

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

BMJ Open

Impact of obesity on life expectancy among different European countries, 1975-2012

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-028086
Article Type:	Research
Date Submitted by the Author:	22-Nov-2018
Complete List of Authors:	Vidra, Nikoletta; Population Research Centre, Faculty of Spatial Sciences, Demography Trias-Llimós, Sergi; University of Groningen, Population Research Centre Janssen, Fanny; University of Groningen, Population Research Centre; Nederlands Interdisciplinair Demografisch Instituut
Keywords:	EPIDEMIOLOGY, NUTRITION & DIETETICS, PUBLIC HEALTH

SCHOLARONE[™] Manuscripts

4	
5	
6 7	
8	
9	
10 11	
12	
13	
14 15	
16	
17	
18 10	
20	
21	
22 23	
23	
25	
26 27	
27	
29	
30 21	
31 32	
33	
34 25	
35 36	
37	
38	
39 40	
41	
42	
43 44	
45	
46	
47 48	
49	
50	
51 52	
53	
54	
55 56	
57	
58	
59 60	
00	

Impact of obesity on life expectancy among different European countries, 1975-2012

Nikoletta Vidra¹, Sergi Trias-Llimós¹, Fanny Janssen^{1,2}

¹ Population Research Centre, Faculty of Spatial Sciences, University of Groningen, Landleven

1, 9747 AD Groningen, The Netherlands.

² Netherlands Interdisciplinary Demographic Institute, Lange Houtstraat 19, 2511 CV The

Hague, The Netherlands.

Corresponding author: Nikoletta Vidra, Population Research Centre, Faculty of Spatial Sciences, University of Groningen, PO Box 800, 9700 AV Groningen, The Netherlands. Tel: 0031 (0) 50 363 86 52; e-mail: n.vidra@rug.nl

Word count: 3053 words

Abstract

Objective: This study assesses the impact of obesity on life expectancy for 26 European national populations and the USA over the 1975-2012 period.

Design: Secondary analysis of population-level obesity and mortality data.

Setting: European countries, namely Austria, Belarus, Belgium, the Czech Republic, Denmark, Estonia, Finland, France, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, the Netherlands, Norway, Poland, Portugal, the Russian Federation, Slovakia, Spain, Sweden, Switzerland, Ukraine, the United Kingdom (UK); and the USA.

Participants: National populations aged 18–100 years, by sex.

Measurements: Using data by age and sex, we calculated obesity-attributable mortality by multiplying all-cause mortality (Human Mortality Database) with obesity-attributable mortality fractions (OAMFs). OAMFs were obtained by applying the partially adjusted method to obesity prevalence data (NCD Risk Factor Collaboration) and European Relative Risks (RRs) (DYNAMO). We estimated potential gains in life expectancy at birth (PGLE) by eliminating obesity-attributable mortality from all-cause mortality using associated singledecrement life tables.

Results: In the 26 European countries in 2012, PGLE due to obesity ranged from 0.86 to 1.67 years among men, and from 0.66 to 1.54 years among women. In all countries, PGLE increased over time, with an average annual increase of 2.68% among men and 1.33% and among women. Among women in Denmark, Switzerland, and Central and Eastern European countries, the increase in PGLE levelled off after 1995. Without obesity, the average increase

BMJ Open

in life expectancy between 1975 and 2012 would have been 0.78 years higher among men and 0.30 years higher among women.

Conclusions: Obesity was proven to have an impact on both life expectancy levels and trends in Europe. The differences found in this impact between countries and the sexes can be linked to contextual factors, as well as to differences in people's ability and capacity to adopt healthier lifestyles.

Keywords: Obesity, life expectancy, Europe, USA

Article Summary

Strengths and limitations of the study

• This is the first study to assess the impact of obesity on life expectancy at birth over time, and we do so here for 26 European countries and the USA.

• We used recent long-term comparable data on obesity prevalence based on

population-based measurement studies, and European relative risks of dying from obesity by age and sex from a recent meta-analysis.

• Because of remaining data limitations regarding prevalence and relative risks, we had

to use a fairly simple - albeit common applied - methodology to estimate obesity-

attributable mortality.

Introduction

Obesity is a global epidemic (1), with Europe currently ranking second worldwide after the USA (2). Over the last 20 years obesity prevalence has increased threefold in Europe, (3) although not uniformly across countries (4). Estimates for 2014 indicate that obesity varied threefold across European countries, ranging from a low of 9% in Romania to a high of 26% in Malta (5). Obesity constitutes a serious health burden at the individual and population levels because it is associated with an increased risk of morbidity (6), and mortality (7). However, the potential impact of the increase in obesity on life expectancy trends remains largely unknown (8).

The few existing studies that assessed the impact of obesity on life expectancy at the population level provided estimates at one specific point in time only (9, 10). Olshansky et al. found that if obesity was eliminated, life expectancy at birth (e0) in the USA in 2000 would be 0.21 to 1.08 years higher, depending on gender and ethnicity (9). Preston et al. (10) estimated for 16 low-mortality countries in 2006 that the reduction in life expectancy at age 50 (e50) due to obesity was greatest in the USA, at more than 1.5 years; and ranged from 0.50 to 1.19 years for women and from 0.72 to 1.37 years for men in European countries.

Gaining insight into the impact of obesity on trends in life expectancy is especially relevant (11) given the marked differences in life expectancy trends across Europe (12). In Western European countries, e0 has been increasing steadily, and has risen six to eight years since 1970. But in Central and Eastern Europe (CEE), e0 stagnated or even declined between the 1970s and the 1980s, and did not start increasing again until the 1990s. There are also marked differences in e0 trends between individual European countries (12).

 In light of these important differences between European countries in both obesity prevalence and life expectancy over time, our aim is to assess the impact of obesity on longterm trends in life expectancy across a wide range of European countries.

Data and Methods

Setting

We studied the impact of obesity on life expectancy by sex over the 1975-2012 period in 26 European countries: Austria, Belarus, Belgium, the Czech Republic, Denmark, Estonia, Finland, France, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, the Netherlands, Norway, Poland, Portugal, the Russian Federation, Slovakia, Spain, Sweden, Switzerland, Ukraine, the United Kingdom (UK); and the USA as a comparison country (10).

Data

Long-term comparable obesity prevalence data (BMI≥30kg/m2) by country, sex, age (18-19, 20-24, ..., 85+), and year (1975-2012), based on population-based measurement studies, were obtained from the NCD Risk Factor Collaboration study (13). These validated data comprise the available measured height and weight data, supplemented with estimates based on information from other years and related countries from a Bayesian hierarchical model (13).

The age- (<50, 50-59, 60-69 and ≥70 years) and sex-specific relative risks (RRs) of dying from obesity (see Appendix Table S1) came from a review of studies mainly conducted in Western Europe and the USA (14). These age- and sex-specific RRs were largely in line with the overall European RR of 1.64 recently estimated by the Global BMI Mortality Collaboration (15). All-cause mortality numbers and exposure population data by single year of age, sex, and year were obtained from the Human Mortality Database (16).

Patient and Public Involvement

No patients were involved in this study.

Methods

 We performed our analyses separately by country and sex, based on data by single year of age (18-100). The obesity prevalence data were turned into single-age prevalence (18-100) by applying Loess smoothing (17). The RRs were turned into single-year RRs (18- 100) using linear regression.

To estimate the obesity-attributable mortality fraction (OAMF) – i.e., the share of allcause mortality due to obesity – we used the Rockhill formula to estimate OAMFs by age (a) and sex (s) (18).

$$OAMF_{a,s} = \frac{P_{a,s} \cdot (RR_{a,s} - 1)}{1 + (P_{a,s} \cdot (RR_{a,s} - 1))} (Equation 1)$$

where *P* is the obesity prevalence. We then weighted the $OAMF_{a,s}$ with the corresponding number of deaths.

For the estimation of the impact of obesity on life expectancy (see 2.3.2) we needed age-and sex-specific (non-) obesity-attributable mortality rates. These were obtained by multiplying $OAMF_{a,s}$ and [1- $OAMF_{a,s}$], respectively, with age- and sex-specific all-cause mortality rates.

To ensure comparability across countries, over time, and between men and women, we applied direct age- and sex-standardisation (19) to obesity prevalence, obesity-

BMJ Open

attributable mortality fractions, and obesity-attributable mortality rates, using the European population of 2011 (20) as the standard.

To assess the impact of adult obesity on e_0 , we calculated for each country the potential gain in life expectancy (PGLE) if obesity-attributable mortality were eliminated, by calendar year and sex. First, we calculated e_0 by applying standard life table techniques to age-specific all-cause mortality rates (0-100) (19). Second, we applied associated singledecrement life tables (ASDLT) (19) to age- and sex-specific non-obesity-attributable mortality rates (0-100) to obtain e_0 if obesity-attributable mortality were eliminated. The PGLE represents the difference between the e_0 based on the ASDLT and the original e_0 .

To summarise the changes in PGLE across countries, we estimated the average annual changes in PGLE (in %):

Average annual changes in PGLE (%) =
$$\frac{\sum_{t=1976}^{2012} \frac{(PGLE_t - PGLE_{t-1})}{PGLE_{t-1}}}{2012 - 1975} 100$$

To assess the impact of obesity on time trends in e_0 between 1975 and 2012, we subtracted the observed change in e_0 from the change in e_0 without obesity. The change in e_0 without obesity was obtained by using the e_0 values from the associated single-decrement life tables applied to non-obesity-attributable mortality for 1975 and 2012.

Results

For the 26 European countries, the age-standardised obesity-attributable mortality fraction (OAMF) was, on average, 11% among men and 10% among women in 2012. For the USA, these estimates were substantially higher; i.e., 15% and 14%, respectively. The average

OAMF levels were higher in Northern, Western, and Southern Europe combined (hereafter, Western Europe) than in CEE among men, while the opposite was the case among women.

OAMFs were increasing over time for all countries and both sexes, although not to the same extent (see Figure 1, Figure S1). In Western Europe, OAMFs generally increased over the 1975-2012 period, and at a faster pace among men. In CEE, by contrast, OAMFs clearly stagnated, and even declined between 1990 and 2000. The overall increase in OAMFs was greatest in the USA, Ireland, Norway (men), and the UK (women).

Figure 1: Age-standardised obesity-attributable mortality fractions in 26 European countries (by 5 regions) and USA, 1975-2014, 18-100 years

<approximately here>

In the 26 European countries in 2012, estimates of potential gains in life expectancy at birth (PGLE) if obesity was eliminated ranged from 0.86 to 1.67 years among men (1.22 on average) and from 0.66 to 1.54 years (0.98 on average) among women (Figure 2; Figure S2 and Table S2 Appendix). Among men in the USA, the PGLE estimate was, at 1.73 years, slightly higher than the highest estimate in Europe; and among women in the USA, the PGLE estimate was, at 1.44 years, the second-highest after the estimate for Russia. The average PGLE estimate was 1.08 among men and 0.86 among women in Western Europe, and was 1.44 among men and 1.16 among women in CEE (see Appendix Table S2).

 BMJ Open

Figure 2: Potential gains in life expectancy at birth (PGLE) if obesity-attributable mortality was eliminated, in 26 European countries (differentiating Western and Central Eastern Europe) and the USA, 1975-2012

<approximately here>

Overall, from 1975 to 2012, PGLE due to obesity increased in all of the countries (Figure 2, Figure S2, Figure 3, 4). The increase was greater among men (average annual increase of 2.68%) than among women (average annual increase of 1.33%), was largest among men in Portugal and Belarus and among women in Portugal, and was substantial among men and women in Norway (Figure 3, 4). While there was a general increase in PGLE due to obesity, this trend stagnated among women in CEE from around 1990 onwards, and levelled off after 1995 among women in Denmark and Switzerland.

Figure 3: Average annual increase (%) in potential gains in life expectancy due to obesity in 26 European countries and the USA between 1975-2012, in men

<approximately here>

Figure 4: Average annual increase (%) in potential gains in life expectancy due to obesity in 26 European countries and the USA between 1975-2012, in women status annual increase (%) in potential gains in life expectancy due to obesity in 26 European countries and the USA between 1975-2012, in women status annual increase (%) in potential gains in life expectancy due to obesity in 26 European countries and the USA between 1975-2012, in women status annual increase (%) in potential gains in life expectancy due to obesity in 26 European countries and the USA between 1975-2012, in women status annual increase (%) in potential gains in life expectancy due to obesity in 26 European countries and the USA between 1975-2012, in women status approximately.org

Table 1 shows the impact of obesity on time trends in life expectancy at birth (e_0). Overall, the average increase in e_0 between 1975 and 2012 was 7.26 years for men and 6.28 years for women in the 26 European countries. Without obesity, the average increase in e_0 would have been 8.04 years for men and 6.58 years for women; or 0.78 and 0.30 years higher, respectively. Among men, obesity had the greatest impact on e_0 trends in Lithuania

> and the USA (more than one year), and the smallest impact in Iceland and Sweden (0.5 years). Among women, obesity had the greatest impact on e₀ trends in the USA and Ireland (0.7 years) and the smallest impact in Estonia and the Czech Republic (less than 0.1 year).

Table 1: Impact of obesity on trends in life expectancy at birth (e₀) in 26 European

countries and USA 1975-2012, by sex

Country Chang		າ e ₀ with	Change in e_0 without		Effect of obesity on e_0	
	obesity 20	012-1975	obesity 201	2-1975	change 201	2-1975
	(yea	ars)	(years	5)	(years	s)
	Men	Women	Men	Women	Men	Women
Austria	10.62	8.61	11.25	8.95	0.63	0.34
Belarus	-0.55	1.43	0.46	1.83	1.00	0.40
Belgium	8.85	7.63	9.46	7.99	0.61	0.36
Czech Republic	7.97	6.98	8.66	7.03	0.69	0.05
Denmark	6.78	5.03	7.40	5.36	0.63	0.33
Estonia	6.43	6.42	7.26	6.46	0.82	0.04
France	9.49	7.99	10.17	8.30	0.68	0.31
Finland	10.07	7.26	10.82	7.75	0.74	0.50
Hungary	5.29	6.18	6.17	6.36	0.87	0.18
Iceland	9.02	5.19	9.51	5.51	0.48	0.32
Ireland	9.40	8.40	10.22	9.10	0.83	0.69
Italy	10.19	8.56	10.81	8.89	0.62	0.33
Latvia	4.91	4.53	5.82	4.70	0.90	0.18
Lithuania	2.01	3.80	3.14	4.06	1.13	0.26
Luxembourg	11.78	9.27	12.50	9.65	0.72	0.37
Netherlands	7.68	5.10	8.26	5.6	0.56	0.49
Norway	7.70	5.33	8.42	5.86	0.74	0.51
Poland	5.90	6.74	6.81	7.00	0.91	0.27
Portugal	12.14	10.87	12.91	11.26	0.77	0.40
Russian Federation	2.05	2.62	3.06	2.89	1.02	0.28
Slovakia	5.65	5.82	6.52	6.16	0.88	0.34
Spain	8.82	8.75	9.62	9.14	0.79	0.39
Sweden	7.69	5.59	8.18	5.93	0.49	0.33
Switzerland	8.98	6.63	9.55	6.93	0.58	0.30
Ukraine	0.48	1.73	1.26	1.94	0.78	0.21
United Kingdom	9.46	6.96	10.20	7.55	0.74	0.59
USA	7.86	4.89	8.90	5.61	1.04	0.71
Average CEE	4.01	4.63	4.92	4.84	0.90	0.22
countries						

Average Western countries	9.10	7.09	9.76	7.50	0.66	0.41

Discussion

Summary of results

In the 26 European countries studied, the share of mortality due to obesity in 2012 was, on average, 11% among men and 10% among women. PGLE due to obesity in 2012 ranged from 0.86 to 1.73 years among men, and from 0.66 to 1.54 years among women. Overall, PGLE increased between 1975 and 2012, albeit more quickly among men (average annual increase: 2.68%) than among women (1.33%). Among women in Denmark, Switzerland, and the CEE countries the increase in PGLE levelled off after 1995. Without obesity, the average increase in e0 between 1975 and 2012 would have been 0.78 years higher among men and 0.30 years higher among women.

Evaluation of data and methods

Using the recent advances in obesity data, it is now possible to study the impact of obesity on life expectancy for a large number of countries and a long period of time. Two methodological issues warrant our attention, however.

First, in calculating the share of mortality due to obesity (OAMF), which also forms the basis for our PGLE calculations, we were hindered by limitations in the available prevalence and RRs data, which also affected the method used. As has previously been documented, OAMF estimates are sensitive to the data and the methods used (21).

In selecting obesity prevalence data, we used the longest validated time series based

BMJ Open

on population-based measurement studies that are suitable for studying the impact of obesity on long-term life expectancy trends across Europe (13). For those countries with less available obesity data – especially CEE countries – a portion of the data we used were modelled, and these should be treated with some caution (13).

Because age- and sex-specific RRs of mortality associated with obesity are not available by country and year, we applied to all of the countries studied time-constant ageand sex-specific RRs from Western European and US populations that are largely suitable for our setting. However, literature for the USA has demonstrated that RRs have been changing over time, pointing to both a decline (22-24) and an increase (25). Before implementing time-variant European RRs, more information on their direction is required. Similarly, comparable country-specific RRs are urgently needed.

Based on the available data, only a fairly simple – albeit common applied –the partially adjusted method could be applied (21) to estimate the OAMFs. The application of a more advanced methodology (21) could have affected the OAMFs and thus the PGLE levels, but less the trends (26).

