± 0.03	0.94
Long-term BMI change	rs174602	-0.14 ± 0.06	0.009	0.04 ± 0.05	0.413	/		/		$\textbf{-0.04} \pm 0.01$	0.025
Long-term BMI change	rs7115739	0.45 ± 0.29	0.124	-0.23 ± 0.26	0.359	/		/		0.06 ± 0.08	0.183

Long-term BMI change: BMI change from 1990 to 2000.

Numbers of T carriers/Non-T carriers in the NHS, HPFS, WHI, and SCHS are 1698/9625, 1025/5808, 876/5378, and 1842/3422, respectively.

Effect size (ES) values are β coefficients for relationship between the *FADS* variant rs174570 (additive model) and adiposity.

The general linear model was used to test the genetic association of *FADS* variants with long-term changes in BMI after adjustment for age, source of genotyping data.

	Difference in lo	ong-term change	s in weight,	D for intonaction
		kg		r for interaction
Total Fish, serving/day	≤1/wk	1~6/wk	$\geq 1/d$	
NHS	-0.69±0.64	-0.13±0.49	1.78±1.64	0.05
HPFS	-0.99±0.85	0.54±0.53	1.52±1.69	0.12
WHI	-0.22±0.42	0.16±0.34	1.26±1.57	0.13
SCHS	-0.42±0.29	-0.44±0.28	0.20±0.29	0.08
Pooled	-0.44±0.22	-0.10±0.18	0.31±0.28	0.01
Food-sourced EPA, g/day	T 1	T2	Т3	
NHS	-0.77±0.62	-0.25±0.72	0.53±0.64	0.06
HPFS	-1.19±0.82	0.75±0.73	$0.72{\pm}0.74$	0.41
WHI	-0.19±0.42	0.24±0.47	$0.14{\pm}0.48$	0.20
Pooled	-0.50±0.32	0.24±0.34	0.37±0.34	0.10
Food-sourced DHA, g/day	T1	T2	Т3	
NHS	-0.53±0.62	-0.39±0.70	0.53±0.65	0.01
HPFS	-1.06±0.82	0.49±0.71	0.89±0.76	0.09
WHI	-0.20±0.43	0.22±0.42	0.30±0.50	0.26
Pooled	-0.43±0.32	0.15±0.32	0.49±0.35	0.01
Food-sourced EPA+DHA, g/day	T1	T2	Т3	
NHS	-0.56±0.63	-0.32±0.68	0.49±0.66	0.01
HPFS	-1.25±0.83	0.68±0.73	$0.84{\pm}0.74$	0.09
WHI	-0.02±0.43	0.16±0.44	0.14±0.49	0.23
SCHS	-0.47±0.29	-0.16±0.28	-0.03±0.29	0.10

Supplemental table 3 Genetic association of *FADS* variant with long-term changes in body weight according to long chain n-3 PUFAs and fish intakes

Pooled	-0.56±0.25	-0.09±0.24	0.14±0.25	0.005
Total EPA+DHA, g/day	T1	T2	T3	
NHS	-0.58±0.63	-0.30±0.68	0.46±0.66	0.02
HPFS	-1.20±0.82	0.75 ± 0.70	0.86 ± 0.77	0.18
WHI	-0.48 ± 0.47	0.64±0.43	0.04 ± 0.47	0.15
Pooled	-0.64±0.34	0.45±0.32	0.32±0.34	0.02

Data are β coefficients \pm SE.

Numbers of T carriers/Non-T carriers in the NHS, HPFS, WHI, and SCHS are 1698/9625, 1025/5808, 876/5378, and 1842/3422, respectively.

Frequency of fish intake: ≤ 1 serving per week, 1~6 servings per week, and 1 serving per day

Data on baseline fish and fatty acids consumptions were assessed in 1990 (NHS) and 1990 (HPFS).

Data on body weight were assessed in 1990 and 2000 in NHS and 1990 and 2000 in HPFS.

The general linear model was used to test the genetic association with long-term changes in body weight according to baseline long chain n-3 PUFAs and fish intakes after adjustment for age, source of genotyping data, baseline body weight, smoking, alcohol intake, physical activity, total energy intake, alternate healthy eating index, television watching, sugar sweetened beverage, fried food consumption. Data from three or four cohorts pooled by means of fixed effects meta-analyses (if $P \ge 0.05$ for heterogeneity between studies).

Cohorts		Long-ter	m changes in w	eight, kg	P for trend
Total Fish, s	erving/day	≤1/wk	1~6/wk	$\geq 1/d$	
NHS	Non T carriers	4.91±0.34	5.78±0.24	7.00±0.79	0.008
	T carriers	4.45±0.61	5.64±0.46	9.26±1.44	0.001
HPFS	Non T carriers	$0.44{\pm}0.06$	0.52±0.04	0.56±0.12	0.99
	T carriers	0.25±0.10	0.53±0.07	0.76±0.21	0.08
WHI	Non T carriers	-0.25±0.23	-0.43±0.18	-0.91±0.93	0.50
	T carriers	-0.56±0.37	-0.25±0.28	1.30±1.71	0.13
SCHS	Non T carriers	-3.15±0.23	-3.50±0.21	-3.38±0.21	0.48
	T carriers	-3.68±0.20	-3.41±0.19	-3.34±0.20	0.16
Food-source	ed EPA, g/day	T1	T2	Т3	
NHS	Non T carriers	4.89±0.33	5.89±0.33	5.95±0.33	0.24
	T carriers	4.45±0.59	5.52±0.63	6.46±0.61	0.34
HPFS	Non T carriers	0.50±0.05	0.54±0.05	0.45±0.05	0.15
	T carriers	0.29±0.10	0.54±0.09	0.52±0.09	0.66
WHI	Non T carriers	-0.30±0.25	-0.54±0.24	-0.29±0.24	0.42
	T carriers	-0.51±0.39	-0.36±0.37	-0.15±0.38	0.14
Food-source	ed DHA, g/day	T1	T2	Т3	
NHS	Non T carriers	4.78±0.33	5.56±0.34	6.32±0.33	0.14
	T carriers	4.50±0.60	5.07±0.63	6.77±0.61	0.004
HPFS	Non T carriers	0.48 ± 0.05	0.54±0.05	$0.46{\pm}0.06$	0.40
	T carriers	0.27±0.10	0.50±0.09	0.59±0.09	0.15
WHI	Non T carriers	-0.41±0.25	-0.25±0.24	-0.45±0.25	0.51

Supplemental table 4 Associations of long chain n-3 PUFAs and fish intakes with long-term changes in body weight according to *FADS* genotypes

	T carriers	-0.71±0.39	-0.15±0.37	-0.16±0.39	0.18
Food-source	d EPA+DHA, g/day	T1	T2	T3	
NHS	Non T carriers	4.69±0.34	5.45±0.33	6.51±0.33	0.02
	T carriers	4.44±0.61	5.00±0.61	6.92±0.61	0.0003
HPFS	Non T carriers	0.48±0.05	0.53±0.05	0.47 ± 0.05	0.93
	T carriers	0.26±0.10	$0.49{\pm}0.09$	0.59±0.09	0.08
WHI	Non T carriers	-0.44±0.24	-0.23±0.23	-0.43±0.24	0.47
	T carriers	-0.52±0.38	-0.15±0.37	-0.33±0.38	0.15
SCHS	Non T carriers	-3.44±0.21	-3.58±0.22	-3.05±0.21	0.89
	T carriers	-3.73±0.19	-3.57±0.19	-3.12±0.19	0.12
Total EPA+I	DHA, g/day	T1	T2	Т3	
NHS	Non T carriers	4.74±0.34	5.55±0.32	6.36±0.34	0.81
	T carriers	4.49±0.61	5.16±0.60	6.70±0.61	0.03
HPFS	Non T carriers	0.49±0.05	0.53±0.05	0.47 ± 0.06	0.24
	T carriers	0.26±0.10	0.51±0.09	0.58±0.09	0.33
WHI	Non T carriers	0.32±0.27	-0.84±0.23	-0.60±0.28	0.19
	T carriers	-0.26±0.45	-0.21±0.37	-0.02±0.11	0.08

Data on baseline fish and fatty acids consumptions were assessed in 1990 (NHS) and 1990 (HPFS). Numbers of T carriers/Non-T carriers in the NHS, HPFS, WHI, and SCHS are 1698/9625, 1025/5808, 876/5378, and 1842/3422, respectively.

Data on body weight were assessed in 1990 and 2000 in NHS and 1990 and 2000 in HPFS.

The general linear model was used to test the associations of long chain n-3 PUFAs and fish intakes with long-term changes in body weight by *FADS* genotypes after adjustment for age, source of genotyping data, baseline body weight, smoking, alcohol intake, physical activity, total energy intake, alternate healthy eating index, television watching, sugar sweetened beverage, fried food consumption.

Data from two cohorts pooled by means of fixed effects meta-analyses (if $P \ge 0.05$ for heterogeneity between studies) or random effects meta-analyses (if P < 0.05 for heterogeneity between studies).

Dista EADS construes		Long chair	n n-3 PUFAs and fi	ish intakes	D.f turun J	P for
Diets	FADS genotypes	(Categories of diets		P for trend	interaction*
Food-sourced	EPA, g/day	T1	T2	Т3		
NHS	Non-T carriers	$0.82{\pm}0.06$	$1.00{\pm}0.06$	1.01±0.06	0.24	0.05
	T carriers	0.72±0.10	0.94±0.11	1.10±0.11	0.29	
HPFS	Non-T carriers	0.48 ± 0.05	$0.54{\pm}0.05$	0.47±0.05	0.72	0.37
	T carriers	0.23±0.11	0.54±0.10	0.52±0.09	0.45	
WHI	Non-T carriers	0.10±0.09	$0.09{\pm}0.09$	0.45±0.09	0.21	0.02
	T carriers	-0.08±0.15	0.23±0.15	0.46±0.15	0.003	
Pooled	Non-T carriers	0.54±0.04	0.63±0.04	0.65±0.04	0.35	0.01
	T carriers	0.39±0.07	0.63±0.07	0.70±0.06	0.01	
Food-sourced	DHA, g/day	T1	T2	Т3		
NHS	Non-T carriers	0.80±0.06	0.94±0.06	1.08 ± 0.06	0.14	0.009
	T carriers	0.74±0.10	0.83±0.11	1.17±0.10	0.002	
HPFS	Non-T carriers	0.46±0.05	$0.54{\pm}0.05$	0.49±0.05	0.99	0.05
	T carriers	0.24±0.10	0.49±0.10	0.58±0.09	0.05	
WHI	Non-T carriers	0.03±0.09	0.20±0.09	0.42±0.09	0.03	0.06
	T carriers	-0.10±0.15	0.33±0.15	0.39±0.15	0.006	
Pooled	Non-T carriers	0.51±0.04	0.63±0.04	0.68±0.04	0.1	0.002
	T carriers	0.38±0.06	0.58±0.07	0.77±0.06	7×10 ⁻⁴	

Supplemental Table 5 Associations of long chain n-3 PUFAs and fish intakes with long-term changes in BMI according to *FADS* genotypes

Data are means \pm SE.

¹P for interaction was generated from dominant model of *FADS* rs174570 (CC vs CT+TT).

Numbers of T carriers/Non-T carriers in the NHS, HPFS, WHI, and SCHS are 1698/9625, 1025/5808, 876/5378, and 1842/3422, respectively.

Data on BMI, long chain n-3 PUFAs consumptions were assessed at baseline in the NHS (1990), the HPFS (1990), the WHI (1994-1998), and the SCHS (1993-1998), respectively.

Data on follow-up BMI was assessed in 2000 in the NHS and HPFS, in the sixth follow-up year in the

WHI, and from 2006 to 2010 in the SCHS, respectively.

Long-term BMI changes were calculated based on the changes in BMI from baseline to follow-up year in the four cohorts, respectively.

The general linear model was used to test the associations of long chain n-3 PUFAs and fish intakes with long-term changes in BMI by *FADS* genotypes after adjustment for age, source of genotyping data, baseline BMI, smoking, alcohol intake, physical activity, total energy intake, alternate healthy eating index, television watching, sugar sweetened beverage, fried food consumption.

The results were pooled by means of fixed effects meta-analyses (if $P \ge 0.05$ for heterogeneity between studies).

Registration: www. clinicaltrials.gov. Registration ID: NCT03348566

TABLE 1. STREGA reporting recommendations, extended from STROBE Statement

ltem	ltem number	STROBE Guideline	Extension for Genetic Association Studies (STREGA)
Title and Abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract. (p. 3)	
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found. $(p. 3)$	
Introduction		Cr r	
Background rationale	2	Explain the scientific background and rationale for the investigation being reported. (p. 4)	
Objectives	3	State specific objectives, including any pre-specified hypotheses.	State if the study is the first report of a genetic association, a replication effort, or both. (p. 3)
Methods			
Study design	4	Present key elements of study design early in the paper. (p. 5)	

1	
ר	
2	
3	
4	
5	
6	
7	
, 0	
0	
9	
10	
11	
12	
13	
14	
14	
15	
16	
17	
18	
10	
20	
20	
21	
22	
23	
24	
25	
25	
26	
27	
28	
29	
30	
31	
21	
52	
33	
34	
35	
36	
37	
20 20	
20	
39	
40	
41	
42	
43	
44	
17	
40	
46	
47	

Item	ltem number	STROBE Guideline	Extension for Genetic Association Studies (STREGA)
Setting	5	Describe the setting, locations and relevant dates, including periods of recruitment, exposure, follow-up, and data collection. $(p. 3)$	
Participants	6	 (a) Cohort study – Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up. (p. 5) Case-control study – Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls. Cross-sectional study – Give the eligibility criteria, and the sources and methods of selection of participants. 	Give information on the criteria and methods for selection of subsets of participants from a larger study, when relevant. (p. 5)
		(b) Cohort study – For matched studies, give matching criteria and number of exposed and unexposed.	
		Case-control study – For matched studies, give matching criteria and the number of controls per case.	
Variables	7	 (a) Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable. (p. 5) 	(b) Clearly define genetic exposures (genetic variants) using a widely-used nomenclature system. Identify variables likely to be associated with population stratification (confounding by ethnic origin). (p. 5)

Item	ltem number	STROBE Guideline	Extension for Genetic Association Studies (STREGA)
Data sources measurement	8*	(a) For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group. (p. 5)	(b) Describe laboratory methods, including source and storage of DNA, genotyping methods and platforms (including the allele calling algorithm used and its version), error rates and call rates. State the laboratory/centre where genotyping was done. Describe comparability of laboratory methods if there is more than one group. Specify whether genotypes were assigned using all of the data from the study simultaneously or in smalle batches. (p. 5)
Bias	9	(a) Describe any efforts to address potential sources of bias. (p. 5 &6)	(b) For quantitative outcome variables, specify if any investigation of potential bias resulting from pharmacotherapy was undertaken. If relevant, describe the nature and magnitude of the potential bias, and explain what approach was used to deal

ltem	ltem number	STROBE Guideline	Extension for Genetic Association Studies (STREGA)
			<i>with this.</i> (p. 5 &6)
Study size	10	Explain how the study size was arrived at. (p. 5 &6)	
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen, and why. (p. 7)	<i>If applicable, describe how effects of treatment were dealt with.</i> (p. 7)
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding. (p. 7-9)	State software version used and options (or settings) chosen. (p. 9)
		(b) Describe any methods used to examine subgroups and interactions. (p. 9)	
		(c) Explain how missing data were addressed. (p. 9)	
		(d) Cohort study – If applicable, explain how loss to follow-up was addressed. (p. 9)	
		Case-control study – If applicable, explain how matching of cases and controls was addressed.	
		Cross-sectional study – If applicable, describe analytical methods taking account of sampling strategy.	
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

ltem	ltem number	STROBE Guideline	Extension for Genetic Association Studies (STREGA)
		(e) Describe any sensitivity analyses. (p. 9)	
		Hardy-Weinberg equilibrium was tested using Chi-square test. (p. 9)	(f) State whether Hardy- Weinberg equilibrium was considered and, if so, how.
		We assumed that each SNP in the panel acts independently in an additive manner. We coded the SNPs as following: rs174570 (TT=2, TC=1, CC=0); rs174602 (TT=2, TC=1, CC=0); rs7115739 (TT=2, TG=1, GG=0). (p. 8&9)	(g) Describe any methods used for inferring genotypes or haplotypes.
		er.	(h) Describe any methods used to assess or address population stratification. (p. 9)
		01/	<i>(i) Describe any methods used to address multiple comparisons or to control risk of false positive findings.</i> (p. 9)
			(j) Describe any methods used to address and correct for relatedness among subjects(p. 9)

Item	ltem number	STROBE Guideline	Extension for Genetic Association Studies (STREGA)
Results			
Participants	13*	(a) Report the numbers of individuals at each stage of the study – e.g., numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed. (p. 10)	Report numbers of individuals in whom genotyping was attempted and numbers of individuals in whom genotyping was successful. (p. 10)
		(b) Give reasons for non-participation at each stage. (p. 10)	
		(c) Consider use of a flow diagram. (p. 10)	
Descriptive data	14*	(a) Give characteristics of study participants (e.g., demographic, clinical, social) and information on exposures and potential confounders. (p. 10)	Consider giving information by genotype. (p. 10)
		(b) Indicate the number of participants with missing data for each variable of interest. (p. 10)	
		(c) Cohort study – Summarize follow-up time, e.g. average and total amount. (p. 10)	
		For peer review only - http://bmiopen.hmi.com/site/about/quidelines.yhtml	

Item	ltem number	STROBE Guideline	Extension for Genetic Association Studies (STREGA)
Outcome data	15 *	Cohort study-Report numbers of outcome events or summary measures over time.	Report outcomes (phenotypes) for each genotype category over time
		Case-control study – Report numbers in each exposure category, or summary measures of exposure.	Report numbers in each genotype category
		Cross-sectional study – Report numbers of outcome events or summary measures.	Report outcomes (phenotypes) for each genotype category
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (e.g., 95% confidence intervals). Make clear which confounders were adjusted for and why they were included. (p. 10)	
		(b) Report category boundaries when continuous variables were categorized. (p. 10)	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period. (p. 10)	
			(d) Report results of any adjustments for multiple

ltem	ltem number	STROBE Guideline	Extension for Genetic Association Studies (STREGA)
		\wedge	comparisons. (p. 10)
Other analyses	17	 (a) Report other analyses done – e.g., analyses of subgroups and interactions, and sensitivity analyses. (p. 10) 	
			<i>(b) If numerous genetic exposures (genetic variants) were examined, summarize results from all analyses undertaken. (p. 10)</i>
		en o	(c) If detailed results are available elsewhere, state how they can be accessed. (p. 10)
Discussion			
Key results	18	Summarize key results with reference to study objectives. (p. 11)	
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias. (p. 11)	
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

Item	ltem number	STROBE Guideline	Extension for Genetic Association Studies (STREGA)
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence. (p. 11)	
Generalizability	21	Discuss the generalizability (external validity) of the study results. (p. 11)	
Other Information		Cor Cor	
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based. (p. 14)	

STREGA = STrengthening the REporting of Genetic Association studies; STROBE = STtrengthening the Reporting of Observational Studies in Epidemiology.

* Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

BMJ Open

Fish and marine fatty acids intakes, the FADS genotypes and long-term weight gain: a prospective cohort study

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-022877.R3
Article Type:	Research
Date Submitted by the Author:	07-Apr-2019
Complete List of Authors:	Huang, Tao; Peking University, Department of Epidemiology and Biostatistics Wang, Tiange ; Shanghai Jiao Tong University, Shanghai Institute of Endocrine and Metabolic Diseases Heianza, Yoriko ; Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University Wiggs, Janey ; Harvard Medical School, Department of Ophthalmology Sun, Dianjianyi ; School of Public Health and Tropical Medicine, Tulane University Choi, Hyon-Kyoo ; Massachusetts General Hospital - Harvard Medical School Center for Nervous System Repair Chai, Jin Fang ; National University Singapore Yong Loo Lin School of Medicine Sim, Xueling ; National University of Singapore, Epidemiology Domain, Saw Swee Hock School of Public Health Khor, Chiea Chuen ; National University of Singapore, Department of Biochemistry, Yong Loo Lin School of Medicine Friedlander, Yechiel ; Hebrew University, Unit of Epidemiology Chan, Andrew T. ; Massachusetts General Hospital, Division of Gastroenterology Curhan, Gary ; Harvard University T H Chan School of Public Health, Department of Epidemiology Vivo, Immaculata De ; Harvard University of Singapore, Department of Paediatrics Fuchs, Charles ; Harvard Medical School, Department of Paediatrics Fuchs, Charles ; Harvard Medical School, Department of Paediatrics Fuchs, Charles ; Harvard Medical School, Department of Medicine, Brigham and Women's Hospital Pasquale, Louis R. ; Harvard Medical School, Channing Division of Network Medicine, Department of Medicine Yuan, Jian-min ; University Of Pittsburgh, Division of Cancer Control and Population Sciences Hu, Frank B. ; Harvard University T H Chan School of Public Health, Department of Epidemiology Koh, Woon Puay ; National University of Singapore, Department of Peidemiology Qi, Lu; Tulane University T H Chan School of Public Health, Department of Epidemiology Koh, Woon Puay ; National University of Singapore, Department of Epidemiology Qi, Lu; Tulane University, Department of Epidemiology, School of Public Health and Tropical Medicine

2
3
4
5
2
6
7
8
Q
10
10
11
12
13
14
15
15
16
17
18
19
20
20
21
22
23
24
25
25
26
27
28
29
30
21
31
32
33
34
35
26
50
37
38
39
40
/1
דו ⊿ר
42
43
44
45
46
47
•

Primary Subject Heading :	Nutrition and metabolism
Secondary Subject Heading:	Diabetes and endocrinology, Epidemiology, Genetics and genomics, Public health
Keywords:	NUTRITION & DIETETICS, GENETICS, EPIDEMIOLOGY, obesity, gene-diet interaction

SCHOLARONE[™] Manuscripts

Fish and marine fatty acids intakes, the FADS genotypes and long-term weight gain: a prospective cohort study Tao Huang^{1,2,3*}, Tiange Wang⁴, Yoriko Heianza⁵, Janey Wiggs⁶, Dianjianyi Sun⁵, Hyon-Kyoo Choi⁷, Jin Fang Chai⁸, Xueling Sim⁸, Chiea Chuen Khor^{9,10}, Yechiel Friedlander¹¹, Andrew T. Chan¹², Gary Curhan¹³, Immaculata De Vivo¹³, Rob Martinu, van Dam^{8,14}, Chew Kiat Heng¹⁵, Charles S. Fuchs^{16,17}, Louis R. Pasquale¹⁸, Jian-min Yuan^{19,20}, Frank B. Hu^{14, 16}, Woon Puay Koh^{8, 21}, Lu Qi^{5, 14, 16*} ^{1.} Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China. ²Department of Global Health, School of Public Health, Peking University, China. ³.Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, China. ⁴ Shanghai Institute of Endocrine and Metabolic Diseases, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. ⁵ Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 1724 New Orleans, LA 70112. ⁶. Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA 02115, USA. ⁷ Department of Rheumatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA. ⁸ Epidemiology Domain, Saw Swee Hock School of Public Health, National University of Singapore, Singapore, 117549. ⁹. Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore. ¹⁰. Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore. ^{11.}Unit of Epidemiology, Hebrew University-Hadassah Braun School of Public Health, POB 12272, Jerusalem 91120, Israel. ¹².Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA. ¹³. Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA. ¹⁴. Department of Nutrition, Harvard School of Public Health, Boston, MA 02115, USA.

¹⁵.Department of Paediatrics, National University of Singapore NUHS Tower Block, Level 12, 1E Kent Ridge Road Singapore 119228.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

¹⁶. Department of Medicine, Brigham and Women's Hospital and Harvard Medical School Boston, MA 02115, USA.

¹⁷. The Center for Gastrointestinal Cancer, Dana-Farber Cancer Institute, Boston, USA.

^{18.}Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.

¹⁹ Division of Cancer Control and Population Sciences, University of Pittsburgh Cancer Institute, Pittsburgh, PA,

USA.

²⁰. Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA.

²¹.Duke-NUS Medical School, Singapore, Singapore.