Second, besides being the result of the OAMFs, the PGLE estimates can also be affected by all-cause mortality levels and trends as age- and sex-specific all-cause mortality rates are used to estimate PGLE. Since all-cause mortality fluctuated greatly in CEE in the analysed period (12), short-term variations in PGLE in CEE countries should be treated with more caution.

Explanation of results

In 2012, the PGLE due to obesity were, on average, 1.22 years for men and 0.98 years for women in the 26 European countries, and 1.73 years for men and 1.43 years for women in the USA. A comparison of our 2006 e50 estimates with those of Preston et al. (10) for the

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

same countries uncovered only small differences, except among men in the USA (our estimate was 0.56 years lower) and women in the UK (our estimate was 0.29 years lower) (see Appendix Table S3). Given that approximately the same methodology was used to estimate the OAMFs, the observed differences are most likely due to the use of different obesity prevalence and RRs data. Preston used prevalence data from national representative surveys and RRs from the Prospective Studies collaboration (14).

To further evaluate our observed PGLE levels, we compared them with own PGLE estimates for smoking and alcohol (27). Our PGLE estimates for smoking were 2.38 years for men and 1.00 year for women in Western Europe, and 3.82 years for men and 0.67 years for women in CEE. Our PGLE estimates for alcohol were 0.90 years for men and 0.44 years for women in Western Europe, and 2.15 years for men and 1.00 year for women in CEE (27). Thus, obesity's impact on life expectancy lies between that of smoking and alcohol, and can be considered significant.

In our study, we found that PGLE due to obesity was increasing, but that this trend differed across countries and between the sexes. This overall trend can be explained by the general increase in obesity prevalence in European countries (see Appendix Figure S3) (13) and the resulting growth in the burden of obesity (3), which is also reflected in the OAMFs (Figure 1, Figure S1) in these countries.

At the same time, parts of the observed variation in the increase in PGLE estimates across the USA, Western Europe, and CEE and between the sexes reflect differences in the onset, the development, and the impact of the obesity epidemic in these countries and in men and women. Across the countries studied, the absolute increase in PGLE was largest among women and second-largest among men in the USA. This pattern is in line with

BMJ Open

evidence showing that between 1980 and 2008, obesity increased much more in the USA than in Europe (1, 28). This rapid progression of the obesity epidemic in the USA and its large impact on life expectancy has been attributed to an increasingly obesogenic environment caused by factors such as changes in food preparation and processes that promote the consumption of calorically dense foods, and a pronounced decrease in physical activity levels (29). The obesity epidemic has progressed more slowly in Western Europe than in the USA (1, 13). However, obesity levels in countries like the UK and Ireland are rapidly approaching those in the USA (30), as our PGLE estimates also show.

In the CEE countries, the PGLE trends track the evolution of the obesity epidemic in that region (see Appendix Figure S3). Obesity levels have been higher in CEE than in Western Europe since 1980 (31, 32), which suggests that the epidemic started earlier in CEE. As a result of this earlier onset, the impact of obesity (as expressed in terms of OAMF and PGLE) in the 1970s and 1980s was at times even greater in CEE than in the USA, especially among women. While there are many potential explanations for this early onset of the obesity epidemic in CEE, the available data indicate that the main factors were the relatively high total energy supply and energy intake in CEE in those years (33).

The overall progress of the obesity epidemic was lower in CEE than in Western Europe, and the increase was not constant (1). Indeed, in CEE, increases in obesity prevalence (1, 34), OAMFs, and PGLE stagnated in the 1980-2008 period, more pronounced in the 1990s (1, 34). This pattern could be explained by the decrease in energy supplies at the beginning of the 1990s in CEE (31) resulting from the dramatic economic and political changes in those countries (1, 31, 34). Among CEE women, the increase in obesity starting in the 1990s was smaller than it was in the previous period, and was smaller than it was among

BMJ Open

CEE men. The lower risk of obesity observed among women than among men with low socioeconomic status (SES) in low-income countries (35) may explain this difference.

In Western Europe, a stagnation in PGLE levels was observed among women in Denmark and Switzerland after 1995. This finding seems to be in line with studies reporting a levelling-off of mean BMI since the 1990s (36); and in specific sub-populations, such as adults with high SES in regions within Switzerland, Italy, France, and Finland (31). Although dietary and physical activity information is spreading equally across socioeconomic groups, those with higher SES have a greater ability and capacity to adopt a healthier dietary and physical activity pattern (37). In addition, it appears that higher SES women in particular are more health-conscious, have healthier food habits, and are more prone to follow nutritional recommendations (38) as they are under greater social pressure to be thin (39). Similarly, countries with higher income levels and lower levels of inequality (40), like Switzerland and Denmark, tend to have lower obesity levels, especially among women.

When we considered the impact of obesity on life expectancy in the 26 European countries, we found that without obesity, the increase in e0 between 1975 and 2012 would have been, on average, 0.78 years higher among men and 0.30 years higher among women. These figures account for approximately 10% of the average change in e0 between 1975 and 2012 among men, and 5% among women. It is therefore clear that the impact of obesity on changes in e0 should not be ignored. Moreover, the impact of obesity on life expectancy trends is likely to increase, given that this impact is already substantially greater in the USA (13% among men and 15% among women), and that obesity prevalence is still increasing rapidly in most European countries (see Appendix Figure S3).

Conclusion and implications

Obesity was proven to have an impact on both life expectancy levels and trends in Europe. The observed differences in the increase in the impact of obesity across countries and between the sexes reflect differences in the onset and the progression of the obesity epidemic, and can be linked to contextual factors (economic conditions, obesogenic environment, energy supplies), as well as to differences in people's ability and capacity to adopt healthier lifestyles.

It is likely that in the future obesity will have a larger impact on mortality and life expectancy in Europe, as obesity continues to increase in the majority of countries. It is therefore crucial that effective public health initiatives are undertaken to tackle the obesity epidemic and its effects on public health. Such initiatives should address the multifactorial and complex obesity aetiology; the clear differences between countries and the sexes; as well as the factors underlying these differences, such as contextual factors and differences in individuals' ability and capacity to adopt healthier lifestyles.

Funding

This work was supported by the Netherlands Organisation for Scientific Research (NWO) in connection with the research programme "Smoking, alcohol, and obesity, ingredients for improved and robust mortality projections, grant no. 452-13-001; see

www.futuremortality.com.

Conflict of Interest

None declared.

Author contribution

projectu. . "e work; to t¹ N.Vidra contributed to the conception and design of the work; to the acquisition, analysis, and interpretation of data for the work; drafted and revised the work critically for important intellectual content; approved the final version of the work to be published and agrees to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

S. Trias-Llimós contributed to the analysis, and interpretation of data for the work; revised it critically for important intellectual content; approved the final version of the work to be

published and agrees to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

F. Janssen contributed to the conception and design of the work; to the interpretation of data for the work; revised the work critically for important intellectual content; approved the final version of the work to be published and agrees to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Data statement

Obesity prevalence data can be obtained from NCD Risk Factor Collaboration (NCD-RisC) (www.ncdrisc.org).

All-cause mortality and exposure population data can be obtained from the Human Mortality Database (http://www.mortality.org).

Acknowledgements

The authors are grateful to Professor Majid Ezatti and Dr James Bentham (Faculty of Medicine, School of Public Health at Imperial College London); Dr Gretchen A. Stevens (World Health Organization); and the NCD Risk Factor Collaboration (NCD-RisC) (<u>www.ncdrisc.org</u>) for sharing the obesity data.

This work is financed by the Netherlands Organisation for Scientific Research (NWO) as part of the research programme "Smoking, alcohol, and obesity, ingredients for improved and robust mortality projections, grant no. 452-13-001. See www.futuremortality.com

References

1. Finucane MM, Stevens GA, Cowan MJ, Danaei G, Lin JK, Paciorek CJ, et al. National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. Lancet. 2011 Feb 12;377(9765):557-67.

2. Overweight and obesity - BMI statistics [Internet].; 2017 []. Available from: <u>http://ec.europa.eu/eurostat/statistics-explained/index.php/Overweight_and_obesity_-</u> <u>BMI_statistics</u>.

3. WHO. The challenge of Obesity in the WHO European Region and the Strategies for Response: Summary. Copenhagen: World Health Organization, Regional Office for Europe; 2007.

4. Seidell JC. Prevalence and time trends of obesity in Europe. Journal of endocrinological investigation. 2002;25(10):816-22.

5. Eurostat. European Health Interview Survey - Almost 1 adult in 6 in the EU is considered obese - Share of obesity increases with age and decreases with education level. 2016.

6. Field AE, Coakley EH, Must A, Spadano JL, Laird N, Dietz WH, et al. Impact of overweight on the risk of developing common chronic diseases during a 10-year period. Archives of Internal Medicine. 2001 Jul 9;161(13):1581-6.

7. Global BMI Mortality C, Di Angelantonio E, Bhupathiraju S, Wormser D, Gao P, Kaptoge S, et al. Body-mass index and all-cause mortality: individual-participant-data meta-analysis of 239 prospective studies in four continents. Lancet. 2016 Aug 20;388(10046):776-86.

8. Alley DE, Lloyd J, Shardell M. Can obesity account for cross-national differences in life expectancy trends? In: Crimmins EM, Preston SH, Cohen B, editors. International differences in mortality at older ages: Dimensions and sources, panel on understanding divergent trends in longevity in high-income countries. Washington, DC: National Academies Press; 2011. p. 164-92.

9. Olshansky SJ, Passaro DJ, Hershow RC, Layden J, Carnes BA, Brody J, et al. A potential decline in life expectancy in the United States in the 21st century. The New England Journal of Medicine. 2005 Mar 17;352(11):1138-45.

10. Preston SH, Stokes A. Contribution of obesity to international differences in life expectancy. American Journal of Public Health. 2011 Nov;101(11):2137-43.

11. National Research Council. The Role of Obesity. In: Crimmins EM, Preston SH, Cohen B, editors. Explaining Divergent Levels of Longevity in High-Income Countries. Washington, DC: National Academies Press; 2011. p. 43-55.

12. Leon DA. Trends in European life expectancy: a salutary view. International Journal of Epidemiology. 2011 Apr;40(2):271-7.

13. NCD Risk Factor Collaboration. Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet. 2016 Apr 2;387(10026):1377-96.

14. Lobstein T, Leach RJ. Workpackage 7: Overweight and Obesity Report on data collection for overweight and obesity prevalence and related relative risks. 2010.

15. Global BMI Mortality Collaboration. Body-mass index and all-cause mortality: individualparticipant-data meta-analysis of 239 prospective studies in four continents. Lancet. 2016 Aug 20;388(10046):776-86.

16. University of California, Berkeley (USA), and Max Planck Institute for Demographic Research (Germany). [Internet]. []. Available from: <u>http://www.mortality.org</u>.

17. Cleveland WS, Loader C. Smoothing by local regression: Principles and methods. In: Murray Hill: A&T Bell Laboratorie; 1995.

18. Rockhill B, Newman B, Weinberg C. Use and misuse of population attributable fractions. American Journal of Public Health. 1998 Jan;88(1):15-9.

19. Preston SH, Heuveline P, Guillot M. Demography. Malden, MA: Blackwell; 2001.

20. Census data [Internet].; 2011 []. Available from: https://ec.europa.eu/CensusHub2/query.do?step=selectHyperCube&qhc=false.

21. Flegal KM, Panagiotou OA, Graubard BI. Estimating population attributable fractions to quantify the health burden of obesity. Annals of Epidemiology. 2015 Mar;25(3):201-7.

22. Flegal KM, Graubard BI, Williamson DF, Gail MH. Excess deaths associated with underweight, overweight, and obesity. JAMA. 2005 Apr 20;293(15):1861-7.

23. Mehta NK, Chang VW. Secular declines in the association between obesity and mortality in the United States. Population and Development Review. 2011;37(3):435-51.

24. Yu Y. Reexamining the declining effect of age on mortality differentials associated with excess body mass: evidence of cohort distortions in the United States. American Journal of Public Health. 2012 May;102(5):915-22.

25. Yu Y. The Changing Body Mass-Mortality Association in the United States: Evidence of Sex-Specific Cohort Trends from Three National Health and Nutrition Examination Surveys. Biodemography and Social Biology. 2016;62(2):143-63.

26. Vidra N, Bijlsma MJ, Janssen F. Impact of Different Estimation Methods on Obesity-Attributable Mortality Levels and Trends: The Case of The Netherlands. Int J Environ Res Public Health. 2018 Sep 29;15(10):10.3390/ijerph15102146.

27. Trias-Llimós S, Kunst AE, Jasilionis D, Janssen F. The contribution of alcohol to the East-West life expectancy gap in Europe from 1990 onward. European Journal of Epidemiology. 2017;47(3):731-9.

28. Doak CM, Wijnhoven TM, Schokker DF, Visscher TL, Seidell JC. Age standardization in mapping adult overweight and obesity trends in the WHO European Region. Obesity Reviews. 2012 Feb;13(2):174-91.

29. Cutler DM, Glaeser EL, Shapiro JM. Why Have Americans Become More Obese? The Journal of Economic Perspectives. 2003;17(1):93-118.

30. Obesity update 2012 [Internet].; 2012 []. Available from: <u>http://www.oecd.org/els/health-systems/49716427.pdf</u>.

31. Silventoinen K, Sans S, Tolonen H, Monterde D, Kuulasmaa K, Kesteloot H, et al. Trends in obesity and energy supply in the WHO MONICA Project. International Journal of Obesity and Related Metabolic Disorders. 2004 May;28(5):710-8.

32. Malik VS, Willett WC, Hu FB. Global obesity: trends, risk factors and policy implications. Nature reviews Endocrinology. 2013 Jan;9(1):13-27.

33. Zatonski WA, Bhala N. Changing trends of diseases in Eastern Europe: closing the gap. Public Health. 2012 Mar;126(3):248-52.

34. Bray GA, Bouchard C. Handbook of Obesity: Etiology and Pathophysiology. second ed. Boca Raton: CRC Press Taylor & Francis Group; 2003.

35. Monteiro CA, Conde WL, Lu B, Popkin BM. Obesity and inequities in health in the developing world. International Journal of Obesity. 2004 Sep;28(9):1181-6.

36. Wilkins E, Wilson L, Wickramasinghe K, Bhatnagar P, Leal J, Luengo-Fernandez R, et al. European Cardiovascular Disease Statistics 2017. Brussels: European Heart Network; 2017.

37. Robertson A, Lobstein T, Knai C. Obesity and socio-economic groups in Europe: Evidence review and implications for action. Brussels: European Commission. 2007.

38. Fagerli RA, Wandel M. Gender differences in opinions and practices with regard to a "healthy diet". Appetite. 1999 Apr;32(2):171-90.

39. Psaltopoulou T, Hatzis G, Papageorgiou N, Androulakis E, Briasoulis A, Tousoulis D. Socioeconomic status and risk factors for cardiovascular disease: Impact of dietary mediators. Hellenic Journal of Cardiology. 2017 Jan - Feb;58(1):32-42.

40. WHO. Obesity and inequities. Guidance for addressing inequities in overweight and obesity. Copenhagen: World Health Organization, Regional Office for Europe; 2014.

Figure legends

Figure 1: Age-standardised obesity-attributable mortality fractions in 26 European countries (by 5 regions) and USA, 1975-2014, 18-100 years

Footnote:

Countries within the same region are presented with the same colour

Central Europe: Czech Republic, Hungary, Poland, Slovakia

Eastern Europe: Belarus, Estonia, Ukraine, Latvia, Lithuania, Russian Federation

Northern Europe: Denmark, Finland, Iceland, Norway, Sweden

Southern Europe: Italy, Portugal, Spain

Western Europe: Austria, Belgium, France, Ireland, Luxembourg, Netherlands, Switzerland, United Kingdom

USA: United States of America

Figure 2: Potential gains in life expectancy at birth (PGLE) if obesity-attributable mortality was eliminated, in 26 European countries (differentiating Western and Central Eastern Europe) and the USA, 1975-2012, 18-100 years

Footnote:

Countries within the same region are presented with the same colour

Central Eastern Europe: Belarus, Czech Republic, Estonia, Hungary, Latvia, Lithuania, Poland, Russian Federation, Slovakia, Ukraine

Western Europe: Austria, Belgium, Denmark, Finland, France, Iceland, Ireland, Italy, Luxembourg, Netherlands, Norway, Portugal, Spain,

Sweden, Switzerland, United Kingdom

USA: United States of America

Figure 3: Average annual increase (%) in potential gains in life expectancy due to obesity in 26 European countries and the USA between 1975-2012, in men

Figure 4: Average annual increase (%) in potential gains in life expectancy due to obesity in 26 European countries and the USA between 1975-2012, in women

Women

Figure 1: Age-standardised obesity-attributable mortality fractions in 26 European countries (by 5 regions) and USA, 1975-2014, 18-100 years.Footnote: Countries within the same region are presented with the same colour

Central Europe: Czech Republic, Hungary, Poland, SlovakiaEastern Europe: Belarus, Estonia, Ukraine, Latvia, Lithuania, Russian FederationNorthern Europe: Denmark, Finland, Iceland, Norway, SwedenSouthern Europe: Italy, Portugal, SpainWestern Europe: Austria, Belgium, France, Ireland, Luxembourg, Netherlands, Switzerland, United Kingdom

USA: United States of America

228x152mm (300 x 300 DPI)

Figure 2: Potential gains in life expectancy at birth (PGLE) if obesity-attributable mortality was eliminated, in 26 European countries (differentiating Western and Central Eastern Europe) and the USA, 1975-2012, 18-100 years

Footnote: Countries within the same region are presented with the same colourCentral Eastern Europe: Belarus, Czech Republic, Estonia, Hungary, Latvia, Lithuania, Poland, Russian Federation, Slovakia, Ukraine Western Europe: Austria, Belgium, Denmark, Finland, France, Iceland, Ireland, Italy, Luxembourg, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, United KingdomUSA: United States of America

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Figure 4: Average annual increase (%) in potential gains in life expectancy due to obesity in 26 European countries and the USA between 1975-2012, in women

Supplementary material

Table S1: Age-and sex-specific RRs of dying from obesity from the Dynamo project(Lobstein et al. 2010)

Age	RR	
	Men	Women
<50	1.55	1.5
50-59	1.539	1.49
60-69	1.5225	1.475
70+	1.495	1.45

Reference group for the RRs: normal weight (18-24.9 kg/m²)

Terez onz

Norway

Sweden

Iceland

Finland

Denmark

Countries within the same region are presented with the same colour

Figure S2: Potential gains in life expectancy at birth (PGLE) if obesity-attributable mortality was

Countries within the same region are presented with the same colour

Table S2: Potential gains in life expectancy at birth (PGLE) if obesity-attributable mortality was eliminated, in 26 European countries (differentiating Western and Central Eastern Europe) and the USA, in 1975 and 2012, 18-100 years

	PGLE 1975		PGLE 2012	
Country	Men	Women	Men	Women
Central Eastern Europe (CEE)				
Belarus	0.41	0.79	1.41	1.19
Czech Republic	0.70	0.98	1.39	1.03
Estonia	0.55	1.00	1.37	1.04
Hungary	0.64	0.86	1.52	1.04
Latvia	0.58	1.00	1.48	1.18
Lithuania	0.54	1.05	1.67	1.31
Poland	0.57	0.93	1.48	1.19
Russian Federation	0.51	1.26	1.53	1.54
Slovakia	0.43	0.62	1.31	0.96
Ukraine	0.47	0.95	1.25	1.16
Average CEE	0.54	0.94	1.44	1.16
Western Europe				
Austria	0.40	0.39	1.03	0.73
Belgium	0.55	0.61	1.17	0.97
Denmark	0.42	0.46	1.04	0.79
France	0.49	0.53	1.18	0.84
Finland	0.45	0.40	1.19	0.90
Ireland	0.38	0.31	1.21	1.01
Iceland	0.49	0.48	0.97	0.80
Italy	0.44	0.60	1.06	0.93
Luxembourg	0.47	0.42	1.19	0.79
Netherlands	0.29	0.39	0.86	0.88
Norway	0.34	0.39	1.07	0.91
Portugal	0.24	0.41	1.01	0.81
Spain	0.42	0.66	1.22	1.05
Sweden	0.42	0.43	0.91	0.76
Switzerland	0.35	0.35	0.93	0.66
United Kingdom	0.53	0.50	1.27	1.09
Average Western Europe	0.41	0.48	1.08	0.86
USA	0.69	0.72	1.73	1.44
Average European countries	0.46	0.64	1.22	0.98
Average all countries	0.47	0.64	1.23	1.00

Table S3: Potential gains in life expectancy at age 50 (PGLE) if obesity-attributablemortality was eliminated, own and Preston estimates, in the same countries studied, in2006

	PGLE e50 2006, own estimates	PGLE e50 2006, Preston's estimates	Difference
Country			
Men			
Austria	0.81	1.00	-0.19
Belgium	0.95	0.98	-0.03
Czech Republic	1.14	1.34	-0.20
Denmark	0.88	0.82	0.06
France	0.94	0.99	-0.05
Italy	0.88	0.90	-0.02
Netherlands	0.69	0.73	-0.04
Poland	1.14	1.37	-0.23
Spain	1.02	1.15	-0.13
Sweden	0.75	0.72	0.03
Switzerland	0.77	0.79	-0.02
United Kingdom	0.99	1.34	-0.35
USA	1.29	1.85	-0.56
Women		6	
Austria	0.62	0.71	-0.09
Belgium	0.86	0.73	0.13
Czech Republic	0.87	1.01	-0.14
Denmark	0.71	0.62	0.09
France	0.72	0.52	0.2
Italy	0.84	0.57	0.27
Netherlands	0.76	0.69	0.07
Poland	1.08	1.19	-0.11
Spain	0.95	0.87	0.08
Sweden	0.67	0.63	0.04
Switzerland	0.59	0.50	0.09
United Kingdom	0.94	1.23	-0.29
USA	1.18	1.28	-0.10

Figure S3: Age-standardised obesity prevalence in 26 European countries, grouped by 2 regions and USA, 1975-2012, 18-100 years

Countries within the same region are presented with the same colour

BMJ Open

BMJ Open

Impact of obesity on life expectancy among different European countries, 1975-2012

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-028086.R1
Article Type:	Research
Date Submitted by the Author:	28-Apr-2019
Complete List of Authors:	Vidra, Nikoletta; Population Research Centre, Faculty of Spatial Sciences, Demography Trias-Llimós, Sergi; University of Groningen, Population Research Centre Janssen, Fanny; University of Groningen, Population Research Centre; Nederlands Interdisciplinair Demografisch Instituut
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Public health, Nutrition and metabolism
Keywords:	EPIDEMIOLOGY, NUTRITION & DIETETICS, PUBLIC HEALTH

2								
3	1	Impact of obesity on life expectancy among different European countries, 1975-2012						
4								
5								
6 7	2	Nikoletta Vidra ¹ , Sergi Trias-Llimós ¹ , Fanny Janssen ^{1,2}						
/ 8								
9								
10	3	¹ Population Research Centre, Faculty of Spatial Sciences, University of Groningen, Landleven						
11								
12	4	1, 9747 AD Groningen, The Netherlands.						
13								
14 15								
16	5	² Netherlands Interdisciplinary Demographic Institute, Lange Houtstraat 19, 2511 CV The						
17								
18	6	Hague, The Netherlands.						
19								
20								
21	7							
22 23								
23 24								
25	8	Corresponding author: Nikoletta Vidra, Population Research Centre, Faculty of Spatial						
26								
27	9	Sciences, University of Groningen, PO Box 800, 9700 AV Groningen, The Netherlands. Tel:						
28								
29	10	0031 (0) 50 363 86 52; e-mail: n.vidra@rug.nl						
30 21								
32	11							
33								
34								
35	12							
36								
3/ 20								
20 39	13							
40								
41								
42	14							
43								
44 45	15							
45 46	13							
47								
48	16							
49								
50								
51	17							
52 53								
54								
55	18							
56								
57								
58 50	19	wora count: 3669 words						
59 60								
1								
----------	----	--	--	--	--	--	--	--
2								
3 4	20							
5								
6	21	Abstract						
7	21	Abstract						
8								
9	22	Objective: This study assesses the impact of obesity on life expectancy for 26 European						
10								
12	23	national populations and the USA over the 1975-2012 period						
13	20							
14								
15	24	Design: Secondary analysis of population-level obesity and mortality data.						
16 17								
17	25	Cotting European exciting agreed. Austria Delaws Delaine the Creek Depublic						
19	25	Setting: European countries, namely Austria, Belarus, Belgium, the Czech Republic,						
20								
21	26	Denmark, Estonia, Finland, France, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania,						
22								
23 24	27	Luxembourg, the Netherlands, Norway, Poland, Portugal, the Russian Federation, Slovakia,						
25								
26	28	Spain, Sweden, Switzerland, Ukraine, the United Kingdom (UK); and the USA.						
27								
28	20	Participants: National populations aged 18-100 years by sev						
29 30	25	Tartelpants. National populations aged 10 100 years, by sex.						
30								
32	30	Measurements: Using data by age and sex, we calculated obesity-attributable mortality by						
33								
34	31	multiplying all-cause mortality (Human Mortality Database) with obesity-attributable						
35								
37	32	mortality fractions (OAMFs). OAMFs were obtained by applying the weighted-sum method						
38								
39	33	to obesity prevalence data (NCD Risk Factor Collaboration) and European Relative Risks (RRs						
40								
41	34	(DYNAMO). We estimated potential gains in life expectancy at birth (PGLE) by eliminating						
42								
44	35	obesity-attributable mortality from all-cause mortality using associated single-decrement life						
45								
46	36	tables.						
4/								
40 49								
50	37	Results: In the 26 European countries in 2012, PGLE due to obesity ranged from 0.86 to 1.67						
51								
52	38	years among men, and from 0.66 to 1.54 years among women. In all countries, PGLE						
53								
54 55	39	increased over time, with an average annual increase of 2.68% among men and 1.33% and						
56								
57	40	among women. Among women in Denmark, Switzerland, and Central and Eastern European						
58								
59 60	41	countries, the increase in PGLE levelled off after 1995. Without obesity, the average increase						
00								

BMJ Open

3 4	42
5 6 7	43
8 9 10	44
10 11 12	45
13 14 15	46
16 17	47
18 19 20 21	48
22 23 24	49
25 26 27	50
28 29 30	51
31 32 33	52
34 35	53
36 37 38	54
39 40 41	55
42 43	56
44 45 46	57
47 48 49	58
50 51	59
52 53 54	60
56 57 58	61
59 60	62

42	in life expectancy between 1975 and 2012 would have been 0.78 years higher among men
43	and 0.30 years higher among women.
44	Conclusions: Obesity was proven to have an impact on both life expectancy levels and
45	trends in Europe. The differences found in this impact between countries and the sexes can
46	be linked to contextual factors, as well as to differences in people's ability and capacity to
47	adopt healthier lifestyles.
48	Keywords: Obesity, life expectancy, Europe, USA
49	Article Summary
50	Strengths and limitations of the study
51	• This is the first study to assess the impact of obesity on life expectancy at birth over
52	time, and we do so here for 26 European countries and the USA.
53	• We used recent long-term comparable data on obesity prevalence based on
54	population-based measurement studies, and European relative risks of dying from obesity by
55	age and sex from a recent meta-analysis.
56	• Because of remaining data limitations regarding prevalence and relative risks, we had
57	to use a fairly simple – albeit common applied - methodology to estimate obesity-
58	attributable mortality.
59	
60	
61	

3
4
5
6
0
/
8
9
10
11
12
13
14
15
16
10
1/
18
19
20
21
22
23
24
25
25
20
27
28
29
30
31
32
33
34
25
20
30
37
38
39
40
41
42
43
10
15
45
40
47
48
49
50
51
52
53
54
55
55
56
57
58
59
60

1 2

63 Introduction

64	Obesity is a global epidemic (1), with Europe currently ranking second worldwide after the
65	USA (2). Over the last 20 years obesity prevalence has increased threefold in Europe(3),
66	although not uniformly across countries (4). Estimates for 2014 indicate that obesity varied
67	threefold across European countries, ranging from a low of 9% in Romania to a high of 26%
68	in Malta (5). Obesity constitutes a serious health burden at the individual and population
69	levels because it is associated with an increased risk of morbidity (6), and mortality (7).
70	However, the potential impact of the increase in obesity on life expectancy trends remains
71	largely unknown (8).
72	The few existing studies that assessed the impact of obesity on life expectancy at the
73	population level provided estimates at one specific point in time only (9, 10). Olshansky et al
74	found that if obesity was eliminated, life expectancy at birth (e0) in the USA in 2000 would
75	be 0.21 to 1.08 years higher, depending on gender and ethnicity (9). Preston et al. (10)
76	estimated for 16 low-mortality countries in 2006 that the reduction in life expectancy at age
77	50 (e50) due to obesity was greatest in the USA, at more than 1.5 years; and ranged from
78	0.50 to 1.19 years for women and from 0.72 to 1.37 years for men in European countries.
79	Gaining insight into the impact of obesity on trends in life expectancy is especially
80	relevant (11) given the marked differences in life expectancy trends across Europe (12). In
81	Western European countries, e0 has been increasing steadily, and has risen six to eight years
82	since 1970. But in Central and Eastern Europe (CEE), e0 stagnated or even declined between

84 marked differences in e0 trends between individual European countries (12).

the 1970s and the 1980s, and did not start increasing again until the 1990s. There are also

1		
2 3 4	85	In light of these important differences between European countries in both obesity
5 6	86	prevalence and life expectancy over time, our aim is to assess the impact of obesity on long-
7 8 9	87	term trends in life expectancy across a wide range of European countries.
10 11	88	Our sole focus is on the impact of obesity, given the significant health burden caused by
12 13 14	89	obesity, the large body of literature on its impact, and the well-documented association of
15 16	90	obesity with mortality.
17 18 19 20 21	91	Data and Methods
22 23 24	92	Setting
25 26	93	We studied the impact of obesity on life expectancy by sex over the 1975-2012 period in 26
27 28 29	94	European countries: Austria, Belarus, Belgium, the Czech Republic, Denmark, Estonia,
30 31	95	Finland, France, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, the
32 33 34	96	Netherlands, Norway, Poland, Portugal, the Russian Federation, Slovakia, Spain, Sweden,
35 36	97	Switzerland, Ukraine, the United Kingdom (UK); and the USA as a comparison country (10).
37 38 39 40	98	Data
41 42	99	Long-term comparable obesity prevalence data (BMI≥30kg/m2) by country, sex, age (18-19,
43 44 45	100	20-24,, 85+), and year (1975-2012), based on 1698 population-based measurement studies,
46 47	101	were obtained from the NCD Risk Factor Collaboration study (13). These validated data
48 49 50	102	comprise the available measured height and weight data of 19.2 million participants from
51 52	103	representative data sources, supplemented with estimates based on information from other
53 54 55	104	years and related countries from a Bayesian hierarchical model (13). The same model was
56 57	105	applied to all countries and used as an input the measured weight and height data, including
58 59 60	106	covariates that help predict BMI (13).

2	
3	
4	
5	
6	
7	
8	
a	
10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20 21	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
21	
21	
32	
33	
34	
35	
36	
37	
38	
39	
40	
<u>Δ1</u>	
רד ⊿ר	
42 42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
22	
54 57	
55	
56	
57	
58	
59	
60	

1

107 The age- (<50, 50-59, 60-69 and ≥70 years) and sex-specific relative risks (RRs) of 108 dying from obesity (see Supplementary Material Table S1) came from a review of studies mainly conducted in Western Europe and the USA, with the normal-weight category used as 109 the reference group (18.5 \ge BMI \le 25 kg/m²) (14). These age- and sex-specific RRs were largely 110 in line with the overall European RR of 1.64 recently estimated by the Global BMI Mortality 111 112 Collaboration (7). The differences across age groups found in that study were similar with 113 those reported in our findings (i.e., higher RRs at younger than at older ages), though they 114 were less distinct (7). In addition, the use of RRs with the normal weight category as the reference category is in line with previous studies that estimated obesity-attributable 115 mortality (15-19), while the estimation of obesity-attributable mortality with such a RR can 116 117 be considered the theoretically maximally possible attributable mortality (20). All-cause mortality numbers and exposure population data by single year of age, sex, 118 year, and country were obtained from the Human Mortality Database (21). These data are of 119 high quality and are widely used within the demographic community and beyond (22). 120 **Patient and Public Involvement** 121 122 No patients were involved in this study.

Methods

123

We performed our analyses separately by country and sex, based on data by single year of
age (18-100). The obesity prevalence data were turned into single-age prevalence (18-100)
by applying Loess smoothing (23). The RRs were turned into single-year RRs (18- 100) using
linear regression.

Page 7 of 38

BMJ Open

To estimate the obesity-attributable mortality fraction (OAMF) – i.e., the share of allcause mortality due to obesity – we used the Rockhill formula to estimate OAMFs by age (a) and sex (s) (24).

$$OAMF_{a,s} = \frac{P_{a,s} \cdot (RR_{a,s} - 1)}{1 + (P_{a,s} \cdot (RR_{a,s} - 1))} (Equation 1)$$

where *P* is the obesity prevalence. We then weighted the $OAMF_{a,s}$ with the corresponding number of deaths.

For the estimation of the impact of obesity on life expectancy (see 2.3.2) we needed age-and sex-specific (non-) obesity-attributable mortality rates. These were obtained by multiplying $OAMF_{a,s}$ and [1- $OAMF_{a,s}$], respectively, with age- and sex-specific all-cause mortality rates.

To ensure comparability across countries, over time, and between men and women, we applied direct age- and sex-standardisation (25) to obesity prevalence, obesity-attributable mortality fractions, and obesity-attributable mortality rates, using the European population of 2011 (26) as the standard.

To assess the impact of adult obesity on e₀, we calculated for each country the potential gain in life expectancy (PGLE) if obesity-attributable mortality were eliminated, by calendar year and sex and is in line with the approach by Preston et al. First, we calculated e₀ by applying standard life table techniques to age-specific all-cause mortality rates (0-100)(25)). Second, we applied associated single-decrement life tables (ASDLT)(25)) to age-and sex-specific non-obesity-attributable mortality rates (0-100) to obtain e₀ if obesity-attributable mortality were eliminated. The PGLE represents the difference between the e₀ based on the ASDLT and the original e_{0} .

To summarise the changes in PGLE across countries, we estimated the average annual changes in PGLE (in %):

Average annual changes in PGLE (%) =
$$\frac{\sum_{t=1976}^{2012} \frac{(PGLE_t - PGLE_{t-1})}{PGLE_{t-1}}}{2012 - 1975} 100$$

To assess the impact of obesity on time trends in e_0 between 1975 and 2012, we subtracted the observed change in e_0 from the change in e_0 without obesity. The change in e_0 without obesity was obtained by using the e_0 values from the associated single-decrement life tables applied to non-obesity-attributable mortality for 1975 and 2012.