Registration: www. clinicaltrials.gov. Registration ID: NCT03348566

Running title: Genetic adaptation, fish, and weight change

Word count: 3420

*Correspondence and requests for reprint:

Dr. Tao Huang. Department of Epidemiology and Biostatistics, School of Public Health, Peking

University, Beijing, China. Email: huangtao@bjmu.edu.cn

Dr. Lu Qi. Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane

University. 1440 Canal Street, Suite 1724, New Orleans, LA 70112

Telephone: 504-988-3549;

Email: lqi1@tulane.edu; luqi@hsph.harvard.edu

	BMJ Open
	3
1	Abstract
2	Objective: We tested whether genetic variants near fatty acid desaturases gene (FADS) cluster, which
3	were recently identified to be signatures of adaptation to fish- and n-3 PUFAs-rich diet, interacted with
4	these dietary factors on change in body mass index (BMI).
5	Design: Three <i>FADS</i> variants were examined for gene-diet interactions on long-term (~10 years) changes
6	in BMI and body weight in four prospective cohort studies.
7	Setting: Population based study
8	Participants: 11,323 women from the Nurses' Health Study (NHS), 6,833 men from the Health
9	Professionals Follow-up Study (HPFS), and replicated in 6,254 women from the Women's Health
10	Initiative (WHI), and 5,264 Chinese from the Singapore Chinese Health Study (SCHS).
11	Main outcomes: Long-term (~10 years) changes in BMI and body weight
12	Results: In the NHS and HPFS cohorts, food-sourced n-3 PUFAs intake showed interactions with the
13	FADS rs174570 on changes of BMI (P for interaction = 0.02 in NHS, 0.05 in HPFS, and 0.007 in
14	combined). Such interactions were replicated in two independent cohorts WHI and SCHS (P for
15	interaction = 0.04 in WHI, 0.02 in SCHS, and 0.001 in combined). The genetic associations of the FADS
16	rs174570 with changes in BMI increased across the tertiles of n-3 PUFAs in all the cohorts. Fish intake
17	also accentuated the genetic associations of the FADS rs174570 with long-term changes in BMI (pooled P
18	for interaction = 0.006). Viewed differently, long chain n-3 PUFAs intake showed stronger association
19	with long-term changes in BMI among the rs174570 T carriers (beta = 0.79 kg/m^2 per g, P = 3×10^{-5}) than
20	the rs174570 non-T carriers (beta=0.16 kg/m ² per g, $P = 0.08$). Similar results were observed for fish
21	intake.
22	Conclusions: Our hypothesis-driven analyses provide replicable evidence that long chain n-3 PUFAs and
23	fish intakes may interact with the FADS variant on long-term weight gain. Further investigation is needed
24	to confirm our findings in other cohorts.
25	
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
3 4	27	Article summary
5 6	28	Strengths and limitations of this study
7 8	29	• This is the first study with consistent results from 4 well-established prospective cohorts of different
9 10	30	racial populations such as Caucasians and Singapore Chinese. The consistent results from these
11 12	31	independent cohorts demonstrated the robustness of our findings.
13 14	32	• Other major strengths include the prospective design, the large sample size, use of long-term change
15 16	33	of BMI, and replication of the results.
17 18	34	• Dietary fatty acids, fish, and adiposity measures were self-reported, measurement errors in these
19 20 21	35	variables are inevitable.
21 22 23	36	• Confounding by other unmeasured or unknown factors might exist, although we have carefully
23 24 25	37	adjusted for multiple dietary and lifestyle factors.
26 27	38	• We acknowledge that the different methods in measuring anthropometric traits, genetic variants and
28 29	39	food intake across cohorts might introduce bias in the present analyses.
30 31	40	
32 33		
34 35		
36 37		
38 39 40		
40 41 42		
43 44		
45 46		
47 48		
49 50		
51 52		
53 54		
55 56		
57 58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

42 Introduction

Diets rich in fish and marine fatty acids, especially long chain n-3 polyunsaturated fatty acids (PUFAs) has shown beneficial effects on cardiometabolic health ¹². However, data from population studies on the associations between such diet and body weight are inconsistent ³⁴. Emerging evidence suggests genetic variations may play a role in modifying the relation between dietary factors and body weight ⁵⁻⁷. For example, we previously found that high intakes of fish and long-chain n-3 PUFAs are associated with an attenuation of the genetic association with long-term weight gain based on results from 3 prospective cohorts of Caucasians.⁸

A recent study of Inuit identified genetic signatures of adaptation to diets rich in fish and n-3 PUFAs⁹. The strong signals locate in a cluster of fatty acid desaturases genes (FADS) that determine PUFAs levels ⁹. People living in the Arctic region have been found to be genetically prone to develop obesity ^{10 11} as survival strength for energy storage^{12 13}. Interestingly, the identified FADS genetic signatures of diet adaptation have been also related to adiposity in the Inuit population ⁹. Of note, due to long-standing selection pressure, the identified FADS signatures differ in frequency of selective allele across various populations such as Europeans and Asians¹⁴, in coincidence with varying levels of fish/marine fatty acids consumption, and adjointy patterns in these populations ¹⁵. We therefore hypothesized that the genetic signatures might interact with fish and marine PUFAs intakes on body weight ¹⁴.

The present study tested the interactions between n-3 PUFAs and fish intakes and variants in *FADS* gene cluster, genetic signatures of adaptation to fish- and n-3 PUFAs-rich diet, in relation to long-term changes in body mass index (BMI) in two US prospective cohorts: the Nurses' Health Study (NHS) and the Health Professionals Follow-up Study (HPFS). We replicated the findings in two independent, prospective cohorts the Women's Health Initiative (WHI, US) and the Singapore Chinese Health Study (SCHS).

67 Methods

60

6

1 2		
2 3 4	68	Discovery cohorts
5	69	The Nurses' Health Study
7 8	70	The NHS began in 1976, when 121,700 female registered nurses aged 30-55 y residing in 11 states were
9 10	71	recruited to complete a baseline questionnaire about their lifestyle and medical history ¹⁶ . The current
11 12	72	analysis baseline was set in 1990 for the NHS. We included 11,323 women of European ancestry.
13 14	73	Informed consent was obtained from all participants. The DNA extraction methods, quality control
15 16	74	measures, SNPs genotyping and imputation when performed have been described in detail elsewhere ¹⁷⁻²³ .
17 18	75	All participants with baseline long chain n-3 PUFAs and fish consumptions and covariates data, baseline
19 20 21	76	and endpoint BMI data, and genotyping data available based on previous GWASs were included ¹⁷⁻²² . The
21 22 23	77	study protocol was approved by the institutional review boards of Brigham and Women's Hospital and
23 24 25	78	Harvard School of Public Health.
26 27	79	
28 29	80	The Health Professionals Follow-up Study
30 31	81	The HPFS was initiated in 1986, and was composed of 51,529 male dentists, pharmacists, veterinarians,
32 33	82	optometrists, osteopathic physicians, and podiatrists, aged 40-75 y at baseline. The male participants
34 35	83	returned a baseline questionnaire about detailed medical history, lifestyle, and usual diet ²⁴ . In the current
36 37	84	analysis, we used 1990 as baseline in the HPFS, when the earliest complete dietary data were collected.
38 39 40	85	Our analysis included 6,833 men whose genotype data were available. Informed consent was obtained
40 41 42	86	from all participants. The DNA extraction methods, quality control measures, SNPs genotyping and
43 44	87	imputation when performed have been described in detail elsewhere ¹⁷⁻²³ . All participants with baseline
45 46	88	long chain n-3 PUFAs and fish consumptions and covariates data, baseline and endpoint BMI data, and
47 48	89	genotyping data available based on previous GWASs were included ¹⁷⁻²² . The study protocol was also
49 50	90	approved by the institutional review boards of Brigham and Women's Hospital and Harvard School of
51 52	91	Public Health.
53 54	92	
55 56 57	93	Replication cohorts
BMJ Open

The Women's Health Initiative (WHI)

The Women's Health Initiative (WHI) is a large, multiethnic, 40-center study funded by the National Heart, Lung, and Blood Institute (NHLBI) that focuses on strategies for preventing heart disease, breast and colorectal cancer, and osteoporotic fractures in postmenopausal women. A full description of the WHI study is presented elsewhere ^{25 26}. For the analyses, all participants with baseline long chain n-3 PUFAs and fish consumption and covariate data, baseline and endpoint BMI data, and genotyping data available based on previous GWASs were included. Finally, we included 6,254 Caucasians women who participated in the WHI clinical trial studies at baseline (1994-1998) and at sixth-year follow-up and for whom DNA was measured. The genomic DNA samples were processed according to standard Affymetrix procedures for processing of the assay. The Affymetrix Human SNP Array 6.0 (Affymetrix®, Inc Santa Clara, CA) was used for genome wide SNP genotyping. Human subjects review committees at each participating institution reviewed and approved the study, and all women gave written informed consent.

107 The Singapore Chinese Health Study (SCHS) cohort

The design of Singapore Chinese Health Study (SCHS) has been previously described in detail ²⁷. Briefly, between 1993 and 1998, 63,257 Chinese men and women between ages of 45 and 74 years living in Singapore were enrolled into the cohort study ²⁸. Two follow-up interviews were conducted via telephone among surviving participants between 1999 and 2004, and again between 2006 and 2010 to update information on body weight, selected lifestyle factors and medical history. All participants have given informed consent. The study was approved by the Institutional Review Boards of the National University of Singapore and the University of Pittsburgh, and the study was carried out in accordance with the approved guidelines. All participants with baseline long chain n-3 PUFAs and fish consumptions and covariates data, baseline and endpoint BMI data available were included. Among these participants, genome-wide genotyping for 2615 incident diabetes cases and 2615 matched controls was performed at the Genome Institute of the Singapore according to the manufacturer's recommendations using an Affymetrix ASI (Asian) Axiom array. Genotype calling was performed by the Affymetrix Corporation ²⁹.

Page 9 of 46

BMJ Open

1 ว		
2 3 4	120	Genome-wide genotyping for 717 incident myocardial infarction (MI) cases and 644 controls was
5 6	121	performed for SCHS samples using the Illumina HumanOmni ZhongHua-8 Bead Chip ³⁰ . Among these
7 8	122	two case-control studies nested within the cohort, 5,264 subjects with genotyping data had weight reported
9 10	123	at both baseline and follow-up 2 interviews, and were included in this analysis.
11 12	124	
13 14	125	Assessment of measures of body mass index
15 16	126	Height and body weight were assessed by questionnaire at baseline, and weight information was requested
17 18 10	127	on follow-up questionnaire in all 4 cohorts. Self-reported weights were highly correlated with directly
19 20 21	128	measured values (r=0.97 in HPFS and NHS) in a validation study ³¹ . BMI was calculated as body weight
21 22 23	129	(kg)/height (m ²). As defined previously, ⁸ the long-term changes in BMI was calculated as changes in BMI
24 25	130	from 1990 to 2000 in the NHS and HPFS cohorts ³² , and from baseline (1993) to sixth year follow-up in
26 27	131	the WHI ^{25 26} , and from baseline (1998) to second follow-up (2004) in the SCHS.
28 29	132	
30 31	133	Assessment of diets and other covariates
32 33 34 35 36 37	134	Questionnaires were used to collect information on a medical history and diet/lifestyle factors in all 4
	135	cohorts. Total fish, n-3 PUFAs, supplemental use of fish oil, alcohol, sugar sweetened beverages, fried
	136	food intakes, and other dietary factors at baseline were assessed by validated food frequency
38 39 40	137	questionnaires (FFQ) in the NHS and HPFS ^{33 34} . A 165-item validated semi-quantitative FFQ was used to
40 41 42	138	collect dietary data and supplemental use of fish oil in the SCHS ²⁸ . Dietary data and supplemental use of
42 43 44	139	fish oil were obtained from a self-administered baseline 122-items validated FFQ in the WHI ³⁵ . Alternate
45 46	140	health eating index was previously calculated in the NHS, HPFS ³⁶ , WHI, and SCHS. Physical activity
47 48	141	was expressed as metabolic equivalents per week by incorporating the reported time spent on various
49 50	142	activities, and the intensity level of each activity. The validity of the self-reported physical activity data
51 52	143	has been described previously in the NHS and HPFS ³⁷ . In the WHI, an estimated metabolic equivalent
53 54 55 56 57	144	(MET) level for each type of activity was assigned from a compendium of activities ³⁸ . Physical activity

BMJ Open

1		
2 3 4	145	was assessed using eight continuous categories ranging from never to 31 hours or more in an average
5 6	146	week spent doing strenuous sports; vigorous work; and moderate activities in the SCHS ²⁷ .
7 8	147	
9 10	148	The FADS variants selection and genotyping
11 12	149	Three of the 6 FADS single-nucleotide polymorphisms (SNPs) reported in a recent scan of Inuit genomes
13 14 15	150	for signatures of adaptation 9 were derived from genome-wide scans available in the NHS, HPFS. We
15 16 17	151	assumed that each SNP in the panel acts independently in an additive manner. We coded the SNPs as
18 19	152	following: rs174570 (TT=2, TC=1, CC=0); rs174602 (TT=2, TC=1, CC=0); rs7115739 (TT=2, TG=1,
20 21	153	GG=0). The FADS rs174570 was extracted from GWAS data in the WHI and SCHS cohorts for
22 23	154	replication (Supplemental Table 1).
24 25	155	
26 27	156	Patient and Public Involvement
28 29	157	Neither patients nor public were involved.
30 31 32	158	
32 33 34	159	Statistical analyses
35 36	160	We examined the associations of the FADS variants (rs174570, rs174602, rs7115739) with adiposity
37 38	161	measures and long-term changes in BMI using multiple linear regression model. Interactions between the
39 40	162	FADS variants (rs174570, rs174602, rs7115739) and baseline fish intake, and total or food-sourced long
41 42	163	chain n-3 PUFAs intakes on long-term changes in BMI were tested by including a multiplicative
43 44	164	interaction term in the models in the NHS and HPFS. The significant results for rs174570 were replicated
45 46 47	165	in the WHI and SCHS. Potential confounders considered in multivariable models were age, baseline
48 49	166	physical activity, baseline television watching, baseline smoking, baseline alcohol intake, baseline
50 51	167	alternate healthy eating index, and baseline total energy intake, sugar sweetened beverages (if available),
52 53	168	fried food intake (if available). We further tested the genetic associations with long-term changes in BMI
54 55	169	according to long chain n-3 PUFAs and fish intakes, and associations of long chain n-3 PUFAs and fish
56 57 58 59		

BMJ Open

intakes with long-term changes in BMI according to the FADS genotypes using multiple linear regression model after adjustment of potential confounders. Linear trend across categories of long chain n-3 PUFAs and fish intakes was quantified with a Wald test for linear trend by assigning the median value to each category and modeling it as a continuous variable³⁹. Results across cohorts were pooled with inverse variance weighted meta-analyses by fixed effects models (P \geq 0.05 for heterogeneity between studies) ⁴⁰. The individual participant data from the NHS and HPFS cohorts were pooled to generate the predicted 10-year changes in body weight according to the FADS genotypes. Hardy-Weinberg equilibrium was tested using Chi-square test. All reported P values are nominal and two sided. Statistical analyses were performed in SAS 9.3 (SAS Institute, Cary, NC, USA).