157 Results

For the 26 European countries, the age-standardised obesity-attributable mortality fraction (OAMF) was, on average, 11% among men and 10% among women in 2012. For the USA, these estimates were substantially higher; i.e., 15% and 14%, respectively. The average OAMF levels were higher in Northern, Western, and Southern Europe combined (hereafter, Western Europe) than in CEE among men, while the opposite was the case among women. OAMFs were increasing over time for all countries and both sexes, although not to the same extent (see Figure 1, Figure S1). In Western Europe, OAMFs generally increased over the 1975-2012 period, and at a faster pace among men. In CEE, by contrast, OAMFs clearly stagnated, and even declined between 1990 and 2000. The overall increase in OAMFs was greatest in the USA, Ireland, Norway (men), and the UK (women).

1 ว							
2 3 4	169	Figure 1: Age-standardised obesity-attributable mortality fractions in 26 European					
5 6 7 8 9 10	170	countries* (by 5 regions) and USA, 1975-2014, 18-100 years					
	171	* Countries within the same region are presented with the same colour					
10 11	172	Central Europe: Czech Republic, Hungary, Poland, Slovakia					
12 13	173	Eastern Europe: Belarus, Estonia, Ukraine, Latvia, Lithuania, Russian Federation					
14 15	174	Northern Europe: Denmark, Finland, Iceland, Norway, Sweden					
16	175	Southern Europe: Italy, Portugal, Spain					
17	176	Western Europe: Austria, Belgium, France, Ireland, Luxembourg, Netherlands, Switzerland,					
19 20 21 22	177	United Kingdom					
	178	USA: United States of America					
23 24	179						
25							
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	180	<approximately here=""></approximately>					
	181	In the 26 European countries in 2012, estimates of potential gains in life expectancy at					
	182	birth (PGLE) if obesity was eliminated ranged from 0.86 to 1.67 years among men (1.22 on					
	183	average) and from 0.66 to 1.54 years (0.98 on average) among women (Figure 2; Figure S2					
	184	and Table S2 Supplementary Material). Among men in the USA, the PGLE estimate was, at					
	185	1.73 years, slightly higher than the highest estimate in Europe; and among women in the					
	186	USA, the PGLE estimate was, at 1.44 years, the second-highest after the estimate for Russia.					
	187	The average PGLE estimate was 1.08 among men and 0.86 among women in Western					
40 47 48	188	Europe, and was 1.44 among men and 1.16 among women in CEE (see Supplementary					
49 50	189	Material, Table S2).					
52 53 54 55 56 57 58 59 60	190						

1

2 3 4	191	Figure 2: Potential gains in life expectancy at birth (PGLE) if obesity-attributable mortality					
5 6 7	192	was eliminated, in 26 European countries* (differentiating Western and Central Eastern					
7 8 9 10 11 12 13 14 15 16	193	Europe) and the USA, 1975-2012					
	194	* Countries within the same region are presented with the same colour					
	195	Central Eastern Europe: Belarus, Czech Republic, Estonia, Hungary, Latvia, Lithuania, Poland,					
	196	Russian Federation, Slovakia, Ukraine					
17	197	Western Europe: Austria, Belgium, Denmark, Finland, France, Iceland, Ireland, Italy,					
18 19	198	Luxembourg, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, United Kingdom					
20 21	199	USA: United States of America					
22 23 24 25	200						
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	201	<approximately here=""></approximately>					
	202	Overall, from 1975 to 2012, PGLE due to obesity increased in all of the countries (Figure					
	203	2, Figure S2, Figure 3, 4). The increase was greater among men (average annual increase of					
	204	2.68%) than among women (average annual increase of 1.33%), was largest among men in					
	205	Portugal and Belarus and among women in Portugal, and was substantial among men and					
	206	women in Norway (Figures 3, 4). While there was a general increase in PGLE due to obesity,					
	207	this trend stagnated among women in CEE from around 1990 onwards, and levelled off after					
	208	1995 among women in Denmark and Switzerland.					
	209	Figure 3: Average annual increase (%) in potential gains in life expectancy due to obesity in					
49 50	210	26 European countries and the USA between 1975-2012, in men					
51 52 53 54 55 56 57	211	<approximately here=""></approximately>					
	212						
	213	Figure 4: Average annual increase (%) in potential gains in life expectancy due to obesity in					
58	214	26 European countries and the USA between 1975-2012, in women					
60	215	<approximately here=""></approximately>					

BMJ Open

2 3 4	21
5 6 7	21
7 8 9	21
10 11	21
12 13 14	22
15 16	22
17 18 10	22
20 21	22
22 23 24	22
25 26 27	22
28 29 30	
31 32	
33 34	
35 36 27	
37 38 39	
40 41	
42 43	
44 45	
46 47	
48 49	
50 51	
52 53	
55 54	
55 56	
57 58	

59 60 6 Table 1 shows the impact of obesity on time trends in life expectancy at birth (e_0) . 17 Overall, the average increase in e₀ between 1975 and 2012 was 7.26 years for men and 6.28 years for women in the 26 European countries. Without obesity, the average increase in e₀ 8 9 would have been 8.04 years for men and 6.58 years for women; or 0.78 and 0.30 years 20 higher, respectively. Among men, obesity had the greatest impact on e₀ trends in Lithuania 21 and the USA (more than one year), and the smallest impact in Iceland and Sweden (0.5 22 years). Among women, obesity had the greatest impact on e₀ trends in the USA and Ireland (0.7 years) and the smallest impact in Estonia and the Czech Republic (less than 0.1 year). 23 24 Table 1: Impact of obesity on trends in life expectancy at birth (e₀) in 26 European 25 countries and USA 1975-2012, by sex

Country	Change in e_0 with \frown Change in e_0 without			without	Effect of obesity on \mathbf{e}_0		
	obesity 20	obesity 2012-1975		obesity 2012-1975		change 2012-1975	
	(yea	irs)	(years)		(years)		
	Men	Women	Men	Women	Men	Women	
Austria	10.62	8.61	11.25	8.95	0.63	0.34	
Belarus	-0.55	1.43	0.46	1.83	1.00	0.40	
Belgium	8.85	7.63	9.46	7.99	0.61	0.36	
Czech Republic	7.97	6.98	8.66	7.03	0.69	0.05	
Denmark	6.78	5.03	7.40	5.36	0.63	0.33	
Estonia	6.43	6.42	7.26	6.46	0.82	0.04	
France	9.49	7.99	10.17	8.30	0.68	0.31	
Finland	10.07	7.26	10.82	7.75	0.74	0.50	
Hungary	5.29	6.18	6.17	6.36	0.87	0.18	
Iceland	9.02	5.19	9.51	5.51	0.48	0.32	
Ireland	9.40	8.40	10.22	9.10	0.83	0.69	
Italy	10.19	8.56	10.81	8.89	0.62	0.33	
Latvia	4.91	4.53	5.82	4.70	0.90	0.18	
Lithuania	2.01	3.80	3.14	4.06	1.13	0.26	
Luxembourg	11.78	9.27	12.50	9.65	0.72	0.37	
Netherlands	7.68	5.10	8.26	5.6	0.56	0.49	
Norway	7.70	5.33	8.42	5.86	0.74	0.51	
Poland	5.90	6.74	6.81	7.00	0.91	0.27	
Portugal	12.14	10.87	12.91	11.26	0.77	0.40	

2									
3		Russian Federation	2.05	2.62	3.06	2.89	1.02	0.28	
4 5		Slovakia	5.65	5.82	6.52	6.16	0.88	0.34	
5		Spain	8.82	8.75	9.62	9.14	0.79	0.39	
7		Sweden	7.69	5.59	8.18	5.93	0.49	0.33	
8		Switzerland	8 98	6.63	9 5 5	6.93	0.58	0.30	
9			0.30	1 72	1.26	1.04	0.30	0.50	
10		United Kingdom	0.40	1.75	10.20	1.94	0.78	0.21	
11			9.40	0.90	10.20	7.55	0.74	0.59	
13		USA	7.86	4.89	8.90	5.61	1.04	0.71	
14		Average CEE	4.01	4.63	4.92	4.84	0.90	0.22	
15		countries							
16 17		Average Western	9.10	7.09	9.76	7.50	0.66	0.41	
17		countries							
19	226								
20	220								
21									
22 23	227								
23 24									
25									
26	228	Discussion							
27									
28 29	220	Summary of result	5						
30	229	Summary of result	3						
31									
32	230	In the 26 European count	tries studied	d, the share	of mortality o	lue to obesit	ty in 2012 wa	is, on	
33 24									
34 35	231	average, 11% among mei	n and 10% a	mong wor	nen. PGLE due	to obesity in	n 2012 range	d from	
36									
37	232	0.86 to 1.73 years among	g men, and f	rom 0.66 to	o 1.54 years a	mong wome	n. Overall, P	GLE	
38									
39 40	233	increased between 1975	and 2012, a	albeit more	quickly among	g men (avera	age annual		
40 41									
42	234	increase: 2.68%) than am	iong womer	n (1.33%). A	mong womer	in Denmarl	k, Switzerland	d, and	
43									
44	235	the CEE countries the inc	rease in PG	LE levelled	off after 1995	. Without ob	besity, the ave	erage	
45 46									
47	236	increase in e0 between 1	975 and 20	12 would h	ave been 0.78	years highe	r among mer	n and	
48									
49	237	0.30 years higher among	women.						
50		, , , ,							
51 52									
53	238	Evaluation of data	a and meth	ods					
54									
55	239	Using the recent advance	os in obesity	data it is r	now nossible t	o study the	impact of ob	esitv	
56	200		io in obcony			e study the		concy	
57 58	24∩	on life expectancy for a la	arge numbo	r of countri	ies and a long	neriod of tir	ne Two		
59	240	on the expectancy for a large number of countries and a long period of time. Two							
60	2/11	methodological issues wa	arrant our a	ttention h	wever				
	271 271	methodological issues we		contion, in					

Page 13 of 38

1 2

BMJ Open

3 4	242	First, in calculating the share of mortality due to obesity (OAMF), which also forms
5 6 7	243	the basis for our PGLE calculations, we were hindered by limitations in the available
, 8 9	244	prevalence and RRs data, which also affected the method used. As has previously been
10 11	245	documented, OAMF estimates are sensitive to the data and the methods used (27).
12 13 14	246	In selecting obesity prevalence data, we used the longest validated time series based
15 16	247	on population-based measurement studies that are suitable for studying the impact of
17 18 19	248	obesity on long-term life expectancy trends across Europe (13). For those countries with less
20 21	249	available obesity data – especially the CEE countries a portion of the data we used were
22 23 24	250	merely the result of modelling. Thus, the resulting estimates should be treated with some
24 25 26	251	caution . By contrast, for the non-CEE countries, most of the data we used pertain to
27 28	252	measured data (13). Supplementary Material, Table S3 gives the confidence intervals around
29 30 31	253	the age-standardised prevalence estimates for each country by sex in order, as to provide
32 33	254	more information on the relative reliability of the data for the different countries in our
34 35 36	255	analysis.
37 38	256	Because age- and sex-specific RRs of mortality associated with obesity are not readily
39 40 41	257	available by country and year, we have decided to apply to all of the countries studied age-
42 43	258	and sex-specific RRs from Western European and US populations that are largely suitable for
44 45 46	259	our setting, as had previously been done (10). Although RRs could differ slightly across
40 47 48	260	contexts, studies that compared RRs across continents found only small differences in RRs
49 50	261	between Europe and North America (7). Consequently, we do not expect to observe large
51 52 53	262	differences between individual countries. In addition, as time-variant European RRs were
54 55	263	not available, we had to apply time-constant RRs, even though it is possible that changes in
56 57 58	264	the association of obesity with mortality – which could, for example, occur because of
59 60	265	improvements in the treatment of chronic diseases – have affected the impact of obesity on

> life expectancy. Previous studies that assessed changes over time in the association of obesity with mortality did so only for the US, and, unfortunately, provided mixed evidence, with some of these studies reporting a decline (18, 28, 29), and others finding an increase (30). Therefore, before implementing time-variant European RRs, more information on their direction is required. Similarly, comparable country-specific RRs are urgently needed. In addition, the choice of these RRs along with their reference group might exert an effect in our estimates. Based on the available data, only a fairly simple – albeit common applied – the weighted sum method could be applied (27) to estimate the OAMFs. The application of a more advanced methodology (27) could have affected the OAMFs and thus the PGLE levels, but less the trends(31). The lack of information on the uncertainty of the RRs we used limited us in estimating confidence intervals for the OAMFs and PGLEs.

277 Second, besides being the result of the OAMFs, the PGLE estimates can also be 278 affected by all-cause mortality levels and trends as age- and sex-specific all-cause mortality 279 rates are used to estimate PGLE. Since all-cause mortality fluctuated greatly in CEE in the 280 analysed period (12), short-term variations in PGLE in CEE countries should be treated with 281 more caution.

282 Exp

Explanation of results

In 2012, the PGLE due to obesity were, on average, 1.22 years for men and 0.98
years for women in the 26 European countries, and 1.73 years for men and 1.43 years for
women in the USA. A comparison of our 2006 e50 estimates with those of Preston et al. (10)
for the same countries uncovered only small differences, except among men in the USA (our
estimate was 0.56 years lower) and women in the UK (our estimate was 0.29 years lower)
(see Supplementary Material, Table S4). Given that approximately the same methodology
was used to estimate the OAMFs, the observed differences are most likely due to the use of

Page 15 of 38

1 2

BMJ Open

3	
4	
5	
6	
7	
, Q	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20	
20	
20	
31	
32	
33	
34	
35	
36	
37	
38	
30	
10	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
22	
54 57	
55	
56	
57	
58	
59	
60	

290 different obesity prevalence and RRs data. Preston used prevalence data from national representative surveys and RRs from the Prospective Studies collaboration (10). Given that 291 the observed differences do not have the same direction for the different countries, we 292 believe that these differences are mainly attributable to the prevalence data used. To 293 294 further evaluate our observed PGLE levels, we compared them with own PGLE estimates for 295 smoking and alcohol (32). Our PGLE estimates for smoking were 2.38 years for men and 1.00 296 year for women in Western Europe, and 3.82 years for men and 0.67 years for women in 297 CEE. Our PGLE estimates for alcohol were 0.90 years for men and 0.44 years for women in 298 Western Europe, and 2.15 years for men and 1.00 year for women in CEE (32) while our 299 average PGLE for obesity was 1.08 among men and 0.86 among women in Western Europe, 300 and 1.44 among men and 1.16 among women in CEE. Thus, obesity's impact on life 301 expectancy lies between that of smoking and alcohol, and can be considered significant. In our study, we found that PGLE due to obesity was increasing, but that this trend 302 differed across countries and between the sexes. This overall trend can be explained by the 303

general increase in obesity prevalence in European countries (see Supplementary Material,
Figure S3) (13) and the resulting growth in the burden of obesity (3), which is also reflected
in the OAMFs (Figure 1, Figure S1) in these countries.

At the same time, parts of the observed variation in the increase in PGLE estimates across the USA, Western Europe, and CEE and between the sexes reflect differences in the onset, the development, and the impact of the obesity epidemic in these countries and in men and women. Across the countries studied, the absolute increase in PGLE was largest among women and second-largest among men in the USA. This pattern is in line with evidence showing that between 1980 and 2008, obesity increased much more in the USA

than in Europe(1, 33). This rapid progression of the obesity epidemic in the USA and its large
impact on life expectancy has been attributed to an increasingly obesogenic environment
caused by factors such as changes in food preparation and processes that promote the
consumption of calorically dense foods, and a pronounced decrease in physical activity levels
(34). The obesity epidemic has progressed more slowly in Western Europe than in the USA(1,
13). However, obesity levels in countries like the UK and Ireland are rapidly approaching
those in the USA (35), as our PGLE estimates also show.

In the CEE countries, the PGLE trends track the evolution of the obesity epidemic in that region (see Supplementary Material, Figure S3). Obesity levels have been higher in CEE than in Western Europe since 1980 (36, 37), which suggests that the epidemic started earlier in CEE. As a result of this earlier onset, the impact of obesity (as expressed in terms of OAMF and PGLE) in the 1970s and 1980s was at times even greater in CEE than in the USA, especially among women. While there are many potential explanations for this early onset of the obesity epidemic in CEE, the available data indicate that the main factors were the relatively high total energy supply and energy intake in CEE in those years (38).

The overall progress of the obesity epidemic was lower in CEE than in Western Europe, and the increase was not constant (1). Indeed, in CEE, increases in obesity prevalence(1, 39), OAMFs, and PGLE stagnated in the 1980-2008 period, and were more pronounced in the 1990s (1, 39). However, as these countries started the study period with higher obesity prevalence levels, these trends resulted in the CEE having higher average PGLE levels than the West. The pattern of stagnation observed in the CEE, could be explained by the decrease in energy supplies at the beginning of the 1990s in CEE (37) resulting from the dramatic economic and political changes in those countries (3, 36, 39) and

Page 17 of 38

1 2

60

BMJ Open

3 4	336	which in turn affected the socio-economic status of the population (SES). Among CEE
5 6 7	337	women, the increase in obesity starting in the 1990s was smaller than it was in the previous
7 8 9	338	period, and was smaller than it was among CEE men. The lower risk of obesity observed
10 11	339	among women than among men with low socioeconomic status (SES) in low-income
12 13 14 15	340	countries (40) may explain this difference.
16 17	341	In Western Europe, a stagnation in PGLE levels was observed among women in
18 19 20	342	Denmark and Switzerland after 1995. This finding seems to be in line with studies reporting a
20 21 22	343	levelling-off of mean BMI since the 1990s (41); and in specific sub-populations, such as
23 24 25	344	adults with high SES in regions within Switzerland, Italy, France, and Finland
25 26 27	345	(37). Although dietary and physical activity information is spreading equally across
28 29	346	socioeconomic groups, those with higher SES have a greater ability and capacity to adopt a
30 31 32	347	healthier dietary and physical activity pattern (42). In addition, it appears that higher SES
33 34	348	women in particular are more health-conscious, have healthier food habits, and are more
35 36 27	349	prone to follow nutritional recommendations (43) as they are under greater social pressure
37 38 39	350	to be thin (44). Similarly, countries with higher income levels and lower levels of inequality
40 41	351	(45), like Switzerland and Denmark, tend to have lower obesity levels, especially among
42 43 44 45	352	women.
46 47	353	When we considered the impact of obesity on life expectancy in the 26 European
48 49 50	354	countries, we found that without obesity, the increase in e0 between 1975 and 2012 would
50 51 52	355	have been, on average, 0.78 years higher among men and 0.30 years higher among women.
53 54	356	These figures account for approximately 10% of the average change in e0 between 1975 and
55 56 57	357	2012 among men, and 5% among women. It is therefore clear that the impact of obesity on
58 59	358	changes in e0 should not be ignored. Moreover, the impact of obesity on life expectancy

levels and on life expectancy trends is likely to increase, as previous studies have also
suggested (8). There are several indicators pointing in that direction, including evidence that
obesity's impact is already substantially greater in the USA (13% among men and 15%
among women) than elsewhere; obesity prevalence is increasing rapidly in most European
countries (see Supplementary Material, Figure S3); obesity is increasing in severity; and the
duration of obesity is rising in younger generations (8).