- 180 Results

181 Baseline characteristics of all participants in the NHS, HPFS, WHI and SCHS cohorts

Table 1 shows the baseline characteristics for all participants in the NHS, HPFS, WHI, and SCHS cohorts. The present study included 11,323 women with genetic data from the NHS cohort, 6,833 men with genetic data from the HPFS cohort, 6,254 women from the WHI, and 5,264 Chinese from the SCHS. The distribution of the FADS genetic variants in the 4 cohorts is shown in **Supplemental table 1**. Chi-square test showed that the FADS rs174570 is in Hardy-Weinberg equilibrium. We did not observe any significant genetic association between the FADS rs174570 genotype and baseline BMI, and long-term changes in BMI in the three US cohorts (P > 0.05). However, we found that the FADS genotype was significantly associated with baseline BMI in the SCHS (P = 0.002) (Supplemental table 2). Genetic associations with long-term changes in BMI according to LC n-3 PUFAs/fish intakes We first tested interactions between the FADS genetic variants (rs174570, rs174602, rs7115739) and intakes of variously sourced long chain n-3 PUFAs and fish in the NHS and HPFS cohorts. We found that

194 only *FADS* rs174570 (C/T, with T as the common allele in Inuit, but rare allele in Europeans and Asians)

BMJ Open

2		
3 4	195	showed significant interaction with LC n-3 PUFAs/fish intakes. Food-sourced n-3 PUFAs
5 6	196	(Eicosapentaenoic acid (EPA) + Docosahexaenoic acid (DHA)) intake consistently magnified the genetic
7 8	197	association with long-term changes in BMI (P for interaction = 0.02 in NHS, 0.05 in HPFS, and 0.007 in
9 10	198	combined cohorts) (Figure 1). We successfully replicated our results in the WHI cohort (P for interaction
11 12	199	= 0.04) and the SCHS cohort (P for interaction = 0.02).
13 14	200	
15 16 17	201	The pooled analyses of the 3 US (Caucasian) samples or all 4 cohorts showed that high intakes of
17 18 10	202	food-sourced n-3 PUFAs intake (P for interaction = 0.008 and 0.009, respectively) significantly
20 21	203	accentuated the genetic association of the FADS genotypes with long-term changes in BMI (Figure 2). No
22 23	204	significant heterogeneity in the interaction effect was observed among these cohorts. Differences in
24 25	205	long-term changes of BMI per T allele were -0.105 (SE 0.067), 0.027 (SE 0.064), and 0.120 (SE 0.067)
26 27	206	kg/m ² across three tertiles of food-sourced n-3 PUFAs in pooled results from all the 4 cohorts.
28 29	207	
30 31	208	Individual food-sourced n-3 PUFAs such as EPA (pooled P for interaction=0.01) and DHA (pooled P for
32 33	209	interaction=0.003) showed similar interaction patterns; and the interactions remained significant when
34 35	210	supplemented n-3 PUFAs were considered (pooled P for interaction=0.007) (Figure 2).
30 37 38	211	
39 40	212	In addition, fish intake showed similar, though less significant, interaction patterns with the FADS
41 42	213	genotype on long-term changes in BMI in the NHS (P for interaction=0.16), HPFS (P for
43 44	214	interaction=0.09), WHI (P for interaction=0.09), SCHS (P for interaction=0.03) and combined results
45 46	215	(pooled P for interaction=0.006), and the differences in BMI changes per T allele were -0.096 (SE 0.071),
47 48	216	0.041 (SE 0.052), and 0.251 (SE 0.151) kg/m ² across three categories (≤ 1 serving/week, 1~6
49 50	217	servings/week, and ≥ 1 serving/day) of fish intake in combined results from all the 4 cohorts.
51 52	218	
53 54	219	In addition, we did not observe significant interaction between two other genetic variants in FADS cluster
56 57 58	220	(rs174602 and rs7115739) and long chain n-3 PUFAs/fish intakes in relation to long-term changes in BMI
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

12

2	
3	
4	
5	
6	
7	
8	
0	
10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
25	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
30	
10	
-10 / 1	
41 42	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
50	
20	
59	
60	

in the NHS and HPFS cohorts. Similar interactions for long-term changes in body weight were observed
(Supplemental table 3 & 4).
Long chain n-3 PUFAs/fish intakes and long-term changes in BMI according to the *FADS* genotype

225 We found that individuals who consumed the highest food-sourced n-3 PUFAs (EPA+DHA; T3) had significantly greater increase of BMI (mean \pm SE = 0.74 \pm 0.06, kg/m²) than did those who consumed the 226 lowest (T1) (mean \pm SE = 0.39 \pm 0.07, kg/m²) among the T allele carriers, whereas the corresponding BMI 227 changes were 0.68 ± 0.03 kg/m² and 0.49 ± 0.03 kg/m², respectively, among the non-T carriers in 4 cohorts 228 combined (Table 2 & Supplemental table 5). Similarly, we observed different associations between fish 229 intake and BMI changes among the T allele carriers ($P = 1.5 \times 10^{-6}$) and non-carriers (P = 0.01) in the 230 pooled results from these US cohorts. No significant heterogeneity in the interaction effect was observed 231 232 among the cohorts.

233

Figure 3 presents the predicted long-term changes in BMI from food-sourced n-3 PUFAs and fish intake 234 according to the T carriers and the non-T carriers. Results from the NHS, HPFS and WHI cohorts 235 consistently showed that the associations of food-sourced n-3 PUFAs and fish intakes with long-term 236 changes in BMI were stronger among the T carriers than those among the non-T carriers. In the pooled 237 results, the beta \pm SE for associations of food-sourced n-3 PUFAs (Figure 3) and fish intake (Figure 4) 238 with long-term changes in BMI were 0.79 ± 0.19 kg/m² per g (P = 0.000003) and 0.64 ± 0.16 kg/m² per 239 serving (P = 0.00002) among the T carriers, and whereas the corresponding beta \pm SE were 0.16 \pm 0.10 240 kg/m² per g (P = 0.08) and 0.18 ± 0.08 kg/m² per serving (P = 0.01) among the non-T carriers. 241

242 3

243 Discussion

In 4 large prospective cohorts of the US and Chinese populations, our hypothesis-driven analyses showed reproducible evidence that long chain n-3 PUFAs and fish intakes accentuated the genetic association of the *FADS* genotypes with long-term changes in BMI. In addition, our results showed that the *FADS*

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

rs174570 T allele carriers gained more weight than the non-carriers when they had higher long chain n-3
PUFAs and fish intakes.

Large prospective cohort studies examining the associations of fish or n-3 PUFAs with body weight and obesity risk have generated conflicting results ^{3 4}. In addition, several randomized controlled trials (RCTs) supported the protective effects of fish, fish oils, or/and n-3 PUFAs intake on weight-loss ⁴¹⁻⁴³, but the benefit was not evident in other trials ⁴⁴⁻⁴⁶. The results from the current study lend support to our hypothesis that the heterogeneous associations between fish or n-3 PUFAs and body weight might be at least partly due to gene-diet interactions.

We found that the genetic associations between the FADS rs174570 and long-term BMI change were stronger along with increasing intakes of long chain n-3 PUFAs and fish. Viewed from a different angle, the magnitude of associations of fish and long chain n-3 PUFAs intakes with BMI changes varied among individuals with different genotypes. The FADS rs174570 was recently identified from a study of the Inuit, who had high fish/n-3 PUFAs intakes ⁹. The high frequency of the T allele in Inuit reflects genetic adaptation to the special fish- and n-3 PUFA rich diet. Interestingly, the identified FADS genetic signatures of diet adaptation have been also related to adiposity in this population. Our data indicated that the signature allele (T) was related differently to weight changes (decrease or increase), depending on the levels of fish/n-3 PUFAs intakes. In people with high fish/n-3 PUFAs intakes, carrying the signature allele predisposed to greater weight gain and an increased risk of obesity; while carriers of this allele tended to have less body weight when they are exposed to a diet low in fish and n-3 PUFAs.

We found that individual food-sourced n-3 PUFAs such as EPA and DHA showed similar interaction
patterns in relation to long-term changes in BMI; and the interactions also remained significant when
supplemented n-3 PUFAs were considered. In addition, our results indicated that the interactions of
fish/n-3 PUFAs intakes and the *FADS* genotype were persistent across different racial populations such as

BMJ Open

Europeans and Asians. Our data suggest that the interactions between n-3 PUFAs and the *FADS* genotypeis robust for fatty acids from various sources.

The mechanisms underlying the observed gene-diet interactions remain unclear. However, such interactions are biologically plausible. It has long been known that the FADS genes such as FADS1 and FADS2 encode delta-5 and delta-6 desaturases respectively, which are the important rate-limiting steps in the endogenous formation of long-chain PUFA such as EPA and DHA from linoleic acid (n-6) and α -linolenic acid (n-3) ⁴⁷. The selected allele of *FADS* rs174570 is significantly associated with an increase in the concentration of n-3 fatty acids upstream in the n-3 synthesis pathway ⁴⁷. Further, it has been reported that dietary n-3 PUFAs might regulate adipocyte FADS expression and function ⁴⁸. In addition, storage of energy and body fat is very important for the Arctic population, who are regularly exposed to extremely low temperatures and fishes rich in n-3 PUFAs ¹² ¹³. Under natural selection, these people are genetically prone to high fish intake to keep body fat ¹⁰¹¹. Therefore, it's not surprising that high fish or n-3 PUFAs intake accentuated genetic susceptibility to obesity among people carrying selective *FADS* signature ^{49 50}. Our findings support the view that extra n-3 PUFAs may not have much benefit for Europeans with selective FADS signature^{9 14}.

289 Strengths

Several strengths of this study merit mention. To our knowledge, this is the first study with consistent results from 4 well-established prospective cohorts of different racial populations such as Caucasians and Singapore Chinese. The consistent results from these independent cohorts demonstrated the robustness of our findings. Other major strengths include the prospective design, the large sample size, use of long-term change of BMI, and replication of the results. Although we prospectively analyzed the data, we cannot exclude the possibility of reverse causality as this is a study on dietary intake and BMI or weight change from the baseline, which by default builds in the starting point (i.e. the cross sectional association).

297 Limitations

BMJ Open

However, several limitations need to be acknowledged. First, dietary fatty acids, fish, and adiposity measures were self-reported, measurement errors in these variables are inevitable. Despite this, the food frequency questionnaires and adiposity measures data have been well validated ^{28 31 33-35}. Second, confounding by other unmeasured or unknown factors might exist, although we have carefully adjusted for multiple dietary and lifestyle factors. Third, a causal relation among long chain n-3 PUFAs and fish consumption, and adjoint cannot be inferred from an observational study. Fourth, all subjects with genetic data were selected in each cohort. The source of genotyping data was diverse (e.g. sub-cohort, case control studies), therefore, subject selection might be a major source of bias. Fifth, we acknowledge that the different methods in measuring anthropometric traits, genetic variants and food intake across cohorts might introduce bias in the present analyses. Finally, the participants included in our study were middle aged and older adults of Caucasians in the US and Chinese in Singapore, and it is unknown whether our findings could be generalized to other demographic or ethnic groups.

310 Conclusions

In summary, our data provide reproducible evidence from 4 multiethnic cohorts that high long chain n-3 PUFAs and fish intakes accentuate the genetic association of the *FADS* with adiposity. These findings emphasize the importance of considering precision nutritional interventions on prevention and treatment of obesity. We acknowledge that these results are hypothesis-generating and need to be confirmed in additional cohorts.

Contributors: TH and LQ designed the study and wrote the first draft. TH analyzed the data. FBH
provided statistical expertise. TW, YH, DS, CSF, JW, LRP, AT, GC, IDV, HKC, JF, XS, CCK, YF, RM,
HCK, JY, KWP, and LQ were involved in data collection. TH and LQ are guarantors. All authors
contributed to the interpretation of the results and critical revision of the manuscript for important
intellectual content and approved the final version of the manuscript.