Conclusion and implications

366 Obesity was proven to have an impact on both life expectancy levels and trends in 367 Europe. The observed differences in the increase in the impact of obesity across countries 368 and between the sexes reflect differences in the onset and the progression of the obesity 369 epidemic, and can be linked to contextual factors (economic conditions, obesogenic 370 environment, energy supplies), as well as to differences in people's ability and capacity to 371 adopt healthier lifestyles.

It is likely that in the future obesity will have a larger impact on mortality and life expectancy in Europe, as obesity prevalence and obesity-attributable mortality continue to increase in the majority of countries. These trends will have important health, economic, and social implications. Specifically, the increasing prevalence of obesity among European populations, and especially at younger ages, will lead to an increased prevalence of obesity-related disorders, as well as to increases in the mortality burden associated with obesity and in obesity's effects on life expectancy and quality of life. Thus, obesity will constitute an additional burden for societies, economies, and public health. It is therefore crucial that effective public health initiatives are undertaken to tackle the obesity epidemic and its effects on public health. Such initiatives should address the multifactorial and complex

1 2							
2 3 4	 3 382 obesity aetiology; the clear differences between countries and the sexes; as we 						
5 6 7	383	factors underlying these differences, such as contextual factors and differences in					
7 8 9	384	individuals' ability and capacity to adopt healthier lifestyles.					
10 11 12 13	385	Funding					
14 15 16	386	This work was supported by the Netherlands Organisation for Scientific Research (NWO) in					
10 17 18	387	connection with the research programme "Smoking, alcohol, and obesity, ingredients for					
19 20 21	388	improved and robust mortality projections, grant no. 452-13-001; see					
21 22 23	389	www.futuremortality.com.					
24 25 26 27	390						
28 29 30	391	Conflict of Interest					
31 32 33	392	None declared.					
34 35 36 37	393						
38 39 40	394	Author contribution					
41 42 43	395	N.Vidra contributed to the conception and design of the work; to the acquisition, analysis,					
44 45 46	396	and interpretation of data for the work; drafted and revised the work critically for important					
40 47 48	397	intellectual content; approved the final version of the work to be published and agrees to be					
49 50	398	accountable for all aspects of the work in ensuring that questions related to the accuracy or					
51 52 53 54	399	integrity of any part of the work are appropriately investigated and resolved.					
55 56 57	400	S. Trias-Llimós contributed to the analysis, and interpretation of data for the work; revised it					
57 58 59 60	401	critically for important intellectual content; approved the final version of the work to be					

published and agrees to be accountable for all aspects of the work in ensuring that questions
related to the accuracy or integrity of any part of the work are appropriately investigated
and resolved.

F. Janssen contributed to the conception and design of the work; to the interpretation of
data for the work; revised the work critically for important intellectual content; approved
the final version of the work to be published and agrees to be accountable for all aspects of
the work in ensuring that questions related to the accuracy or integrity of any part of the
work are appropriately investigated and resolved.

410 Data statement

411 Obesity prevalence data can be obtained from NCD Risk Factor Collaboration (NCD-RisC)
412 (www.ncdrisc.org).

413 All-cause mortality and exposure population data can be obtained from the Human

414 Mortality Database (http://www.mortality.org).

415 Acknowledgements

416 The authors are grateful to Professor Majid Ezatti and Dr James Bentham (Faculty of

417 Medicine, School of Public Health at Imperial College London); Dr Gretchen A. Stevens

418 (World Health Organization); and the NCD Risk Factor Collaboration (NCD-RisC)

419 (<u>www.ncdrisc.org</u>) for sharing the obesity data.

420 This work is financed by the Netherlands Organisation for Scientific Research (NWO) as part

421 of the research programme "Smoking, alcohol, and obesity, ingredients for improved and

422 robust mortality projections, grant no. 452-13-001. See www.futuremortality.com

1 2		
3 4 5	423	
6 7 8 9 10 11	424	
	425	References
12 13	426	1. Finucane MM. Stevens GA. Cowan MJ. Danaei G. Lin JK. Paciorek CJ. et al. National.
14 15	427	regional, and global trends in body-mass index since 1980: systematic analysis of health
16 17	428	examination surveys and enidemiological studies with 960 country-years and 9.1 million
18 19 20 21 22 23 24 25 26 27 28 29	429	participants. Lancet. 2011 Feb 12;377(9765):557-67.
	430	2. Overweight and obesity - BMI statistics [Internet].; 2017 []. Available from:
	431	http://ec.europa.eu/eurostat/statistics-explained/index.php/Overweight_and_obesity
	432	BMI_statistics.
	433	3. WHO. The challenge of Obesity in the WHO European Region and the Strategies for
30	434	Response: Summary. Copenhagen: World Health Organization, Regional Office for Europe;
32 33 34 35 36 37 38 39 40 41 42 43	435	2007.
	436	4. Seidell JC. Prevalence and time trends of obesity in Europe. Journal of endocrinological
	437	investigation. 2002;25(10):816-22.
	438	5. Eurostat. European Health Interview Survey - Almost 1 adult in 6 in the EU is considered
	439	obese - Share of obesity increases with age and decreases with education level. 2016.
44 45	440	6. Field AE, Coakley EH, Must A, Spadano JL, Laird N, Dietz WH, et al. Impact of overweight
46 47	441	on the risk of developing common chronic diseases during a 10-year period. Archives of
48 49 50	442	Internal Medicine. 2001 Jul 9;161(13):1581-6.
51 52	443	7. Global BMI Mortality Collaboration, Di Angelantonio E, Bhupathiraju S, Wormser D, Gao P,
53 54	444	Kaptoge S, et al. Body-mass index and all-cause mortality: individual-participant-data meta-
55 56	445	analysis of 239 prospective studies in four continents. Lancet. 2016 Aug 20;388(10046):776-
56 57 58 59	446	86.
00		

3	4
4	4
5 6	4
7	4
8 9	4
10 11	4
12	
13 14	4
15 16	4
17	4
18 19	
20	4
21	4
23 24	
25	4
26 27	4
28 29	4
30	
31 32	4
33 34	4
35	
36 37	4
38 39	4
40	4
41 42	
43 44	4
45	4
46 47	
48 40	4
49 50	4
51 52	
53	4
54 55	4
56 57	4
58	
59 60	

8. Alley DE, Lloyd J, Shardell M. Can obesity account for cross-national differences in life
expectancy trends? In: Crimmins EM, Preston SH, Cohen B, editors. International differences
in mortality at older ages: Dimensions and sources, panel on understanding divergent trends
in longevity in high-income countries. Washington, DC: National Academies Press; 2011. p.
164-92.

9. Olshansky SJ, Passaro DJ, Hershow RC, Layden J, Carnes BA, Brody J, et al. A potential
decline in life expectancy in the United States in the 21st century. The New England Journal
of Medicine. 2005 Mar 17;352(11):1138-45.

455 10. Preston SH, Stokes A. Contribution of obesity to international differences in life
456 expectancy. American Journal of Public Health. 2011 Nov;101(11):2137-43.

457 11. National Research Council. The Role of Obesity. In: Crimmins EM, Preston SH, Cohen B,
458 editors. Explaining Divergent Levels of Longevity in High-Income Countries. Washington, DC:
459 National Academies Press; 2011. p. 43-55.

460 12. Leon DA. Trends in European life expectancy: a salutary view. International Journal of
 461 Epidemiology. 2011 Apr;40(2):271-7.

462 13. NCD Risk Factor Collaboration. Trends in adult body-mass index in 200 countries from
 463 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19.2
 464 million participants. Lancet. 2016 Apr 2;387(10026):1377-96.

465 14. Lobstein T, Leach RJ. Workpackage 7: Overweight and Obesity Report on data collection
 466 for overweight and obesity prevalence and related relative risks. 2010.

467 15. Allison DB, Fontaine KR, Manson JE, Stevens J, VanItallie TB. Annual deaths attributable
468 to obesity in the United States. JAMA. 1999 Oct 27;282(16):1530-8.

469 16. Banegas JR, Lopez-Garcia E, Gutierrez-Fisac JL, Guallar-Castillon P, Rodriguez-Artalejo F. A
 470 simple estimate of mortality attributable to excess weight in the European Union. Eur J Clin
 471 Nutr. 2003 Feb;57(2):201-8.

BMJ Open

2		
3 4	472	17. A Robertson, T Lobstein, C Knai. Obesity and socio-economic groups in Europe: Evidence
5 6 7	473	review and implications for action. 2007.
8	474	18. Flegal KM, Graubard BI, Williamson DF, Gail MH. Excess deaths associated with
9 10 11	475	underweight, overweight, and obesity. JAMA. 2005 Apr 20;293(15):1861-7.
12	476	19. Katzmarzyk PT, Ardern CI. Overweight and obesity mortality trends in Canada, 1985-
14 15 16	477	2000. Can J Public Health. 2004 Jan-Feb;95(1):16-20.
17 18	478	20. GBD 2017 Risk Factor Collaborators. Global, regional, and national comparative risk
19 20	479	assessment of 84 behavioural, environmental and occupational, and metabolic risks or
21 22	480	clusters of risks for 195 countries and territories, 1990-2017: a systematic analysis for the
23 24 25	481	Global Burden of Disease Study 2017. Lancet. 2018 Nov 10;392(10159):1923-94.
25 26 27	482	21. University of California, Berkeley (USA), and Max Planck Institute for Demographic
27 28 29	483	Research (Germany). [Internet]. []. Available from: <u>http://www.mortality.org</u> .
30 31	484	22. Barbieri M, Wilmoth JR, Shkolnikov VM, Glei D, Jasilionis D, Jdanov D, et al. Data
32 33	485	Resource Profile: The Human Mortality Database (HMD). Int J Epidemiol. 2015
34 35 36	486	Oct;44(5):1549-56.
37 38	487	23. Cleveland WS, Loader C. Smoothing by local regression: Principles and methods. In:
39 40 41	488	Murray Hill: A&T Bell Laboratorie; 1995.
42 43	489	24. Rockhill B, Newman B, Weinberg C. Use and misuse of population attributable fractions.
44 45 46	490	American Journal of Public Health. 1998 Jan;88(1):15-9.
47 48 49	491	25. Preston SH, Heuveline P, Guillot M. Demography. Malden, MA: Blackwell; 2001.
50 51	492	26. Census data [Internet].; 2011 []. Available from:
51 52 53	493	https://ec.europa.eu/CensusHub2/query.do?step=selectHyperCube&qhc=false.
54 55	494	27. Flegal KM, Panagiotou OA, Graubard BI. Estimating population attributable fractions to
56 57 58 59 60	495	quantify the health burden of obesity. Annals of Epidemiology. 2015 Mar;25(3):201-7.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
3	496	28. Mehta NK, Chang VW. Secular declines in the association between obesity and mortality
5 6 7	497	in the United States. Population and Development Review. 2011;37(3):435-51.
7 8 9 10	498	29. Yu Y. Reexamining the declining effect of age on mortality differentials associated with
	499	excess body mass: evidence of cohort distortions in the United States. American Journal of
11 12 13	500	Public Health. 2012 May;102(5):915-22.
14 15 16 17 18 19 20	501	30. Yu Y. The Changing Body Mass-Mortality Association in the United States: Evidence of
	502	Sex-Specific Cohort Trends from Three National Health and Nutrition Examination Surveys.
	503	Biodemography and Social Biology. 2016;62(2):143-63.
21 22	504	31. Vidra N, Bijlsma MJ, Janssen F. Impact of Different Estimation Methods on Obesity-
23	505	Attributable Mortality Levels and Trends: The Case of The Netherlands. Int J Environ Res
25 26 27	506	Public Health. 2018 Sep 29;15(10):10.3390/ijerph15102146.
28	507	32. Trias-Llimós S, Kunst AE, Jasilionis D, Janssen F. The contribution of alcohol to the East-
29 30	508	West life expectancy gap in Europe from 1990 onward. International Journal of
31 32 33	509	Epidemiology. 2017;47(3):731-9.
34 35	510	33. Doak CM, Wijnhoven TM, Schokker DF, Visscher TL, Seidell JC. Age standardization in
36 37 38 39 40	511	mapping adult overweight and obesity trends in the WHO European Region. Obesity
	512	Reviews. 2012 Feb;13(2):174-91.
41 42	513	34. Cutler DM, Glaeser EL, Shapiro JM. Why Have Americans Become More Obese? The
43 44 45	514	Journal of Economic Perspectives. 2003;17(1):93-118.
46	515	35. Obesity update 2012 [Internet].; 2012 []. Available from:
48 49	516	http://www.oecd.org/els/health-systems/49716427.pdf.
50 51	517	36. Malik VS, Willett WC, Hu FB. Global obesity: trends, risk factors and policy implications.
52 53 54	518	Nature reviews Endocrinology. 2013 Jan;9(1):13-27.
55 56	519	37. Silventoinen K, Sans S, Tolonen H, Monterde D, Kuulasmaa K, Kesteloot H, et al. Trends in
57 58	520	obesity and energy supply in the WHO MONICA Project. International Journal of Obesity and
59 60	521	Related Metabolic Disorders. 2004 May;28(5):710-8.

BMJ Open

2 3	522	38. Zatonski W/A. Bhala N. Changing trends of diseases in Eastern Europe: closing the gan
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	522	Dublic Hoalth 2012 Mar: 126/2):248 52
	525	Public Health. 2012 Wal, 120(5).248-52.
	524	39. Bray GA, Bouchard C. Handbook of Obesity: Etiology and Pathophysiology. second ed.
	525	Boca Raton: CRC Press Taylor & Francis Group; 2003.
	526	40. Monteiro CA, Conde WL, Lu B, Popkin BM. Obesity and inequities in health in the
	527	developing world. International Journal of Obesity. 2004 Sep;28(9):1181-6.
	528	41. Wilkins E, Wilson L, Wickramasinghe K, Bhatnagar P, Leal J, Luengo-Fernandez R, et al.
	529	European Cardiovascular Disease Statistics 2017. Brussels: European Heart Network; 2017.
22 23	530	42. Robertson A, Lobstein T, Knai C. Obesity and socio-economic groups in Europe: Evidence
24 25 26 27 28 29 30 31 32 33	531	review and implications for action. Brussels: European Commission. 2007.
	532	43. Fagerli RA, Wandel M. Gender differences in opinions and practices with regard to a
	533	"healthy diet". Appetite. 1999 Apr;32(2):171-90.
	534	44. Psaltopoulou T, Hatzis G, Papageorgiou N, Androulakis E, Briasoulis A, Tousoulis D.
34 35	535	Socioeconomic status and risk factors for cardiovascular disease: Impact of dietary
35 36 37	536	mediators. Hellenic Journal of Cardiology. 2017 Jan - Feb;58(1):32-42.
38 39	537	45. WHO. Obesity and inequities. Guidance for addressing inequities in overweight and
40 41 42 43 44 45	538	obesity. Copenhagen: World Health Organization, Regional Office for Europe; 2014.
	539	
46 47 48	540	
49 50 51	541	
51 52 53 54 55 56 57 58	542	
59 60		

3 4	543	Figure legends
5 6	544	Figure 1: Age-standardised obesity-attributable mortality fractions in 26 European
7 8	545	countries* (by 5 regions) and USA, 1975-2014, 18-100 years
9 10	546	
11 12	547	* Countries within the same region are presented with the same colour
13 14	548	Central Europe: Czech Republic, Hungary, Poland, Slovakia
15 16	549	Eastern Europe: Belarus, Estonia, Ukraine, Latvia, Lithuania, Russian Federation
10 17 10	550	Northern Europe: Denmark, Finland, Iceland, Norway, Sweden
19	551	Southern Europe: Italy, Portugal, Spain
20 21	552	Western Europe: Austria, Belgium, France, Ireland, Luxembourg, Netherlands, Switzerland,
22 23	553	United Kingdom
24 25	554	USA: United States of America
26 27	555	
28 29	556	Figure 2: Potential gains in life expectancy at birth (PGLE) if obesity-attributable mortality
30 31	557	was eliminated, in 26 European countries* (differentiating Western and Central Eastern
32	558	Europe) and the USA, 1975-2012, 18-100 years
33 34 35	559	
36 27	560	* Countries within the same region are presented with the same colour
37 38	561	Central Eastern Europe: Belarus, Czech Republic, Estonia, Hungary, Latvia, Lithuania, Poland,
39 40	562	Russian Federation, Slovakia, Ukraine
41 42	563	Western Europe: Austria, Belgium, Denmark, Finland, France, Iceland, Ireland, Italy,
43 44	564	Luxembourg, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, United Kingdom
45 46	565	USA: United States of America
47 48	566	
49 50	567	Figure 3: Average annual increase (%) in potential gains in life expectancy due to obesity in
51 52	568	26 European countries and the USA between 1975-2012, in men
53 54	569	
55 56	570	Figure 4: Average annual increase (%) in potential gains in life expectancy due to obesity in
57 58	571	26 European countries and the USA between 1975-2012, in women
59 60	572	

3 4	573			
5 6	574			
7 8 0	575			
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34	574 575 576			
36 37				
38 39				
40 41				
42 43				
44 45				
46 47				
48 49				
50 51				

Figure 3: Average annual increase (%) in potential gains in life expectancy due to obesity in 26 European countries and the USA between 1975-2012, in men

Page 31 of 38

Impact of obesity on life expectancy among different European countries, 1975-2012

Nikoletta Vidra¹, Sergi Trias-Llimós¹, Fanny Janssen^{1,2}

¹ Population Research Centre, Faculty of Spatial Sciences, University of Groningen, Landleven

1, 9747 AD Groningen, The Netherlands.