322 We acknowledge Dr. Gary C. Curhan's contribution to the genetic data.

BMJ Open

1		10
2 3 4	324	Funding
5 6	325	This study was supported by grants HL126024, HL034594, DK100383, DK091718, HL071981,
7 8	326	HL073168, CA87969, CA49449, CA055075, HL34594, HL088521, U01HG004399, DK080140,
9 10	327	P30DK46200, U01CA137088, U54CA155626, DK58845, DK098311, U01HG004728, EY015473,
11 12	328	CA134958, DK70756 and DK46200 from the National Institutes of Health, with additional support for
13 14	329	genotyping from Merck Research Laboratories, North Wales, PA. LQ is a recipient of the American Heart
15 16 17	330	Association Scientist Development Award (0730094N). LRP is supported by the Arthur Ashley Williams
17 18 19	331	Foundation and a Harvard Ophthalmology Scholar Award (Harvard Medical School) from the Harvard
20 21	332	Glaucoma Center of Excellence. ATC is a Damon Runyon Cancer Foundation Clinical Investigator. The
22 23	333	SCHS study is supported by the National Institutes of Health, USA (NCI R01 CA144034, UM1
24 25	334	CA182876, R01 DK080720), the Singapore National Medical Research Council (NMRC 1270/2010), the
26 27	335	HUJ-CREATE Programme of the National Research Foundation, Singapore (Project Number 370062002)
28 29	336	and Biomedical Research Council, Singapore. The funding sources had no role in the design or conduct of
30 31	337	the study; collection, management, analysis, and interpretation of the data; or preparation, review, or
32 33	338	approval of the manuscript.
34 35 36	339	
37 38	340	Declaration of interests: All authors have no conflict of interest to declare. No support from any
39 40	341	organization for the submitted work; no financial relationships with any organizations that might have an
41 42	342	interest in the submitted work in the previous three years, no other relationship or activity that could
43 44	343	appear to have influenced the submitted work.
45 46	344	
47 48	345	
49 50	346	Data sharing
51 52	347	Data are available in Harvard school of public health, NHS and HPFS cohorts. All data relevant to the
53 54 55 56 57 58 59	348	study are included in the article or uploaded as supplementary information.

BMJ Open

References

- 1. Del Gobbo LC, Imamura F, Aslibekyan S, Marklund M, Virtanen JK, Wennberg M, et al. omega-3 Polyunsaturated Fatty Acid Biomarkers and Coronary Heart Disease: Pooling Project of 19 Cohort Studies. *JAMA internal medicine* 2016;176(8):1155-66.
- 2. Hu FB, Bronner L, Willett WC, Stampfer MJ, Rexrode KM, Albert CM, et al. Fish and omega-3 fatty acid intake and risk of coronary heart disease in women. *Jama* 2002;287(14):1815-21.
- 3. He K, Rimm EB, Merchant A, Rosner BA, Stampfer MJ, Willett WC, et al. Fish consumption and risk of stroke in men. *Jama* 2002;288(24):3130-6.
- 4. Iso H, Rexrode KM, Stampfer MJ, Manson JE, Colditz GA, Speizer FE, et al. Intake of fish and omega-3 fatty acids and risk of stroke in women. *Jama* 2001;285(3):304-12.
- 5. Qi L, Cho YA. Gene-environment interaction and obesity. *Nutrition reviews* 2008;66(12):684-94.
- 6. Qi Q, Chu AY, Kang JH, Huang J, Rose LM, Jensen MK, et al. Fried food consumption, genetic risk, and body mass index: gene-diet interaction analysis in three US cohort studies. *BMJ* 2014;348:g1610.
- 7. Qi Q, Chu AY, Kang JH, Jensen MK, Curhan GC, Pasquale LR, et al. Sugar-sweetened beverages and genetic risk of obesity. *The New England journal of medicine* 2012;367(15):1387-96.
- Huang T, Wang T, Heianza Y, Zheng Y, Sun D, Kang JH, et al. Habitual consumption of long-chain n-3 PUFAs and fish attenuates genetically associated long-term weight gain. *The American journal of clinical nutrition* 2019;109(3):665-73.
- 9. Fumagalli M, Moltke I, Grarup N, Racimo F, Bjerregaard P, Jorgensen ME, et al. Greenlandic Inuit show genetic signatures of diet and climate adaptation. *Science* 2015;349(6254):1343-7.
- 10. Hegele RA, Anderson C, Young TK, Connelly PW. G-protein beta3 subunit gene splice variant and body fat distribution in Nunavut Inuit. *Genome research* 1999;9(10):972-7.
- 11. Hegele RA, Huff MW, Young TK. Common genomic variation in LMNA modulates indexes of obesity in Inuit. *The Journal of clinical endocrinology and metabolism* 2001;86(6):2747-51.
- 12. Jorgensen ME, Bjeregaard P, Borch-Johnsen K. Diabetes and impaired glucose tolerance among the inuit population of Greenland. *Diabetes Care* 2002;25(10):1766-71.
- 13. Jorgensen ME, Glumer C, Bjerregaard P, Gyntelberg F, Jorgensen T, Borch-Johnsen K. Obesity and central fat pattern among Greenland Inuit and a general population of Denmark (Inter99): relationship to metabolic risk factors. *International journal of obesity and related metabolic disorders : journal of the International Association for the Study of Obesity* 2003;27(12):1507-15.
- 14. Tishkoff S. GENETICS. Strength in small numbers. Science 2015;349(6254):1282-3.
- 15. Dewailly E, Blanchet C, Lemieux S, Sauve L, Gingras S, Ayotte P, et al. n-3 Fatty acids and cardiovascular disease risk factors among the Inuit of Nunavik. *The American journal of clinical nutrition* 2001;74(4):464-73.
- 16. Colditz GA, Manson JE, Hankinson SE. The Nurses' Health Study: 20-year contribution to the understanding of health among women. *Journal of women's health / the official publication of the Society for the Advancement of Women's Health Research* 1997;6(1):49-62.
- 17. Cornelis MC, Monda KL, Yu K, Paynter N, Azzato EM, Bennett SN, et al. Genome-wide meta-analysis identifies regions on 7p21 (AHR) and 15q24 (CYP1A2) as determinants of habitual caffeine consumption. *PLoS genetics* 2011;7(4):e1002033.
- 18. Jensen MK, Pers TH, Dworzynski P, Girman CJ, Brunak S, Rimm EB. Protein interaction-based genome-wide analysis of incident coronary heart disease. *Circulation. Cardiovascular genetics* 2011;4(5):549-56.
- 19. Wiggs JL, Kang JH, Yaspan BL, Mirel DB, Laurie C, Crenshaw A, et al. Common variants near CAV1 and CAV2 are associated with primary open-angle glaucoma in Caucasians from the USA. *Human molecular genetics* 2011;20(23):4707-13.
- 20. Hunter DJ, Kraft P, Jacobs KB, Cox DG, Yeager M, Hankinson SE, et al. A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. *Nature genetics* 2007;39(7):870-4.
- 21. Qi L, Cornelis MC, Kraft P, Stanya KJ, Linda Kao WH, Pankow JS, et al. Genetic variants at 2q24 are associated with susceptibility to type 2 diabetes. *Hum Mol Genet* 2010;19(13):2706-15.
- 22. Kottgen A, Albrecht E, Teumer A, Vitart V, Krumsiek J, Hundertmark C, et al. Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. *Nature genetics* 2013;45(2):145-54.
- 23. Peters U, Jiao S, Schumacher FR, Hutter CM, Aragaki AK, Baron JA, et al. Identification of Genetic Susceptibility

BMJ Open

24.1	Rimm EB, Giovannucci EL, Willett WC, Colditz GA, Ascherio A, Rosher B, et al. Prospective study of alcono
25	Consumption and risk of coronary disease in men. Lancet 1991,338(8705).404-8. Anderson CL Manson L Wallace P. Lund P. Hall D. Davis S. et al. Implementation of the Wemen's Health
25.7	Anderson GL, Manson J, Wandee R, Lund B, Han D, Davis S, et al. Implementation of the women's reality
26 1	Initiative Study design. Annuis of epidemology 2003;13(9 Suppl).55-17.
20.1	Study Group, Controlled clinical trials 1009:10/1):61,100
י דכ	Sludy Gloup. Controlled Chilled Childs 1998,19(1).01-109. Yuan IM Stram DO Arakawa K Lee HP Yu MC Dietary cryptoxanthin and reduced risk of lung cancer: th
27.	Singapore Chinese Health Study. Cancer epidemiology, biomarkers & prevention : a publication of th American Association for Cancer Research, cosponsored by the American Society of Preventive Oncol 2003:12(9):890-8
28. I	Hankin JH, Stram DO, Arakawa K, Park S, Low SH, Lee HP, et al. Singapore Chinese Health Study: developm validation, and calibration of the quantitative food frequency questionnaire. <i>Nutrition and cancer</i> 2001;39(2):187-95
29 (Chen 7 Pereira MA Seielstad M Koh WP Tai FS Teo YY et al. Joint effects of known type 2 diabetes
25.	susceptibility loci in genome-wide association study of Singapore Chinese: the Singapore Chinese he study. <i>PloS one</i> 2014;9(2):e87762.
30. I	Dorajoo R, Sun Y, Han Y, Ke T, Burger A, Chang X, et al. A genome-wide association study of n-3 and n-6 pl
	fatty acids in a Singaporean Chinese population. Genes & nutrition 2015;10(6):53.
31.	Rimm EB, Stampfer MJ, Colditz GA, Chute CG, Litin LB, Willett WC. Validity of self-reported waist and hip circumferences in men and women. <i>Epidemiology</i> 1990;1(6):466-73.
32. I	Huang T, Zheng Y, Qi Q, Xu M, Ley SH, Li Y, et al. DNA methylation variants at HIF3A locus, B vitamins intal long-term weight change: gene-diet interactions in two US cohorts. <i>Diabetes</i> 2015.
33. \	Willett WC, Sampson L, Stampfer MJ, Rosner B, Bain C, Witschi J, et al. Reproducibility and validity of a semiquantitative food frequency questionnaire. <i>Am J Epidemiol</i> 1985;122(1):51-65.
34. I	Rimm EB, Giovannucci EL, Stampfer MJ, Colditz GA, Litin LB, Willett WC. Reproducibility and validity of an
	expanded self-administered semiquantitative food frequency questionnaire among male health
	professionals. Am J Epidemiol 1992;135(10):1114-26; discussion 27-36.
35. I	² atterson RE, Kristal AR, Tinker LF, Carter RA, Bolton MP, Agurs-Collins T. Measurement characteristics of Women's Health Initiative food frequency questionnaire. <i>Annals of epidemiology</i> 1999;9(3):178-87.
36. (Chiuve SE, Fung TT, Rimm EB, Hu FB, McCullough ML, Wang M, et al. Alternative dietary indices both stro predict risk of chronic disease. <i>The Journal of nutrition</i> 2012;142(6):1009-18.
37. \	Wolf AM, Hunter DJ, Colditz GA, Manson JE, Stampfer MJ, Corsano KA, et al. Reproducibility and validity c self-administered physical activity questionnaire. Int J Epidemiol 1994;23(5):991-9.
38. I	-anger RD, White E, Lewis CE, Kotchen JM, Hendrix SL, Trevisan M. The Women's Health Initiative Observation Study: baseline characteristics of participants and reliability of baseline measures. Annals of epidemi 2003;13(9 Suppl):S107-21.
39. I	I Y, Hruby A, Bernstein AM, Ley SH, Wang DD, Chiuve SE, et al. Saturated Fats Compared With Unsaturate and Sources of Carbohydrates in Relation to Risk of Coronary Heart Disease: A Prospective Cohort St
<u>/0</u> 1	Journal of the American College of Caralology 2015;66(14):1538-48. Higgins IP, Thompson SG, Quantifying betarogeneity in a meta-analysis. Statistics in medicine
40.1	2002;21(11):1539-58.
41.1	(abir M, Skurnik G, Naour N, Pechtner V, Meugnier E, Rome S, et al. Treatment for 2 mo with n 3 polyunsaturated fatty acids reduces adiposity and some atherogenic factors but does not improve ir sensitivity in women with type 2 diabetes: a randomized controlled study. <i>The American journal of c</i> <i>nutrition</i> 2007;86(6):1670-9.
42. I	Nunro IA, Garg ML. Prior supplementation with long chain omega-3 polyunsaturated fatty acids promote weight loss in obese adults: a double-blinded randomised controlled trial. <i>Food & function</i> 2013;4(4):650-8.
43.1	Fhorsdottir I, Tomasson H, Gunnarsdottir I, Gisladottir E, Kiely M, Parra MD, et al. Randomized trial of weight-loss-diets for young adults varying in fish and fish oil content. Int J Obes (Lond) 2007;31(10):1
44.	Munro IA, Garg ML. Dietary supplementation with n-3 PUFA does not promote weight loss when combine

- 45. Crochemore IC, Souza AF, de Souza AC, Rosado EL. omega-3 polyunsaturated fatty acid supplementation does not influence body composition, insulin resistance, and lipemia in women with type 2 diabetes and obesity. *Nutrition in clinical practice : official publication of the American Society for Parenteral and Enteral Nutrition* 2012;27(4):553-60.
- 46. Bender N, Portmann M, Heg Z, Hofmann K, Zwahlen M, Egger M. Fish or n3-PUFA intake and body composition: a systematic review and meta-analysis. *Obesity reviews : an official journal of the International Association* for the Study of Obesity 2014;15(8):657-65.
- 47. Ameur A, Enroth S, Johansson A, Zaboli G, Igl W, Johansson AC, et al. Genetic adaptation of fatty-acid metabolism: a human-specific haplotype increasing the biosynthesis of long-chain omega-3 and omega-6 fatty acids. *Am J Hum Genet* 2012;90(5):809-20.
- 48. Ralston JC, Matravadia S, Gaudio N, Holloway GP, Mutch DM. Polyunsaturated fatty acid regulation of adipocyte FADS1 and FADS2 expression and function. *Obesity (Silver Spring)* 2015;23(4):725-8.
- 49. Smith GI, Julliand S, Reeds DN, Sinacore DR, Klein S, Mittendorfer B. Fish oil-derived n-3 PUFA therapy increases muscle mass and function in healthy older adults. *The American journal of clinical nutrition* 2015;102(1):115-22.
- 50. Jourdan C, Kloiber S, Nieters A, Seiler H, Himmerich H, Kohli MA, et al. Gene-PUFA interactions and obesity risk. *The British journal of nutrition* 2011;106(8):1263-72.