² Netherlands Interdisciplinary Demographic Institute, Lange Houtstraat 19, 2511 CV The

Hague, The Netherlands

Supplementary material

Table S1: Age-and sex-specific RRs of dying from obesity from the meta-review fromLobstein et al. (2010)

Age	RR*		
	Men	Women	
<50	1.55	1.5	
50-59	1.539	1.49	
60-69	1.5225	1.475	
70+	1.495	1.45	

*Reference group for the RRs: normal weight $(18.5 \ge BMI \le 24.9 \text{ kg/m}^2)$

 Table S2: Potential gains in life expectancy at birth (PGLE) if obesity-attributable mortality was eliminated, in 26 European countries (differentiating Western and Central Eastern Europe) and the USA, in 1975 and 2012, 18-100 years

	Country	PGLE 1975		PGLE 2012	
		Men	Women	Men	Women
	Central Eastern Europe (CEE)				
	Belarus	0.41	0.79	1.41	1.19
	Czech Republic	0.70	0.98	1.39	1.03
	Estonia	0.55	1.00	1.37	1.04
	Hungary	0.64	0.86	1.52	1.04
	Latvia	0.58	1.00	1.48	1.18
	Lithuania	0.54	1.05	1.67	1.31
	Poland	0.57	0.93	1.48	1.19
	Russian Federation	0.51	1.26	1.53	1.54
	Slovakia	0.43	0.62	1.31	0.96
	Ukraine	0.47	0.95	1.25	1.16
	Average CEE	0.54	0.94	1.44	1.16
	Western Europe				
	Austria	0.40	0.39	1.03	0.73
	Belgium	0.55	0.61	1.17	0.97
	Denmark	0.42	0.46	1.04	0.79
	France	0.49	0.53	1.18	0.84
	Finland	0.45	0.40	1.19	0.90
	Ireland	0.38	0.31	1.21	1.01
	Iceland	0.49	0.48	0.97	0.80
	Italy	0.44	0.60	1.06	0.93
	Luxembourg	0.47	0.42	1.19	0.79
	Netherlands	0.29	0.39	0.86	0.88
	Norway	0.34	0.39	1.07	0.91
	Portugal	0.24	0.41	1.01	0.81
	Spain	0.42	0.66	1.22	1.05
	Sweden	0.42	0.43	0.91	0.76
	Switzerland	0.35	0.35	0.93	0.66
	United Kingdom	0.53	0.50	1.27	1.09
	Average Western Europe	0.41	0.48	1.08	0.86
	USA	0.69	0.72	1.73	1.44
	Average European countries	0.46	0.64	1.22	0.98
	Average all countries	0.47	0.64	1.23	1.00

* Countries within the same region are presented with the same colour

Figure S2: Potential gains in life expectancy at birth (PGLE) if obesity-attributable mortality was eliminated, in 26 European countries*, grouped by 5 regions and USA, 1975-2012, 18-100 years

Table S3: Age-standardised obesity prevalence and 95% confidence intervals, in 26European countries (differentiating Western and Central Eastern Europe) and USA, 18-100years in 2012.

Age-standardised (stand.) obesity prevalence (%)

Country	Age- stand.	95% confidence intervals	Age- stand.	95% confidence intervals
	Men		Women	
Central Eastern Europe				
Belarus	20.4	13.6; 28.5	25.4	17.7; 34.1
Czech Republic	25.6	18.9; 33.4	25.2	18.3; 33.0
Estonia	21.0	16.0; 26.8	22.7	17.4; 28.8
Hungary	24.6	17.9;32.0	22.1	15.4; 29.8
Latvia	22.2	15.2; 30.2	25.8	18.4; 34.5
Lithuania	23.8	16.9; 31.8	28.7	21.2; 37.1
Poland	23.6	18.0; 29.7	25.7	19.5; 32.5
Russian Federation	20.4	14.8; 26.8	29.1	22.6; 36.2
Slovakia	22.2	15.7; 29.6	22.2	15.8; 29.6
Ukraine	17.7	11.2; 25.7	23.9	16.3; 32.5
Western Europe				
Austria	21.1	14.7; 28.2	19.1	13.4; 25.5
Belgium	22.9	17.3; 29.1	22.7	17.1; 28.9
Denmark	21.3	15.5; 27.9	18.4	13.1; 24.5
France	22.6	16.3; 29.6	23.1	16.9; 29.9
Finland	22.3	17.1; 28.2	21.7	16.7; 27.3
Ireland	26.2	19.4; 33.8	26.0	19.5; 33.2
Iceland	22.3	15.6; 29.8	21.0	14.7; 28.3
Italy	22.3	17.0; 28.1	23.5	18.1; 29.6
Luxembourg	24.9	17.6; 32.9	20.7	14.3; 28.0
Netherlands	18.9	13.8; 24.5	20.3	15.3; 25.8
Norway	24.5	18.5; 31.2	23.7	18.0; 30.2
Portugal	19.6	13.8; 26.4	21.1	15.0; 28.1
Spain	24.2	18.5; 30.5	26.4	20.3; 32.8
Sweden	21.6	16.3; 27.4	19.8	14.7; 25.6
Switzerland	22.0	16.3; 28.3	18.6	13.1; 24.8
United Kingdom	26.5	22.3; 31.2	29.1	24.8; 33.6
USA	33.4	27.5; 39.5	35.5	29.7; 41.5

Table S4: Potential gains in life expectancy at age 50 (PGLE) if obesity-attributable mortality was eliminated, own estimates and those by Preston et al.2011, in the same countries studied, in 2006

Country	PGLE e50 2006, own estimates	PGLE e50 2006, Preston's estimates	Difference
Men			
Austria	0.81	1.00	-0.19
Belgium	0.95	0.98	-0.03
Czech Republic	1.14	1.34	-0.20
Denmark	0.88	0.82	0.06
France	0.94	0.99	-0.05
Italy	0.88	0.90	-0.02
Netherlands	0.69	0.73	-0.04
Poland	1.14	1.37	-0.23
Spain	1.02	1.15	-0.13
Sweden	0.75	0.72	0.03
Switzerland	0.77	0.79	-0.02
United Kingdom	0.99	1.34	-0.35
USA	1.29	1.85	-0.56
Women			
Austria	0.62	0.71	-0.09
Belgium	0.86	0.73	0.13
Czech Republic	0.87	1.01	-0.14
Denmark	0.71	0.62	0.09
France	0.72	0.52	0.2
Italy	0.84	0.57	0.27
Netherlands	0.76	0.69	0.07
Poland	1.08	1.19	-0.11
Spain	0.95	0.87	0.08
Sweden	0.67	0.63	0.04
Switzerland	0.59	0.50	0.09
United Kingdom	0.94	1.23	-0.29
USA	1.18	1.28	-0.10
Figure S3: Age-standardised obesity prevalence in 26 European countries*, grouped by 5 regions and USA, 1975-2012, 18-100 years

* Countries within the same region are presented with the same colour

BMJ Open

Impact of obesity on life expectancy among different European countries: secondary analysis of population-level data over the 1975-2012 period

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-028086.R2
Article Type:	Research
Date Submitted by the Author:	25-Jun-2019
Complete List of Authors:	Vidra, Nikoletta; Population Research Centre, Faculty of Spatial Sciences, Demography Trias-Llimós, Sergi; University of Groningen, Population Research Centre, Faculty of Spatial Sciences; London School of Hygiene and Tropical Medicine, Faculty of Epidemiology and Population Health Janssen, Fanny; University of Groningen, Population Research Centre; Nederlands Interdisciplinair Demografisch Instituut
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Public health, Nutrition and metabolism
Keywords:	EPIDEMIOLOGY, NUTRITION & DIETETICS, PUBLIC HEALTH

1 ว		
2 3 4	1	Impact of obesity on life expectancy among different European countries: secondary
5 6 7	2	analysis of population-level data over the 1975-2012 period
, 8 9	3	Nikoletta Vidra ¹ , Sergi Trias-Llimós ¹ , Fanny Janssen ^{1,2}
10 11 12	4	¹ Population Research Centre, Faculty of Spatial Sciences, University of Groningen, Landleven
15 14 15	5	1, 9747 AD Groningen, The Netherlands.
17 18	6	² Netherlands Interdisciplinary Demographic Institute, Lange Houtstraat 19, 2511 CV The
19 20 21	7	Hague, The Netherlands.
22 23 24 25	8	
26 27	9	Corresponding author: Nikoletta Vidra, Population Research Centre, Faculty of Spatial
28 29 30	10	Sciences, University of Groningen, PO Box 800, 9700 AV Groningen, The Netherlands. Tel:
31 32	11	0031 (0) 50 363 86 52; e-mail: n.vidra@rug.nl
33 34 35	12	
36 37 38	13	
39 40 41 42	14	
43 44 45	15	
46 47 48	16	
49 50 51 52	17	
52 53 54 55	18	
56 57 58	19	
59 60	20	Word count: 3669 words

1		
2		
5 4	21	
5		
6	22	All at we at
7	22	Abstract
8		
9	22	Objective: This study assesses the impact of obesity on life expectancy for 26 European
10	23	Objective. This study assesses the impact of obesity of the expectancy for 20 European
11	24	notional constations and the UCA assortion 1075, 2012 partial
12	24	national populations and the USA over the 1975-2012 period.
14		
15	25	Design: Secondary analysis of population-level obesity and mortality data.
16	20	
17		
18	26	Setting: European countries, namely Austria, Belarus, Belgium, the Czech Republic,
19		
20	27	Denmark, Estonia, Finland, France, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania,
22		
23	28	Luxembourg, the Netherlands, Norway, Poland, Portugal, the Russian Federation, Slovakia,
24		
25	29	Spain Sweden Switzerland Ukraine the United Kingdom (UK); and the USA
26 27	25	spann, sweden, switzenand, skidine, the snited kingdom (ski), and the ssik
27		
29	30	Participants: National populations aged 18–100 years, by sex.
30		
31		
32	31	Measurements: Using data by age and sex, we calculated obesity-attributable mortality by
33 24		
34	32	multiplying all-cause mortality (Human Mortality Database) with obesity-attributable
36		
37	33	mortality fractions (OAMFs). OAMFs were obtained by applying the weighted-sum method
38		
39	34	to obesity prevalence data (NCD Risk Factor Collaboration) and European Relative Risks (RRs)
40		
41	35	(DYNAMO). We estimated potential gains in life expectancy at birth (PGLE) by eliminating
43		
44	36	obesity-attributable mortality from all-cause mortality using associated single-decrement life
45		
46	37	tables.
4/		
40 49		
50	38	Results: In the 26 European countries in 2012, PGLE due to obesity ranged from 0.86 to 1.67
51		
52	39	years among men, and from 0.66 to 1.54 years among women. In all countries, PGLE
53		
54	40	increased over time, with an average annual increase of 2.68% among men and 1.33% and
56		
57	41	among women, Among women in Denmark, Switzerland, and Central and Fastern European
58	• •	
59	42	countries the increase in PGLE levelled off after 1995. Without obesity, the average increase
60	74	countries, the increase in role revened on after 1995. Without obesity, the average increase

BMJ Open

2	
3 4	43
5 6 7	44
8 9 10	45
11 12	46
13 14	47
15 16 17	48
18 19 20 21	49
22 23 24	50
25 26 27	51
28 29 30	52
31 32	53
33 34 35	54
36 37 38	55
39 40	56
41 42 43	57
44 45 46	58
47 48	59
49 50 51	60
52 53 54 55	61
55 56 57 58	62
59 60	63

43	in life expectancy between 1975 and 2012 would have been 0.78 years higher among men
44	and 0.30 years higher among women.
45	Conclusions: Obesity was proven to have an impact on both life expectancy levels and
46	trends in Europe. The differences found in this impact between countries and the sexes can
47	be linked to contextual factors, as well as to differences in people's ability and capacity to
48	adopt healthier lifestyles.
49	Keywords: Obesity, life expectancy, Europe, USA
50	Article Summary
51	Strengths and limitations of the study
52	• This is the first study to assess the impact of obesity on life expectancy at birth over
53	time, and we do so here for 26 European countries and the USA.
54	We used recent long-term comparable data on obesity prevalence based on
55	population-based measurement studies, and European relative risks of dying from obesity by
56	age and sex from a recent meta-analysis.
57	• Because of remaining data limitations regarding prevalence and relative risks, we had
58	to use a fairly simple – albeit common applied - methodology to estimate obesity-
59	attributable mortality.
60	
61	
62	

3
4
5
6
7
8
9
10
11
11
12
13
14
15
16
17
18
19
20
21
22
23
20
24
25
26
27
28
29
30
31
32
33
34
35
36
27
20
38
39
40
41
42
43
44
45
46
47
48
49
50
50
51 52
52 52
53
54
55
56
57
58
59

1 2

64 Introduction

65	Obesity is a global epidemic (1), with Europe currently ranking second worldwide after the
66	USA (2). Over the last 20 years obesity prevalence has increased threefold in Europe(3),
67	although not uniformly across countries (4). Estimates for 2014 indicate that obesity varied
68	threefold across European countries, ranging from a low of 9% in Romania to a high of 26%
69	in Malta (5). Obesity constitutes a serious health burden at the individual and population
70	levels because it is associated with an increased risk of morbidity (6), and mortality (7).
71	However, the potential impact of the increase in obesity on life expectancy trends remains
72	largely unknown (8).
73	The few existing studies that assessed the impact of obesity on life expectancy at the
74	population level provided estimates at one specific point in time only (9, 10). Olshansky et al.
75	found that if obesity was eliminated, life expectancy at birth (e0) in the USA in 2000 would
76	be 0.21 to 1.08 years higher, depending on gender and ethnicity (9). Preston et al. (10)
77	estimated for 16 low-mortality countries in 2006 that the reduction in life expectancy at age
78	50 (e50) due to obesity was greatest in the USA, at more than 1.5 years; and ranged from
79	0.50 to 1.19 years for women and from 0.72 to 1.37 years for men in European countries.
80	Gaining insight into the impact of obesity on trends in life expectancy is especially
81	relevant (11) given the marked differences in life expectancy trends across Europe (12). In
82	Western European countries, e0 has been increasing steadily, and has risen six to eight years

since 1970. But in Central and Eastern Europe (CEE), e0 stagnated or even declined between

84 the 1970s and the 1980s, and did not start increasing again until the 1990s. There are also

85 marked differences in e0 trends between individual European countries (12).

1		
2		ta Balana futa an ing ang dising di 1966 ang ang batang sa sa sa sa sa sa sing dan ing banda sa sa
4	86	In light of these important differences between European countries in both obesity
5 6 7	87	prevalence and life expectancy over time, our aim is to assess the impact of obesity on long-
, 8 9	88	term trends in life expectancy across a wide range of European countries.
10 11 12	89	Our sole focus is on the impact of obesity, given the significant health burden caused by
13 14 15	90	obesity, the large body of literature on its impact, and the well-documented association of
16 17	91	obesity with mortality.
18 19 20	92	Data and Methods
21 22 23 24	93	Setting
25 26	94	We studied the impact of obesity on life expectancy by sex over the 1975-2012 period in 26
27 28 29	95	European countries: Austria, Belarus, Belgium, the Czech Republic, Denmark, Estonia,
30 31 32	96	Finland, France, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, the
33 34	97	Netherlands, Norway, Poland, Portugal, the Russian Federation, Slovakia, Spain, Sweden,
35 36 37	98	Switzerland, Ukraine, the United Kingdom (UK); and the USA as a comparison country (10).
38 39	99	Data
40 41 42	100	Long-term comparable obesity prevalence data (BMI≥30kg/m2) by country, sex, age (18-19,
43 44 45	101	20-24,, 85+), and year (1975-2012), based on 1698 population-based measurement studies,
46 47	102	were obtained from the NCD Risk Factor Collaboration study (13). These validated data
48 49 50	103	comprise the available measured height and weight data of 19.2 million participants from
51 52	104	representative data sources, supplemented with estimates based on information from other
53 54 55	105	years and related countries from a Bayesian hierarchical model (13). The same model was
56 57 58	106	applied to all countries and used as an input the measured weight and height data, including
58 59 60	107	covariates that help predict BMI (13).