	NHS ¹	HPFS	WHI	SCHS
	n=11,323	n=6,833	n=6,254	n=5,264
Age (year)	57 ± 9	57 ± 11	68 ± 5	56 ± 7
Female (%)	100	0	100	58.7
Body weight (kg)	70.1 ± 14.9	82.8 ± 12.5	73.7 ± 15.0	60.3 ± 9.8
Body mass index (kg/m ²)	26.2 ± 5.1	25.9 ± 3.3	28.3 ± 5.5	23.4 ± 3.3
Alcohol consumption (g/day)	5.14 ± 9.23	10.97 ± 15.05	6.00 ± 11.96	1.97 ± 8.02
Physical activity (MET-h/week)	19.3 ± 22.1	36.9 ± 39.5	11.6 ± 13.1	0.5 ± 1.0^{2}
Television watching (h/week)	17.5 ± 14.8	10.5 ± 8.2	/	2.2 ± 0.8
Current smokers (n, (%))	1557(13.8)	493(7.3)	407(15.0)	1364(20.0)
Total energy intake (kcal/day)	1766 ± 502	1949 ± 578	1602 ± 654	1606 ± 573
Alternative health eating index score	53.4 ± 10.8	53.8 ± 11.4	53.5 ± 10.6	55.8 ± 8.2
Sugar sweetened beverage intake (servings/day)	0.13 ± 0.39	0.23 ± 0.48	0.39 ± 0.82	0.69 ± 2.40^3
Total fried food (servings/day)	0.12 ± 0.20	0.22 ± 0.28	/	/
Fish intake (servings/day)	0.31 ± 0.29	0.33 ± 0.30	0.23 ± 0.20	0.16 ± 0.07
Food-sourced EPA (g/day)	0.08 ± 0.14	0.12 ± 0.20	0.04 ± 0.04	/
Food-sourced DHA (g/day)	0.17 ± 0.14	0.22 ± 0.19	0.07 ± 0.07	/
Food-sourced EPA+DHA (g/day)	0.23 ± 0.19	0.31 ± 0.25	0.11 ± 0.10	0.33 ± 0.20
Total EPA+DHA (g/day)	0.26 ± 0.27	0.35 ± 0.37	0.38 ± 0.48	/

Table 1 Baseline characteristics of all participants in the NHS, HPFS, WHI, and SCHS cohorts.

¹Plus-minus values are means \pm SD. ²Hours per week of moderate activity in the SCHS. ³Glasses per week of soda intake in the SCHS.

EPA: 20:5n-3; DHA: 22:6n-3; MET denotes metabolic equivalents. Total EPA+DHA includes food-sourced and supplemental EPA+DHA.

Data on BMI, long chain n-3 PUFAs and fish consumptions were assessed at baseline in the NHS (1990), the HPFS (1990), the WHI (1994-1998), and the SCHS (1993-1998), respectively. Television watching assessed in 1992 for NHS and in 1990 for HPFS.

Table 2 Associations of long chain n-3 PUFAs and fish intakes with long-term changes in BMI according to FADS genotypes

		Th	ree categories		P for	
	long chain n-3 PUFAs and fish intakes		l fish intakes	P for trend	interaction*	
Total fish, serving/day		$\leq 1/wk$	1~6/wk	$\geq 1/d$		
NHS	Non-T carriers	0.82±0.06	0.98±0.04	1.15±0.13	0.006	0.03
	T carriers	0.73±0.11	0.95±0.08	1.55±0.25	0.0007	
HPFS	Non-T carriers	0.43±0.05	0.52±0.04	0.59±0.12	0.73	0.03
	T carriers	0.21±0.11	0.52 ± 0.07	0.79±0.22	0.02	
WHI	Non-T carriers	0.11±0.08	0.28±0.06	0.28±0.34	0.04	0.09
	T carriers	0.02±0.15	0.29±0.11	0.94±0.67	0.01	
SCHS	Non-T carriers	-3.08±0.19	-3.00±0.17	-3.35±0.18	0.32	0.01
	T carriers	-3.61±0.17	-3.10±0.15	-3.25±0.17	0.13	
Pooled ¹	Non-T carriers	0.50±0.03	0.67±0.03	0.81±0.08	0.01	0.0007
	T carriers	0.38±0.07	0.63±0.05	1.11±0.16	2×10-4	
Food-sourced EPA+DH	IA, g/day	Tertile1	Tertile2	Tertile3		
NHS	Non-T carriers	0.79±0.06	0.92±0.05	1.11±0.06	0.01	0.005
	T carriers	0.71±0.10	0.84±0.11	1.19±0.11	0.0001	
HPFS	Non-T carriers	0.46±0.05	0.53±0.05	0.49±0.05	0.79	0.02
	T carriers	0.23±0.11	0.48±0.10	0.58±0.09	0.02	
WHI	Non-T carriers	0.02 ± 0.08	0.21±0.08	0.41±0.08	0.06	0.04
	T carriers	-0.03±0.15	0.29±0.14	0.35±0.15	0.004	
SCHS	Non-T carriers	-3.32±0.17	-3.15±0.18	-2.99±0.17	0.16	0.035
	T carriers	-3.55±0.16	-3.34±0.16	-3.05±0.16	0.02	
Pooled ¹	Non-T carriers	0.49±0.03	0.64±0.03	0.68±0.03	0.01	0.0003
	T carriers	0.39±0.07	0.57±0.06	0.74±0.06	1.5×10 ⁻⁶	
Total EPA+DHA, g/day	<i>V</i>	Tertile1	Tertile2	Tertile3		

NHS	Non-T carriers	0.79±0.06	0.94±0.05	1.08±0.06	0.8	0.01
	T carriers	0.72±0.11	0.87±0.10	1.16±0.11	0.02	
HPFS	Non-T carriers	0.47±0.05	0.53±0.05	0.49±0.05	0.88	0.13
	T carriers	0.23±0.10	0.50±0.09	0.57±0.10	0.16	
WHI	Non-T carriers	0.39±0.10	0.04±0.08	0.23±0.10	0.42	0.27
	T carriers	0.04±0.18	0.28±0.15	0.28±0.16	0.84	
Pooled ¹	Non-T carriers	0.57±0.04	0.62±0.03	0.67±0.04	0.65	0.005
	T carriers	0.39±0.07	0.60±0.06	0.74±0.07	0.01	

Data are means \pm SE for long term changes in BMI.

Total EPA+DHA include food-sourced and supplemental EPA+DHA.

¹P for interaction was generated from dominant model of *FADS* rs174570 (CC vs CT+TT).

Numbers of T carriers/Non-T carriers in the NHS, HPFS, WHI, and SCHS are 1698/9625, 1025/5808, 876/5378, and 1842/3422, respectively.

Data on BMI, long chain n-3 PUFAs and fish consumptions were assessed at baseline in the NHS (1990), the HPFS (1990), the WHI (1994-1998), and the SCHS (1993-1998), respectively.

Data on follow-up BMI was assessed in 2000 in the NHS and HPFS, in the sixth follow-up year in the WHI, and from 2006 to 2010 in the SCHS, respectively.

Long-term BMI changes were calculated based on the changes in BMI from baseline to follow-up year in the four cohorts, respectively.

The multiple linear regression model was used to test the associations of long chain n-3 PUFAs and fish intakes with long-term changes in BMI by *FADS* genotypes after adjustment for age, source of genotyping data, baseline BMI, smoking, alcohol intake, physical activity, total energy intake, alternate healthy eating index, television watching, sugar sweetened beverage, fried food consumption.

The results were pooled by means of fixed effects meta-analyses ($P \ge 0.05$ for heterogeneity between studies).

Figure Legends

Figure 1 Genetic variant of *FADS* rs174570, long chain n-3 PUFAs and fish intakes and long-term BMI changes

Effect size (ES) (95% CI) values are β coefficients for interaction between the *FADS* variant rs174570 (additive model) and diets from results of the NHS, HPFS, WHI, and SCHS cohorts.

Data on BMI, long chain n-3 PUFAs (food sourced EPA+ DHA and total EPA+ DHA (food and

supplemental use)) and fish consumptions were assessed at baseline in the NHS (1990), the HPFS (1990),

the WHI (1994-1998), and the SCHS (1993-1998), respectively.

Data on follow-up BMI was assessed in 2000 in the NHS and HPFS, in the sixth follow-up year in the

WHI, and from 2006 to 2010 in the SCHS, respectively.

Long-term BMI changes were calculated based on the changes in BMI from baseline to follow-up year in the four cohorts, respectively.

The multiple linear regression model was used to test the *FADS* variant-diets interaction by including a multiplicative interaction term in the models after adjustment for age, source of genotyping data, baseline BMI, smoking, alcohol intake, physical activity, total energy intake, alternate healthy eating index,

television watching, sugar sweetened beverage, fried food consumption.

The results were pooled by means of fixed effects meta-analyses ($P \ge 0.05$ for heterogeneity between studies).

Figure 2 Genetic association of *FADS* variant rs174570 with long-term BMI change according to long chain n-3 PUFAs and fish intakes

Pooled-EUR: data from NHS, HPFS, and WHI were pooled.

Pooled Multiethnic: data from NHS, HPFS, WHI and SCHS were pooled.

Data are β coefficients \pm SE.

Numbers of participants across three categories (≤1/wk/1~6/wk/≥1/d) of fish intake in the NHS, HPFS,

WHI, and SCHS are 1618/8465/1239, 977/5108/748, 894/4675/684, and 752/3935/576, respectively.

BMJ Open

Frequency of fish intake: ≤ 1 serving per week, 1~6 servings per week, and 1 serving per day

Data on BMI, long chain n-3 PUFAs (food sourced EPA+ DHA and total EPA+ DHA (food and supplemental use)) and fish consumptions were assessed at baseline in the NHS (1990), the HPFS (1990), the WHI (1994-1998), and the SCHS (1993-1998), respectively.
Data on follow-up BMI was assessed in 2000 in the NHS and HPFS, in the sixth follow-up year in the WHI, and from 2006 to 2010 in the SCHS, respectively.
The multiple linear regression model was used to test the genetic association of the *FADS* variant (additive model) with long-term changes in BMI by frequency of fish intake and tertiles of LC fatty acids after adjustment for age, source of genotyping data, baseline BMI, smoking, alcohol intake, physical activity, total energy intake, alternate healthy eating index, television watching, sugar sweetened beverage, fried food consumption. The results were pooled by means of fixed effects meta-analyses (P ≥ 0.05 for heterogeneity between studies).

Figure 3 Predicted long-term changes in BMI from long chain n-3 PUFAs intake according to *FADS* genotypes

Numbers of T carriers/Non-T carriers in the NHS and HPFS are 1698/9625, and 1025/5808, respectively. Black circles for T allele carriers and open circle for non-T-carriers.

The multiple linear regression model was used to test the associations of long chain n-3 PUFAs intake with long-term changes in BMI according to *FADS* genotypes after adjustment for age, source of genotyping data, baseline BMI, smoking, alcohol intake, physical activity, total energy intake, alternate healthy eating index, television watching, sugar sweetened beverage, fried food consumption.

The individual participant data from the NHS and HPFS cohorts were pooled.

Figure 4 Predicted long-term changes in BMI from fish intake according to FADS genotypes

Numbers of T carriers/Non-T carriers in the NHS and HPFS are 1698/9625 and 1025/5808, respectively.

Black circles for T allele carriers and open circle for non-T-carriers.

The multiple linear regression model was used to test the associations of and fish intake with long-term changes in BMI according to *FADS* genotypes after adjustment for age, source of genotyping data, baseline BMI, smoking, alcohol intake, physical activity, total energy intake, alternate healthy eating index, television watching, sugar sweetened beverage, fried food consumption.