2	
3	
4	
с с	
6	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50	
59	

1

108 The age- (<50, 50-59, 60-69 and ≥70 years) and sex-specific relative risks (RRs) of 109 dying from obesity (see Supplementary Material Table S1) came from a review of studies mainly conducted in Western Europe and the USA, with the normal-weight category used as 110 the reference group (18.5 \ge BMI \le 25 kg/m²) (14). These age- and sex-specific RRs were largely 111 in line with the overall European RR of 1.64 recently estimated by the Global BMI Mortality 112 113 Collaboration (7). The differences across age groups found in that study were similar with 114 those reported in our findings (i.e., higher RRs at younger than at older ages), though they 115 were less distinct (7). In addition, the use of RRs with the normal weight category as the reference category is in line with previous studies that estimated obesity-attributable 116 mortality (15-19), while the estimation of obesity-attributable mortality with such a RR can 117 be considered the theoretically maximally possible attributable mortality (20). 118 All-cause mortality numbers and exposure population data by single year of age, sex, 119 year, and country were obtained from the Human Mortality Database (21). These data are of 120 high quality and are widely used within the demographic community and beyond (22). 121

- 122 Patient and Public Involvement
 - 123 No patients were involved in this study.
 - Methods

124

We performed our analyses separately by country and sex, based on data by single year of
age (18-100). The obesity prevalence data were turned into single-age prevalence (18-100)
by applying Loess smoothing (23). The RRs were turned into single-year RRs (18- 100) using
linear regression.

Page 7 of 38

BMJ Open

To estimate the obesity-attributable mortality fraction (OAMF) – i.e., the share of allcause mortality due to obesity – we used the Rockhill formula to estimate OAMFs by age (a) and sex (s) (24).

$$OAMF_{a,s} = \frac{P_{a,s} \cdot (RR_{a,s} - 1)}{1 + (P_{a,s} \cdot (RR_{a,s} - 1))}$$
 (Equation 1)

where *P* is the obesity prevalence. We then weighted the $OAMF_{a,s}$ with the corresponding number of deaths.

For the estimation of the impact of obesity on life expectancy (see 2.3.2) we needed age-and sex-specific (non-) obesity-attributable mortality rates. These were obtained by multiplying *OAMF*_{*a*,*s*} and [1- *OAMF*_{*a*,*s*}], respectively, with age- and sex-specific all-cause mortality rates.

To ensure comparability across countries, over time, and between men and women, we applied direct age- and sex-standardisation (25) to obesity prevalence, obesity-attributable mortality fractions, and obesity-attributable mortality rates, using the European population of 2011 (26) as the standard.

To assess the impact of adult obesity on e₀, we calculated for each country the potential gain in life expectancy (PGLE) if obesity-attributable mortality were eliminated, by calendar year and sex and is in line with the approach by Preston et al. First, we calculated e₀ by applying standard life table techniques to age-specific all-cause mortality rates (0-100)(25)). Second, we applied associated single-decrement life tables (ASDLT)(25)) to age-and sex-specific non-obesity-attributable mortality rates (0-100) to obtain e₀ if obesity-attributable mortality were eliminated. The PGLE represents the difference between the e₀ based on the ASDLT and the original e_{0} .

To summarise the changes in PGLE across countries, we estimated the average annual changes in PGLE (in %):

Average annual changes in PGLE (%) =
$$\frac{\sum_{t=1976}^{2012} \frac{(PGLE_t - PGLE_{t-1})}{PGLE_{t-1}}}{2012 - 1975} 100$$

To assess the impact of obesity on time trends in e_0 between 1975 and 2012, we subtracted the observed change in e_0 from the change in e_0 without obesity. The change in e_0 without obesity was obtained by using the e_0 values from the associated single-decrement life tables applied to non-obesity-attributable mortality for 1975 and 2012.

158 Results

For the 26 European countries, the age-standardised obesity-attributable mortality fraction (OAMF) was, on average, 11% among men and 10% among women in 2012. For the USA, these estimates were substantially higher; i.e., 15% and 14%, respectively. The average OAMF levels were higher in Northern, Western, and Southern Europe combined (hereafter, Western Europe) than in CEE among men, while the opposite was the case among women. OAMFs were increasing over time for all countries and both sexes, although not to the same extent (see Figure 1, Figure S1). In Western Europe, OAMFs generally increased over the 1975-2012 period, and at a faster pace among men. In CEE, by contrast, OAMFs clearly stagnated, and even declined between 1990 and 2000. The overall increase in OAMFs

168 was greatest in the USA, Ireland, Norway (men), and the UK (women).

1 ว		
2 3 4 5 6 7 8 9	170	Figure 1: Age-standardised obesity-attributable mortality fractions in 26 European
	171	countries* (by 5 regions) and USA, 1975-2014, 18-100 years
	172	* Countries within the same region are presented with the same colour
10 11	173	Central Europe: Czech Republic, Hungary, Poland, Slovakia
12 13	174	Eastern Europe: Belarus, Estonia, Ukraine, Latvia, Lithuania, Russian Federation
14 15	175	Northern Europe: Denmark, Finland, Iceland, Norway, Sweden
16 17	176	Southern Europe: Italy, Portugal, Spain
17	177	Western Europe: Austria, Belgium, France, Ireland, Luxembourg, Netherlands, Switzerland,
19 20	178	United Kingdom
21 22	179	USA: United States of America
23 24	180	
25 26		
20 27 28 29	181	<approximately here=""></approximately>
29 30 31	182	In the 26 European countries in 2012, estimates of potential gains in life expectancy at
32 33 34	183	birth (PGLE) if obesity was eliminated ranged from 0.86 to 1.67 years among men (1.22 on
35 36	184	average) and from 0.66 to 1.54 years (0.98 on average) among women (Figure 2; Figure S2
37 38 30	185	and Table S2 Supplementary Material). Among men in the USA, the PGLE estimate was, at
40 41	186	1.73 years, slightly higher than the highest estimate in Europe; and among women in the
42 43	187	USA, the PGLE estimate was, at 1.44 years, the second-highest after the estimate for Russia.
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	188	The average PGLE estimate was 1.08 among men and 0.86 among women in Western
	189	Europe, and was 1.44 among men and 1.16 among women in CEE (see Supplementary
	190	Material, Table S2).
	191	

2 3 4	192	Figure 2: Potential gains in life expectancy at birth (PGLE) if obesity-attributable mortality
5 6 7	193	was eliminated, in 26 European countries* (differentiating Western and Central Eastern
8 9 10 11 12 13 14 15 16 17 18 19	194	Europe) and the USA, 1975-2012
	195	* Countries within the same region are presented with the same colour
	196	Central Eastern Europe: Belarus, Czech Republic, Estonia, Hungary, Latvia, Lithuania, Poland,
	197	Russian Federation, Slovakia, Ukraine
	198	Western Europe: Austria, Belgium, Denmark, Finland, France, Iceland, Ireland, Italy,
	199	Luxembourg, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, United Kingdom
20 21	200	USA: United States of America
22 23 24 25	201	
23 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	202	<approximately here=""></approximately>
	203	Overall, from 1975 to 2012, PGLE due to obesity increased in all of the countries (Figure
	204	2, Figure S2, Figure 3, 4). The increase was greater among men (average annual increase of
	205	2.68%) than among women (average annual increase of 1.33%), was largest among men in
	206	Portugal and Belarus and among women in Portugal, and was substantial among men and
	207	women in Norway (Figures 3, 4). While there was a general increase in PGLE due to obesity,
	208	this trend stagnated among women in CEE from around 1990 onwards, and levelled off after
	209	1995 among women in Denmark and Switzerland.
47 48	210	Figure 3: Average annual increase (%) in potential gains in life expectancy due to obesity in
49 50	211	26 European countries and the USA between 1975-2012, in men
50 51 52 53 54 55	212	<approximately here=""></approximately>
	213	
56 57	214	Figure 4: Average annual increase (%) in potential gains in life expectancy due to obesity in
58 59	215	26 European countries and the USA between 1975-2012, in women
60	216	<approximately here=""></approximately>

BMJ Open

3 4	2
5 6	2
/ 8 9	2
10 11	2
12 13	2
14 15 16	2
17 18	2
19 20 21	2
22 23	_
24 25	2
26 27 28	2
29 30 31	
32 33	
34 35	
36 37 28	
38 39 40	
41 42	
43 44	
45 46 47	
48 49	
50 51	
52 53 54	
55 56	
57	

217 Table 1 shows the impact of obesity on time trends in life expectancy at birth (e_0) . 218 Overall, the average increase in e₀ between 1975 and 2012 was 7.26 years for men and 6.28 219 years for women in the 26 European countries. Without obesity, the average increase in e₀ would have been 8.04 years for men and 6.58 years for women; or 0.78 and 0.30 years 220 higher, respectively. Among men, obesity had the greatest impact on e₀ trends in Lithuania 221 222 and the USA (more than one year), and the smallest impact in Iceland and Sweden (0.5 223 years). Among women, obesity had the greatest impact on e₀ trends in the USA and Ireland 224 (0.7 years) and the smallest impact in Estonia and the Czech Republic (less than 0.1 year). 225 Table 1: Impact of obesity on trends in life expectancy at birth (e₀) in 26 European

countries and USA 1975-2012, by sex

29 30	Country	Change in	Change in e_0 with \checkmark Change in e_0 without			Effect of obesity on $e_{0} \\$		
31		obesity 20)12-1975	obesity 201	2-1975	change 201	2-1975	
32		0.000109 =0			0/0	0.10.180 202		
33		(yea	irs)	(years	5)	(year:	s)	
34								
35		Men	Women	Men	women	Men	Women	
36	Austria	10.62	8.61	11.25	8.95	0.63	0.34	
37	Belarus	-0.55	1.43	0.46	1.83	1.00	0.40	
38 39	Belgium	8.85	7.63	9.46	7.99	0.61	0.36	
40	Czech Republic	7.97	6.98	8.66	7.03	0.69	0.05	
41	Denmark	6.78	5.03	7.40	5.36	0.63	0.33	
42	Estonia	6.43	6.42	7.26	6.46	0.82	0.04	
44	France	9.49	7.99	10.17	8.30	0.68	0.31	
45	Finland	10.07	7.26	10.82	7.75	0.74	0.50	
46	Hungary	5.29	6.18	6.17	6.36	0.87	0.18	
47 48	Iceland	9.02	5.19	9.51	5.51	0.48	0.32	
49	Ireland	9.40	8.40	10.22	9.10	0.83	0.69	
50	Italy	10.19	8.56	10.81	8.89	0.62	0.33	
51	Latvia	4.91	4.53	5.82	4.70	0.90	0.18	
52 53	Lithuania	2.01	3.80	3.14	4.06	1.13	0.26	
54	Luxembourg	11.78	9.27	12.50	9.65	0.72	0.37	
55	Netherlands	7.68	5.10	8.26	5.6	0.56	0.49	
56	Norway	7.00	E 22	0.20	E 96	0.74	0 51	
57	NOIWay	7.70	5.55	0.42	5.60	0.74	0.51	
58	Poland	5.90	6.74	6.81	7.00	0.91	0.27	
59 60	Portugal	12.14	10.87	12.91	11.26	0.77	0.40	

2								
3		Russian Federation	2.05	2.62	3.06	2.89	1.02	0.28
4 5		Slovakia	5.65	5.82	6.52	6.16	0.88	0.34
5		Spain	8.82	8.75	9.62	9.14	0.79	0.39
7		Sweden	7.69	5.59	8.18	5.93	0.49	0.33
8		Switzerland	8 98	6.63	9 5 5	6.93	0.58	0.30
9		Ukraino	0.30	1 72	1.26	1.04	0.30	0.50
10		United Kingdom	0.40	1.75	10.20	1.94	0.78	0.21
12			9.40	0.90	10.20	7.55	0.74	0.59
13		USA	7.86	4.89	8.90	5.61	1.04	0.71
14		Average CEE	4.01	4.63	4.92	4.84	0.90	0.22
15		countries						
16 17		Average Western	9.10	7.09	9.76	7.50	0.66	0.41
17		countries						
19	227							
20	227							
21								
22	228							
23 24								
25								
26	229	Discussion						
27								
28 29	220	Summary of result	-					
30	250	Summary of result	5					
31								
32	231	In the 26 European count	ries studied	d, the share	of mortality o	lue to obesit	ty in 2012 wa	is, on
33 24								
34 35	232	average, 11% among men and 10% among women. PGLE due to obesity in 2012 ranged from						
36								
37	233	0.86 to 1.73 years among men, and from 0.66 to 1.54 years among women. Overall. PGLE						
38								
39 40	234	increased between 1975 and 2012, albeit more quickly among men (average annual						
40 41								
42	235	increase: 2.68%) than am	ong womer	n (1.33%). A	mong womer	in Denmarl	k, Switzerland	d, and
43								
44	236	the CEE countries the inc	rease in PG	LE levelled	off after 1995.	Without ob	besity, the ave	erage
45 46								
47	237	increase in e0 between 1	975 and 20	12 would h	ave been 0.78	years highe	r among mer	n and
48								
49	238	0.30 years higher among	women.					
50								
51 52								
53	239	Evaluation of data	a and meth	ods				
54								
55	240	Using the recent advance	es in obesity	v data, it is r	now possible t	o study the	impact of ob	esitv
56	2.10		io in obcony					concy
57 58	241	on life expectancy for a la	arge numhe	or of countri	es and a long	period of tir	ne. Two	
59	⊾न⊥	en me expectancy for a f						
60	242	methodological issues wa	arrant our a	ttention h	owever			
	- 14							

Page 13 of 38

1 2

BMJ Open

3 4	243	First, in calculating the share of mortality due to obesity (OAMF), which also forms
5 6 7	244	the basis for our PGLE calculations, we were hindered by limitations in the available
7 8 9	245	prevalence and RRs data, which also affected the method used. As has previously been
10 11	246	documented, OAMF estimates are sensitive to the data and the methods used (27).
12 13 14	247	In selecting obesity prevalence data, we used the longest validated time series based
15 16	248	on population-based measurement studies that are suitable for studying the impact of
17 18 19	249	obesity on long-term life expectancy trends across Europe (13). For those countries with less
20 21	250	available obesity data – especially the CEE countries a portion of the data we used were
22 23	251	merely the result of modelling. Thus, the resulting estimates should be treated with some
24 25 26	252	caution . By contrast, for the non-CEE countries, most of the data we used pertain to
27 28	253	measured data (13). Supplementary Material, Table S3 gives the confidence intervals around
29 30 31	254	the age-standardised prevalence estimates for each country by sex in order, as to provide
32 33	255	more information on the relative reliability of the data for the different countries in our
34 35 36	256	analysis.
37 38	257	Because age- and sex-specific RRs of mortality associated with obesity are not readily
39 40 41	258	available by country and year, we have decided to apply to all of the countries studied age-
42 43	259	and sex-specific RRs from Western European and US populations that are largely suitable for
44 45	260	our setting, as had previously been done (10). Although RRs could differ slightly across
46 47 48	261	contexts, studies that compared RRs across continents found only small differences in RRs
49 50	262	between Europe and North America (7). Consequently, we do not expect to observe large
51 52 53	263	differences between individual countries. In addition, as time-variant European RRs were
54 55	264	not available, we had to apply time-constant RRs, even though it is possible that changes in
56 57 58	265	the association of obesity with mortality – which could, for example, occur because of
59 60	266	improvements in the treatment of chronic diseases – have affected the impact of obesity on

> life expectancy. Previous studies that assessed changes over time in the association of obesity with mortality did so only for the US, and, unfortunately, provided mixed evidence, with some of these studies reporting a decline (18, 28, 29), and others finding an increase (30). Therefore, before implementing time-variant European RRs, more information on their direction is required. Similarly, comparable country-specific RRs are urgently needed. In addition, the choice of these RRs along with their reference group might exert an effect in our estimates. Based on the available data, only a fairly simple – albeit common applied – the weighted sum method could be applied (27) to estimate the OAMFs. The application of a more advanced methodology (27) could have affected the OAMFs and thus the PGLE levels, but less the trends(31). The lack of information on the uncertainty of the RRs we used limited us in estimating confidence intervals for the OAMFs and PGLEs. Second, besides being the result of the OAMFs, the PGLE estimates can also be

affected by all-cause mortality levels and trends as age- and sex-specific all-cause mortality rates are used to estimate PGLE. Since all-cause mortality fluctuated greatly in CEE in the analysed period (12), short-term variations in PGLE in CEE countries should be treated with more caution.

Explanation of results

In 2012, the PGLE due to obesity were, on average, 1.22 years for men and 0.98 years for women in the 26 European countries, and 1.73 years for men and 1.43 years for women in the USA. A comparison of our 2006 e50 estimates with those of Preston et al. (10) for the same countries uncovered only small differences, except among men in the USA (our estimate was 0.56 years lower) and women in the UK (our estimate was 0.29 years lower) (see Supplementary Material, Table S4). Given that approximately the same methodology was used to estimate the OAMFs, the observed differences are most likely due to the use of

Page 15 of 38

1 2

BMJ Open

3	
1	
-	
2	
6	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
29	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
/1	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
55	
50	
5/	
28	
59	
60	

291 different obesity prevalence and RRs data. Preston used prevalence data from national representative surveys and RRs from the Prospective Studies collaboration (10). Given that 292 the observed differences do not have the same direction for the different countries, we 293 believe that these differences are mainly attributable to the prevalence data used. To 294 295 further evaluate our observed PGLE levels, we compared them with own PGLE estimates for 296 smoking and alcohol (32). Our PGLE estimates for smoking were 2.38 years for men and 1.00 297 year for women in Western Europe, and 3.82 years for men and 0.67 years for women in 298 CEE. Our PGLE estimates for alcohol were 0.90 years for men and 0.44 years for women in 299 Western Europe, and 2.15 years for men and 1.00 year for women in CEE (32) while our 300 average PGLE for obesity was 1.08 among men and 0.86 among women in Western Europe, and 1.44 among men and 1.16 among women in CEE. Thus, obesity's impact on life 301 302 expectancy lies between that of smoking and alcohol, and can be considered significant. In our study, we found that PGLE due to obesity was increasing, but that this trend 303 differed across countries and between the sexes. This overall trend can be explained by the 304

305 general increase in obesity prevalence in European countries (see Supplementary Material,
306 Figure S3) (13) and the resulting growth in the burden of obesity (3), which is also reflected
307 in the OAMFs (Figure 1, Figure S1) in these countries.