The individual participant data from the NHS and HPFS cohorts were pooled.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

FADS-Diets Interaction Cohort	ES (95% CI)	% Weight
Food-sourced EPA	0.92 (0.04 1.81)	17.5
HPES	0.31 (-0.37, 0.99)	29.6
WHI .	0.62 (0.11 1.13)	52.9
Subtotal (I-squared = 0.0%, p = 0.549)	0.58 (0.21, 0.95)	
Food-sourced DHA		
NHS -	0.95 (0.17, 1.73)	8.3
HPFS	- 0.61 (0.00, 1.22)	13.6
WHI	0.24 (-0.01, 0.49)	78.2
Subtotal (I-squared = 45.4%, p = 0.160)	0.35 (0.12, 0.57)	
Food-sourced EPA+DHA		
NHS	0.67 (0.10, 1.24)	11.7
HPFS	0.44 (-0.00, 0.88)	19.8
WHI	0.18 (0.00, 0.36)	20.5
SCHS	0.25 (0.01, 0.49)	48.1
Subtotal (I-squared = 11.0%, p = 0.338)	0.25 (0.12, 0.38)	
Total EPA+DHA		
NHS	0.52 (0.09, 0.96)	16.2
HPFS	0.26 (-0.08, 0.59)	27.8
WHI	0.13 (-0.11, 0.37)	55.9
Subtotal (I-squared = 19.0%, p = 0.291)	0.23 (0.05, 0.41)	
Total fish		
NHS +++	0.31 (-0.10, 0.72)	18.5
HPFS +++	0.32 (-0.06, 0.69)	21.9
WHI	0.81 (-0.13, 1.75)	3.5
SCHS	0.28 (0.04, 0.52)	56.1
Subtotal (I-squared = 0.0%, p = 0.765)	0.31 (0.14, 0.49)	

-2

254x190mm (200 x 200 DPI)

0 0.29

BMJ Open

0.4 0.4 p=0.09 p=0.02 p=0.06 HPFS WHI =0.13 NHS ----• p=0.30 ----0.3 0.3 p=0.04 =0.04 NA 0.2 0.2 0.1 0.10.0 0.0 -0.1 -0.1 -0.2 -0.2 ĩ -0.3 -0.3 ł -0.4 -0.4 Tl(≤l/wk) T2(1~6/wk) T3(≥1/d) T3(≥1/d) $T1(\leq 1/wk)$ T2(1~6/wk) $T3(\geq 1/d)$ T1(≤1/wk) T2(1~6/wk) p=0.006 p=0.01 p=0.009 p=0.009 0.4 0.4 p=0.03 p=0.01 p=0.003 p=0.008 p=0.008 p=0.02 p=0.03 SCHS Pooled-EUR 0.4 0.2 0.1 0.0 0.3 _____p=0.02 0.2 0.1 0.0 -0.1 -0.1 -0.2 -0.3 -0.4 -0.2 ed EPA -0.3 rced DHA at sourced EPA+DHA tal EPA+DH* -0.4 -0.5 -0.5 -0.6 -0.6 $T1(\leq 1/wk)$ T2(1~6/wk) T3(≥1/d) T1(≤1/wk) T3(≥1/d) T2(1~6/wk) T3(≥1/d) T2(1~6/wk) $T1(\leq 1/wk)$

254x190mm (200 x 200 DPI)

59

254x190mm (200 x 200 DPI)

51 52 53 54 55

56

2.0 Predicted 10-y changes in BMI, kg/m² 1.8 T carriers $\beta \pm SE = 0.64 \pm 0.16$ 1.6 P = 0.000021.4 1.2 1.0 Non-T carriers 0.8 $\beta \pm SE = 0.18 \pm 0.08$ 0.6 P = 0.010.4 0.2 0.0 1.0 1.5 2.0 0.5 2.5 3.0 0.0 Total fish intake, servings/day

254x190mm (200 x 200 DPI)

3
4
5
ر د
0
/
8
9
10
11
12
13
11
14
10
10
17
18
19
20
21
22
23
24
27
25
20
2/
28
29
30
31
32
33
34
25
26
30
37
38
39
40
41
42
43
44
45
75 16
40
4/
48
49
50
51
52
53
54
55
56
50
5/
58
59

60

Supplemental table 1. Annotation for the top six SNPs under positive selection in Greenlandic Inuit

	Reference			DAF						
Position ¹	SNP identification number	Alleles ²	CEU	СНВ	GI	NHS	HPFS	WHI	SCHS	PBS
chr11:61627960	rs74771917	C/T	0.025	0.16	0.98	/	/	/	/	2.67
chr11:61631510	rs3168072	A/T	0.017	0.18	0.98	/	/	/	/	2.64
chr11:61632310	rs12577276	A/G	0.017	0.18	0.98	/	/	/	/	2.64
chr11:61641717	rs7115739	G/T	0.017	0.22	0.98	0.004	0.004	/	/	2.54
chr11:61624414	rs174602	C/T	0.80	0.73	0.01	0.82	0.81	/	/	2.11
chr11:61597212	rs174570	C/T	0.16	0.34	0.99	0.15	0.15	0.14	0.35	2.06

¹Positions refer to human genome assembly hg19.

²Alleles are coded as ancestral/derived states.

PBS, the population branch statistic; DAF, derived allele frequency; CEU, European ancestry; CHB, an

Chinese; GI, Greenlandic Inuit

DAFs for each population (CEU, CHB, and GI) and PBS values are reported, along with the genomic position for each SNP.

Supplemental table 2 Main effect of the FADS variants on adiposity in the four cohorts

Outcomes (kg/m^2)	FADS	NHS		HPFS		WHI		SCH	S	Poolec	1
Outcomes (kg/m/)	SNPs	Beta ± SE	Р	Beta ± SE	Р	Beta ± SE	Р	Beta ± SE	Р	Beta ± SE	Р
Baseline BMI	rs174570	0.03 ± 0.10	0.733	$\textbf{-0.05}\pm0.09$	0.538	-0.06±0.17	0.72	0.24±0.08	0.002	0.08 ± 0.05	0.06
Baseline BMI	rs174602	0.08 ± 0.10	0.418	$\textbf{-0.05} \pm 0.08$	0.536	/		/		0.00 ± 0.03	0.559
Baseline BMI	rs7115739	0.25 ± 0.52	0.634	$\textbf{-0.77} \pm 0.43$	0.077	/		/		$\textbf{-0.35}\pm0.14$	0.196
Long-term BMI change	rs174570	-0.05 ± 0.06	0.401	0.01 ± 0.05	0.917	-0.02 ± 0.09	0.77	-0.02 ± 0.08	0.85	-0.02 ± 0.03	0.94
Long-term BMI change	rs174602	-0.14 ± 0.06	0.009	0.04 ± 0.05	0.413	/		/		$\textbf{-0.04} \pm 0.01$	0.025
Long-term BMI change	rs7115739	0.45 ± 0.29	0.124	-0.23 ± 0.26	0.359	/		/		0.06 ± 0.08	0.183

Long-term BMI change: BMI change from 1990 to 2000.

Numbers of T carriers/Non-T carriers in the NHS, HPFS, WHI, and SCHS are 1698/9625, 1025/5808, 876/5378, and 1842/3422, respectively.

Effect size (ES) values are β coefficients for relationship between the *FADS* variant rs174570 (additive model) and adiposity.

The general linear model was used to test the genetic association of *FADS* variants with long-term changes in BMI after adjustment for age, source of genotyping data.

	Difference in long-term changes in weight,				
		kg		r for interaction	
Total Fish, serving/day	≤1/wk	1~6/wk	$\geq 1/d$		
NHS	-0.69±0.64	-0.13±0.49	1.78±1.64	0.05	
HPFS	-0.99±0.85	0.54±0.53	1.52±1.69	0.12	
WHI	-0.22±0.42	0.16±0.34	1.26±1.57	0.13	
SCHS	-0.42±0.29	-0.44±0.28	0.20±0.29	0.08	
Pooled	-0.44±0.22	-0.10±0.18	0.31±0.28	0.01	
Food-sourced EPA, g/day	T 1	T2	Т3		
NHS	-0.77±0.62	-0.25±0.72	0.53±0.64	0.06	
HPFS	-1.19±0.82	0.75±0.73	$0.72{\pm}0.74$	0.41	
WHI	-0.19±0.42	0.24±0.47	$0.14{\pm}0.48$	0.20	
Pooled	-0.50±0.32	0.24±0.34	0.37±0.34	0.10	
Food-sourced DHA, g/day	T1	T2	Т3		
NHS	-0.53±0.62	-0.39±0.70	0.53±0.65	0.01	
HPFS	-1.06±0.82	0.49±0.71	0.89±0.76	0.09	
WHI	-0.20±0.43	0.22±0.42	0.30±0.50	0.26	
Pooled	-0.43±0.32	0.15±0.32	0.49±0.35	0.01	
Food-sourced EPA+DHA, g/day	T1	T2	Т3		
NHS	-0.56±0.63	-0.32±0.68	0.49±0.66	0.01	
HPFS	-1.25±0.83	0.68±0.73	$0.84{\pm}0.74$	0.09	
WHI	-0.02±0.43	0.16±0.44	0.14±0.49	0.23	
SCHS	-0.47±0.29	-0.16±0.28	-0.03±0.29	0.10	

Supplemental table 3 Genetic association of *FADS* variant with long-term changes in body weight according to long chain n-3 PUFAs and fish intakes

Pooled	-0.56±0.25	-0.09±0.24	0.14±0.25	0.005
Total EPA+DHA, g/day	T1	T2	T3	
NHS	-0.58±0.63	-0.30±0.68	0.46 ± 0.66	0.02
HPFS	-1.20±0.82	0.75 ± 0.70	0.86 ± 0.77	0.18
WHI	-0.48 ± 0.47	0.64±0.43	0.04 ± 0.47	0.15
Pooled	-0.64±0.34	0.45±0.32	0.32±0.34	0.02

Data are β coefficients \pm SE.

Numbers of T carriers/Non-T carriers in the NHS, HPFS, WHI, and SCHS are 1698/9625, 1025/5808, 876/5378, and 1842/3422, respectively.

Frequency of fish intake: ≤ 1 serving per week, 1~6 servings per week, and 1 serving per day

Data on baseline fish and fatty acids consumptions were assessed in 1990 (NHS) and 1990 (HPFS).

Data on body weight were assessed in 1990 and 2000 in NHS and 1990 and 2000 in HPFS.

The general linear model was used to test the genetic association with long-term changes in body weight according to baseline long chain n-3 PUFAs and fish intakes after adjustment for age, source of genotyping data, baseline body weight, smoking, alcohol intake, physical activity, total energy intake, alternate healthy eating index, television watching, sugar sweetened beverage, fried food consumption. Data from three or four cohorts pooled by means of fixed effects meta-analyses (if $P \ge 0.05$ for heterogeneity between studies).

Cohorts		Long-ter	m changes in w	eight, kg	P for trend
Total Fish, s	erving/day	≤1/wk	1~6/wk	$\geq 1/d$	
NHS	Non T carriers	4.91±0.34	5.78±0.24	7.00±0.79	0.008
	T carriers	4.45±0.61	5.64±0.46	9.26±1.44	0.001
HPFS	Non T carriers	$0.44{\pm}0.06$	0.52±0.04	0.56±0.12	0.99
	T carriers	0.25±0.10	0.53±0.07	0.76±0.21	0.08
WHI	Non T carriers	-0.25±0.23	-0.43±0.18	-0.91±0.93	0.50
	T carriers	-0.56±0.37	-0.25±0.28	1.30±1.71	0.13
SCHS	Non T carriers	-3.15±0.23	-3.50±0.21	-3.38±0.21	0.48
	T carriers	-3.68±0.20	-3.41±0.19	-3.34±0.20	0.16
Food-source	ed EPA, g/day	T1	T2	Т3	
NHS	Non T carriers	4.89±0.33	5.89±0.33	5.95±0.33	0.24
	T carriers	4.45±0.59	5.52±0.63	6.46±0.61	0.34
HPFS	Non T carriers	0.50±0.05	0.54±0.05	0.45±0.05	0.15
	T carriers	0.29±0.10	0.54±0.09	0.52±0.09	0.66
WHI	Non T carriers	-0.30±0.25	-0.54±0.24	-0.29±0.24	0.42
	T carriers	-0.51±0.39	-0.36±0.37	-0.15±0.38	0.14
Food-source	ed DHA, g/day	T1	T2	Т3	
NHS	Non T carriers	4.78±0.33	5.56±0.34	6.32±0.33	0.14
	T carriers	4.50±0.60	5.07±0.63	6.77±0.61	0.004
HPFS	Non T carriers	0.48 ± 0.05	0.54±0.05	$0.46{\pm}0.06$	0.40
	T carriers	0.27±0.10	0.50±0.09	0.59±0.09	0.15
WHI	Non T carriers	-0.41±0.25	-0.25±0.24	-0.45±0.25	0.51

Supplemental table 4 Associations of long chain n-3 PUFAs and fish intakes with long-term changes in body weight according to *FADS* genotypes

	T carriers	-0.71±0.39	-0.15±0.37	-0.16±0.39	0.18
Food-source	d EPA+DHA, g/day	T1	T2	T3	
NHS	Non T carriers	4.69±0.34	5.45±0.33	6.51±0.33	0.02
	T carriers	4.44±0.61	5.00±0.61	6.92±0.61	0.0003
HPFS	Non T carriers	0.48±0.05	0.53±0.05	0.47 ± 0.05	0.93
	T carriers	0.26±0.10	$0.49{\pm}0.09$	0.59±0.09	0.08
WHI	Non T carriers	-0.44±0.24	-0.23±0.23	-0.43±0.24	0.47
	T carriers	-0.52±0.38	-0.15±0.37	-0.33±0.38	0.15
SCHS	Non T carriers	-3.44±0.21	-3.58±0.22	-3.05±0.21	0.89
	T carriers	-3.73±0.19	-3.57±0.19	-3.12±0.19	0.12
Total EPA+I	DHA, g/day	T1	T2	Т3	
NHS	Non T carriers	4.74±0.34	5.55±0.32	6.36±0.34	0.81
	T carriers	4.49±0.61	5.16±0.60	6.70±0.61	0.03
HPFS	Non T carriers	0.49±0.05	0.53±0.05	0.47 ± 0.06	0.24
	T carriers	0.26±0.10	0.51±0.09	0.58±0.09	0.33
WHI	Non T carriers	0.32±0.27	-0.84±0.23	-0.60±0.28	0.19
	T carriers	-0.26±0.45	-0.21±0.37	-0.02±0.11	0.08

Data on baseline fish and fatty acids consumptions were assessed in 1990 (NHS) and 1990 (HPFS). Numbers of T carriers/Non-T carriers in the NHS, HPFS, WHI, and SCHS are 1698/9625, 1025/5808, 876/5378, and 1842/3422, respectively.

Data on body weight were assessed in 1990 and 2000 in NHS and 1990 and 2000 in HPFS.

The general linear model was used to test the associations of long chain n-3 PUFAs and fish intakes with long-term changes in body weight by *FADS* genotypes after adjustment for age, source of genotyping data, baseline body weight, smoking, alcohol intake, physical activity, total energy intake, alternate healthy eating index, television watching, sugar sweetened beverage, fried food consumption.

Data from two cohorts pooled by means of fixed effects meta-analyses (if $P \ge 0.05$ for heterogeneity between studies) or random effects meta-analyses (if P < 0.05 for heterogeneity between studies).

D:-4-		Long chair	n n-3 PUFAs and fi	D.f turum J	P for	
Diets	FADS genotypes	(Categories of diets		P for trend	interaction*
Food-sourced	Food-sourced EPA, g/day		T2	Т3		
NHS	Non-T carriers	$0.82{\pm}0.06$	$1.00{\pm}0.06$	1.01±0.06	0.24	0.05
	T carriers	0.72±0.10	0.94±0.11	1.10±0.11	0.29	
HPFS	Non-T carriers	0.48 ± 0.05	$0.54{\pm}0.05$	0.47±0.05	0.72	0.37
	T carriers	0.23±0.11	0.54±0.10	0.52±0.09	0.45	
WHI	Non-T carriers	0.10±0.09	$0.09{\pm}0.09$	0.45±0.09	0.21	0.02
	T carriers	-0.08±0.15	0.23±0.15	0.46±0.15	0.003	
Pooled	Non-T carriers	0.54±0.04	0.63±0.04	0.65±0.04	0.35	0.01
	T carriers	0.39±0.07	0.63±0.07	0.70±0.06	0.01	
Food-sourced	DHA, g/day	T1	T2	Т3		
NHS	Non-T carriers	0.80±0.06	0.94±0.06	1.08 ± 0.06	0.14	0.009
	T carriers	0.74±0.10	0.83±0.11	1.17±0.10	0.002	
HPFS	Non-T carriers	0.46±0.05	$0.54{\pm}0.05$	0.49±0.05	0.99	0.05
	T carriers	0.24±0.10	0.49±0.10	0.58±0.09	0.05	
WHI	Non-T carriers	0.03±0.09	0.20±0.09	0.42±0.09	0.03	0.06
	T carriers	-0.10±0.15	0.33±0.15	0.39±0.15	0.006	
Pooled	Non-T carriers	0.51±0.04	0.63±0.04	0.68±0.04	0.1	0.002
	T carriers	0.38±0.06	0.58±0.07	0.77±0.06	7×10 ⁻⁴	

Supplemental Table 5 Associations of long chain n-3 PUFAs and fish intakes with long-term changes in BMI according to *FADS* genotypes

Data are means \pm SE.

¹P for interaction was generated from dominant model of *FADS* rs174570 (CC vs CT+TT).

Numbers of T carriers/Non-T carriers in the NHS, HPFS, WHI, and SCHS are 1698/9625, 1025/5808, 876/5378, and 1842/3422, respectively.

Data on BMI, long chain n-3 PUFAs consumptions were assessed at baseline in the NHS (1990), the HPFS (1990), the WHI (1994-1998), and the SCHS (1993-1998), respectively.

Data on follow-up BMI was assessed in 2000 in the NHS and HPFS, in the sixth follow-up year in the

WHI, and from 2006 to 2010 in the SCHS, respectively.

Long-term BMI changes were calculated based on the changes in BMI from baseline to follow-up year in the four cohorts, respectively.

The general linear model was used to test the associations of long chain n-3 PUFAs and fish intakes with long-term changes in BMI by *FADS* genotypes after adjustment for age, source of genotyping data, baseline BMI, smoking, alcohol intake, physical activity, total energy intake, alternate healthy eating index, television watching, sugar sweetened beverage, fried food consumption.

The results were pooled by means of fixed effects meta-analyses (if $P \ge 0.05$ for heterogeneity between studies).

Registration: www. clinicaltrials.gov. Registration ID: NCT03348566

TABLE 1. STREGA reporting recommendations, extended from STROBE Statement

ltem	ltem number	STROBE Guideline	Extension for Genetic Association Studies (STREGA)
Title and Abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract. (p. 3)	
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found. $(\mathbf{p.3})$	
Introduction		Cr r	
Background rationale	2	Explain the scientific background and rationale for the investigation being reported. (p. 4)	
Objectives	3	State specific objectives, including any pre-specified hypotheses.	State if the study is the first report of a genetic association, a replication effort, or both. (p. 3)
Methods			
Study design	4	Present key elements of study design early in the paper. (p. 5)	

1	
ר	
2	
3	
4	
5	
6	
7	
, 0	
0	
9	
10	
11	
12	
13	
14	
14	
15	
16	
17	
18	
10	
20	
20	
21	
22	
23	
24	
25	
25	
26	
27	
28	
29	
30	
31	
21	
52	
33	
34	
35	
36	
37	
20 20	
20	
39	
40	
41	
42	
43	
44	
17	
40	
46	
47	

Item	ltem number	STROBE Guideline	Extension for Genetic Association Studies (STREGA)
Setting	5	Describe the setting, locations and relevant dates, including periods of recruitment, exposure, follow-up, and data collection. $(p. 3)$	
Participants	6	 (a) Cohort study – Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up. (p. 5) Case-control study – Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls. Cross-sectional study – Give the eligibility criteria, and the sources and methods of selection of participants. 	Give information on the criteria and methods for selection of subsets of participants from a larger study, when relevant. (p. 5)
		(b) Cohort study – For matched studies, give matching criteria and number of exposed and unexposed.	
		Case-control study – For matched studies, give matching criteria and the number of controls per case.	
Variables	7	 (a) Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable. (p. 5) 	(b) Clearly define genetic exposures (genetic variants) using a widely-used nomenclature system. Identify variables likely to be associated with population stratification (confounding by ethnic origin). (p. 5)

Item	ltem number	STROBE Guideline	Extension for Genetic Association Studies (STREGA)
Data sources measurement	8*	(a) For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group. (p. 5)	(b) Describe laboratory methods, including source and storage of DNA, genotyping methods and platforms (including the allele calling algorithm used and its version), error rates and call rates. State the laboratory/centre where genotyping was done. Describe comparability of laboratory methods if there is more than one group. Specify whether genotypes were assigned using all of the data from the study simultaneously or in smaller batches. (p. 5)
Bias	9	(a) Describe any efforts to address potential sources of bias. (p. 5 &6)	(b) For quantitative outcome variables, specify if any investigation of potential bias resulting from pharmacotherapy was undertaken. If relevant, describe the nature and magnitude of the potential bias, and explain what approach was used to deal

ltem	ltem number	STROBE Guideline	Extension for Genetic Association Studies (STREGA)
			<i>with this.</i> (p. 5 &6)
Study size	10	Explain how the study size was arrived at. (p. 5 &6)	
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen, and why. (p. 7)	<i>If applicable, describe how effects of treatment were dealt with.</i> (p. 7)
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding. (p. 7-9)	State software version used and options (or settings) chosen. (p. 9)
		(b) Describe any methods used to examine subgroups and interactions. (p. 9)	
		(c) Explain how missing data were addressed. (p. 9)	
		(d) Cohort study – If applicable, explain how loss to follow-up was addressed. (p. 9)	
		Case-control study – If applicable, explain how matching of cases and controls was addressed.	
		Cross-sectional study – If applicable, describe analytical methods taking account of sampling strategy.	
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

ltem	ltem number	STROBE Guideline	Extension for Genetic Association Studies (STREGA)
		(e) Describe any sensitivity analyses. (p. 9)	
		Hardy-Weinberg equilibrium was tested using Chi-square test. (p. 9)	(f) State whether Hardy- Weinberg equilibrium was considered and, if so, how.
		We assumed that each SNP in the panel acts independently in an additive manner. We coded the SNPs as following: rs174570 (TT=2, TC=1, CC=0); rs174602 (TT=2, TC=1, CC=0); rs7115739 (TT=2, TG=1, GG=0). (p. 8&9)	(g) Describe any methods used for inferring genotypes or haplotypes.
		er.	(h) Describe any methods used to assess or address population stratification. (p. 9)
		01/	<i>(i) Describe any methods used to address multiple comparisons or to control risk of false positive findings.</i> (p. 9)
			(j) Describe any methods used to address and correct for relatedness among subjects(p. 9)
Item	ltem number	STROBE Guideline	Extension for Genetic Association Studies (STREGA)
------------------	----------------	---	---
Results			
Participants	13*	(a) Report the numbers of individuals at each stage of the study – e.g., numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed. (p. 10)	Report numbers of individuals in whom genotyping was attempted and numbers of individuals in whom genotyping was successful. (p. 10)
		(b) Give reasons for non-participation at each stage. (p. 10)	
		(c) Consider use of a flow diagram. (p. 10)	
Descriptive data	14*	(a) Give characteristics of study participants (e.g., demographic, clinical, social) and information on exposures and potential confounders. (p. 10)	Consider giving information by genotype. (p. 10)
		(b) Indicate the number of participants with missing data for each variable of interest. (p. 10)	
		(c) Cohort study – Summarize follow-up time, e.g. average and total amount. (p. 10)	
		For peer review only - http://bmionen.hmi.com/site/about/quidelines.yhtml	

Item	ltem number	STROBE Guideline	Extension for Genetic Association Studies (STREGA)
Outcome data	15 *	Cohort study-Report numbers of outcome events or summary measures over time.	Report outcomes (phenotypes) for each genotype category over time
		Case-control study – Report numbers in each exposure category, or summary measures of exposure.	Report numbers in each genotype category
		Cross-sectional study – Report numbers of outcome events or summary measures.	Report outcomes (phenotypes) for each genotype category
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (e.g., 95% confidence intervals). Make clear which confounders were adjusted for and why they were included. (p. 10)	
		(b) Report category boundaries when continuous variables were categorized. (p. 10)	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period. (p. 10)	
			(d) Report results of any adjustments for multiple

ltem	ltem number	STROBE Guideline	Extension for Genetic Association Studies (STREGA)
		\wedge	comparisons. (p. 10)
Other analyses	17	 (a) Report other analyses done – e.g., analyses of subgroups and interactions, and sensitivity analyses. (p. 10) 	
			(b) If numerous genetic exposures (genetic variants) were examined, summarize results from all analyses undertaken. (p. 10)
		en o	(c) If detailed results are available elsewhere, state how they can be accessed. (p. 10)
Discussion		5/1	
Key results	18	Summarize key results with reference to study objectives. (p. 11)	
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias. (p. 11)	
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

Item	ltem number	STROBE Guideline	Extension for Genetic Association Studies (STREGA)
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence. (p. 11)	
Generalizability	21	Discuss the generalizability (external validity) of the study results. (p. 11)	
Other Information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based. (p. 14)	

STREGA = STrengthening the REporting of Genetic Association studies; STROBE = STtrengthening the Reporting of Observational Studies in Epidemiology.

* Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.