At the same time, parts of the observed variation in the increase in PGLE estimates across the USA, Western Europe, and CEE and between the sexes reflect differences in the onset, the development, and the impact of the obesity epidemic in these countries and in men and women. Across the countries studied, the absolute increase in PGLE was largest among women and second-largest among men in the USA. This pattern is in line with evidence showing that between 1980 and 2008, obesity increased much more in the USA

than in Europe(1, 33). This rapid progression of the obesity epidemic in the USA and its large
impact on life expectancy has been attributed to an increasingly obesogenic environment
caused by factors such as changes in food preparation and processes that promote the
consumption of calorically dense foods, and a pronounced decrease in physical activity levels
(34). The obesity epidemic has progressed more slowly in Western Europe than in the USA(1,
13). However, obesity levels in countries like the UK and Ireland are rapidly approaching
those in the USA (35), as our PGLE estimates also show.

In the CEE countries, the PGLE trends track the evolution of the obesity epidemic in that region (see Supplementary Material, Figure S3). Obesity levels have been higher in CEE than in Western Europe since 1980 (36, 37), which suggests that the epidemic started earlier in CEE. As a result of this earlier onset, the impact of obesity (as expressed in terms of OAMF and PGLE) in the 1970s and 1980s was at times even greater in CEE than in the USA, especially among women. While there are many potential explanations for this early onset of the obesity epidemic in CEE, the available data indicate that the main factors were the relatively high total energy supply and energy intake in CEE in those years (38).

The overall progress of the obesity epidemic was lower in CEE than in Western Europe, and the increase was not constant (1). Indeed, in CEE, increases in obesity prevalence(1, 39), OAMFs, and PGLE stagnated in the 1980-2008 period, and were more pronounced in the 1990s (1, 39). However, as these countries started the study period with higher obesity prevalence levels, these trends resulted in the CEE having higher average PGLE levels than the West. The pattern of stagnation observed in the CEE, could be explained by the decrease in energy supplies at the beginning of the 1990s in CEE (37) resulting from the dramatic economic and political changes in those countries (3, 36, 39) and

Page 17 of 38

1 2

60

BMJ Open

3 4	337	which in turn affected the socio-economic status of the population (SES). Among CEE
5 6 7	338	women, the increase in obesity starting in the 1990s was smaller than it was in the previous
7 8 9	339	period, and was smaller than it was among CEE men. The lower risk of obesity observed
10 11	340	among women than among men with low socioeconomic status (SES) in low-income
12 13 14 15	341	countries (40) may explain this difference.
16 17	342	In Western Europe, a stagnation in PGLE levels was observed among women in
18 19 20	343	Denmark and Switzerland after 1995. This finding seems to be in line with studies reporting a
20 21 22	344	levelling-off of mean BMI since the 1990s (41); and in specific sub-populations, such as
23 24	345	adults with high SES in regions within Switzerland, Italy, France, and Finland
25 26 27	346	(37). Although dietary and physical activity information is spreading equally across
28 29	347	socioeconomic groups, those with higher SES have a greater ability and capacity to adopt a
30 31 32	348	healthier dietary and physical activity pattern (42). In addition, it appears that higher SES
32 33 34	349	women in particular are more health-conscious, have healthier food habits, and are more
35 36	350	prone to follow nutritional recommendations (43) as they are under greater social pressure
37 38 39	351	to be thin (44). Similarly, countries with higher income levels and lower levels of inequality
40 41 42	352	(45), like Switzerland and Denmark, tend to have lower obesity levels, especially among
42 43 44	353	women.
45 46 47	354	When we considered the impact of obesity on life expectancy in the 26 European
48 49	355	countries, we found that without obesity, the increase in e0 between 1975 and 2012 would
50 51 52	356	have been, on average, 0.78 years higher among men and 0.30 years higher among women.
53 54	357	These figures account for approximately 10% of the average change in e0 between 1975 and
55 56 57	358	2012 among men, and 5% among women. It is therefore clear that the impact of obesity on
58 59	359	changes in e0 should not be ignored. Moreover, the impact of obesity on life expectancy

levels and on life expectancy trends is likely to increase, as previous studies have also
suggested (8). There are several indicators pointing in that direction, including evidence that
obesity's impact is already substantially greater in the USA (13% among men and 15%
among women) than elsewhere; obesity prevalence is increasing rapidly in most European
countries (see Supplementary Material, Figure S3); obesity is increasing in severity; and the
duration of obesity is rising in younger generations (8).

Conclusion and implications

367 Obesity was proven to have an impact on both life expectancy levels and trends in 368 Europe. The observed differences in the increase in the impact of obesity across countries 369 and between the sexes reflect differences in the onset and the progression of the obesity 370 epidemic, and can be linked to contextual factors (economic conditions, obesogenic 371 environment, energy supplies), as well as to differences in people's ability and capacity to 372 adopt healthier lifestyles.

It is likely that in the future obesity will have a larger impact on mortality and life expectancy in Europe, as obesity prevalence and obesity-attributable mortality continue to increase in the majority of countries. These trends will have important health, economic, and social implications. Specifically, the increasing prevalence of obesity among European populations, and especially at younger ages, will lead to an increased prevalence of obesity-related disorders, as well as to increases in the mortality burden associated with obesity and in obesity's effects on life expectancy and quality of life. Thus, obesity will constitute an additional burden for societies, economies, and public health. It is therefore crucial that effective public health initiatives are undertaken to tackle the obesity epidemic and its effects on public health. Such initiatives should address the multifactorial and complex

1 2		
2 3 4	383	obesity aetiology; the clear differences between countries and the sexes; as well as the
5 6 7	384	factors underlying these differences, such as contextual factors and differences in
8 9	385	individuals' ability and capacity to adopt healthier lifestyles.
10 11 12 13	386	Funding
14 15 16	387	This work was supported by the Netherlands Organisation for Scientific Research (NWO) in
17 18	388	connection with the research programme "Smoking, alcohol, and obesity, ingredients for
19 20 21	389	improved and robust mortality projections, grant no. 452-13-001; see
22 23	390	www.futuremortality.com.
24 25 26 27	391	
28 29 30	392	Conflict of Interest
31 32 33	393	None declared.
35 36 37	394	
38 39 40 41	395	Author contribution
42 43	396	N.Vidra contributed to the conception and design of the work; to the acquisition, analysis,
44 45 46	397	and interpretation of data for the work; drafted and revised the work critically for important
47 48	398	intellectual content; approved the final version of the work to be published and agrees to be
49 50 51	399	accountable for all aspects of the work in ensuring that questions related to the accuracy or
52 53 54	400	integrity of any part of the work are appropriately investigated and resolved.
55 56 57	401	S. Trias-Llimós contributed to the analysis, and interpretation of data for the work; revised it
58 59 60	402	critically for important intellectual content; approved the final version of the work to be

published and agrees to be accountable for all aspects of the work in ensuring that questions
related to the accuracy or integrity of any part of the work are appropriately investigated
and resolved.

F. Janssen contributed to the conception and design of the work; to the interpretation of
data for the work; revised the work critically for important intellectual content; approved
the final version of the work to be published and agrees to be accountable for all aspects of
the work in ensuring that questions related to the accuracy or integrity of any part of the
work are appropriately investigated and resolved.

411 Data statement

412 Obesity prevalence data can be obtained from NCD Risk Factor Collaboration (NCD-RisC)
413 (www.ncdrisc.org).

414 All-cause mortality and exposure population data can be obtained from the Human

415 Mortality Database (http://www.mortality.org).

416 Acknowledgements

417 The authors are grateful to Professor Majid Ezatti and Dr James Bentham (Faculty of

418 Medicine, School of Public Health at Imperial College London); Dr Gretchen A. Stevens

419 (World Health Organization); and the NCD Risk Factor Collaboration (NCD-RisC)

420 (<u>www.ncdrisc.org</u>) for sharing the obesity data.

421 This work is financed by the Netherlands Organisation for Scientific Research (NWO) as part

422 of the research programme "Smoking, alcohol, and obesity, ingredients for improved and

423 robust mortality projections, grant no. 452-13-001. See www.futuremortality.com

1 2		
3 4 5	424	
6 7 8 9 10 11 12	425	
	426	References
12 13	<i>1</i> 27	1 Finucane MM Stevens GA Cowan MI Danaei G Lin IK Paciorek CL et al National
14 15	128	regional and global trends in body-mass index since 1980: systematic analysis of health
16 17	420	examination surveys and enidemiological studies with 960 country years and 9.1 million
18 19 20	430	participants. Lancet. 2011 Feb 12;377(9765):557-67.
21 22	431	2. Overweight and obesity - BMI statistics [Internet].; 2017 []. Available from:
 23 24 25 26 27 28 29 30 31 32 33 34 	432	http://ec.europa.eu/eurostat/statistics-explained/index.php/Overweight_and_obesity
	433	_BMI_statistics.
	434	3. WHO. The challenge of Obesity in the WHO European Region and the Strategies for
	435	Response: Summary. Copenhagen: World Health Organization, Regional Office for Europe;
	436	2007.
34 35 36	437	4. Seidell JC. Prevalence and time trends of obesity in Europe. Journal of endocrinological
37 38	438	investigation. 2002;25(10):816-22.
39 40	439	5. Eurostat. European Health Interview Survey - Almost 1 adult in 6 in the EU is considered
41 42 43	440	obese - Share of obesity increases with age and decreases with education level. 2016.
44 45	441	6. Field AE, Coakley EH, Must A, Spadano JL, Laird N, Dietz WH, et al. Impact of overweight
46 47	442	on the risk of developing common chronic diseases during a 10-year period. Archives of
48 49 50	443	Internal Medicine. 2001 Jul 9;161(13):1581-6.
51 52	444	7. Global BMI Mortality Collaboration, Di Angelantonio E, Bhupathiraju S, Wormser D, Gao P,
53 54	445	Kaptoge S, et al. Body-mass index and all-cause mortality: individual-participant-data meta-
55 56	446	analysis of 239 prospective studies in four continents. Lancet. 2016 Aug 20;388(10046):776-
57 58 59	447	86.
60		

3 ⊿	448	8. Alley DE, Lloyd J, Shardell M. Can obesity account for cross-national differences in life
5 6 7 8 9	449	expectancy trends? In: Crimmins EM, Preston SH, Cohen B, editors. International differences
	450	in mortality at older ages: Dimensions and sources, panel on understanding divergent trends
	451	in longevity in high-income countries. Washington, DC: National Academies Press; 2011. p.
10 11 12	452	164-92.
13 14	453	9. Olshansky SJ, Passaro DJ, Hershow RC, Layden J, Carnes BA, Brody J, et al. A potential
15 16	454	decline in life expectancy in the United States in the 21st century. The New England Journal
17 18 19	455	of Medicine. 2005 Mar 17;352(11):1138-45.
20	456	10. Preston SH, Stokes A. Contribution of obesity to international differences in life
21 22 23	457	expectancy. American Journal of Public Health. 2011 Nov;101(11):2137-43.
25	458	11. National Research Council. The Role of Obesity. In: Crimmins EM, Preston SH, Cohen B,
26 27	459	editors. Explaining Divergent Levels of Longevity in High-Income Countries. Washington, DC:
28 29 30	460	National Academies Press; 2011. p. 43-55.
31 32	461	12. Leon DA. Trends in European life expectancy: a salutary view. International Journal of
33 34 35	462	Epidemiology. 2011 Apr;40(2):271-7.
36 37	463	13. NCD Risk Factor Collaboration. Trends in adult body-mass index in 200 countries from
38 39	464	1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19.2
40 41 42	465	million participants. Lancet. 2016 Apr 2;387(10026):1377-96.
43	466	14. Lobstein T, Leach RJ. Workpackage 7: Overweight and Obesity Report on data collection
44 45 46	467	for overweight and obesity prevalence and related relative risks. 2010.
47 48	468	15. Allison DB, Fontaine KR, Manson JE, Stevens J, VanItallie TB. Annual deaths attributable
49 50 51	469	to obesity in the United States. JAMA. 1999 Oct 27;282(16):1530-8.
52 53	470	16. Banegas JR, Lopez-Garcia E, Gutierrez-Fisac JL, Guallar-Castillon P, Rodriguez-Artalejo F. A
54 55	471	simple estimate of mortality attributable to excess weight in the European Union. Eur J Clin
56 57 58 59 60	472	Nutr. 2003 Feb;57(2):201-8.

BMJ Open

2		
3	473	17. A Robertso
4 5 6	474	review and im
7 8	475	18. Flegal KM,
9 10 11	476	underweight,
12 13	477	19. Katzmarzy
14 15 16	478	2000. Can J Pւ
10 17 18	479	20. GBD 2017
19 20	480	assessment of
20	481	clusters of risk
22 23	402	
24	482	Global Burden
25 26	/183	21 University
27	+05	Descende (Con
28 29	484	Research (Ger
30 31	185	22 Barhieri M
32	405	Deserves Dref
33 34	486	Resource Prof
35	487	Oct;44(5):154
36 37		
38	488	23. Cleveland
39 40	489	Murray Hill: A
41 42		
42 43	490	24. Rockhill B,
44 45	491	American Jour
46		
47 48	492	25. Preston SH
49		
50 51	493	26. Census dat
52	494	https://ec.eur
53 54		
55 56	495	27. Flegal KM,
50 57	496	quantify the h
58		. ,
59 60		

17. A Robertson, T Lobstein, C Knai. Obesity and socio-economic groups in Europe: Evidence review and implications for action. 2007.

475 18. Flegal KM, Graubard BI, Williamson DF, Gail MH. Excess deaths associated with
476 underweight, overweight, and obesity. JAMA. 2005 Apr 20;293(15):1861-7.

477 19. Katzmarzyk PT, Ardern CI. Overweight and obesity mortality trends in Canada, 1985478 2000. Can J Public Health. 2004 Jan-Feb;95(1):16-20.

479 20. GBD 2017 Risk Factor Collaborators. Global, regional, and national comparative risk
480 assessment of 84 behavioural, environmental and occupational, and metabolic risks or
481 clusters of risks for 195 countries and territories, 1990-2017: a systematic analysis for the
482 Global Burden of Disease Study 2017. Lancet. 2018 Nov 10;392(10159):1923-94.

483 21. University of California, Berkeley (USA), and Max Planck Institute for Demographic
484 Research (Germany). [Internet]. []. Available from: <u>http://www.mortality.org</u>.

485 22. Barbieri M, Wilmoth JR, Shkolnikov VM, Glei D, Jasilionis D, Jdanov D, et al. Data
486 Resource Profile: The Human Mortality Database (HMD). Int J Epidemiol. 2015
487 Oct;44(5):1549-56.

488 23. Cleveland WS, Loader C. Smoothing by local regression: Principles and methods. In:
489 Murray Hill: A&T Bell Laboratorie; 1995.

490 24. Rockhill B, Newman B, Weinberg C. Use and misuse of population attributable fractions.
491 American Journal of Public Health. 1998 Jan;88(1):15-9.

492 25. Preston SH, Heuveline P, Guillot M. Demography. Malden, MA: Blackwell; 2001.

493 26. Census data [Internet].; 2011 []. Available from:

494 <u>https://ec.europa.eu/CensusHub2/query.do?step=selectHyperCube&qhc=false</u>.

495 27. Flegal KM, Panagiotou OA, Graubard BI. Estimating population attributable fractions to
496 quantify the health burden of obesity. Annals of Epidemiology. 2015 Mar;25(3):201-7.

1 2		
3	497	28. Mehta NK, Chang VW. Secular declines in the association between obesity and mortality
5 6 7	498	in the United States. Population and Development Review. 2011;37(3):435-51.
7 8 0	499	29. Yu Y. Reexamining the declining effect of age on mortality differentials associated with
9 10	500	excess body mass: evidence of cohort distortions in the United States. American Journal of
11 12 13	501	Public Health. 2012 May;102(5):915-22.
14 15	502	30. Yu Y. The Changing Body Mass-Mortality Association in the United States: Evidence of
16 17	503	Sex-Specific Cohort Trends from Three National Health and Nutrition Examination Surveys.
18 19 20	504	Biodemography and Social Biology. 2016;62(2):143-63.
21 22	505	31. Vidra N, Bijlsma MJ, Janssen F. Impact of Different Estimation Methods on Obesity-
23 24	506	Attributable Mortality Levels and Trends: The Case of The Netherlands. Int J Environ Res
24 25 26	507	Public Health. 2018 Sep 29;15(10):10.3390/ijerph15102146.
28	508	32. Trias-Llimós S, Kunst AE, Jasilionis D, Janssen F. The contribution of alcohol to the East-
29 30	509	West life expectancy gap in Europe from 1990 onward. International Journal of
31 32 33	510	Epidemiology. 2017;47(3):731-9.
34 35	511	33. Doak CM, Wijnhoven TM, Schokker DF, Visscher TL, Seidell JC. Age standardization in
36 37	512	mapping adult overweight and obesity trends in the WHO European Region. Obesity
38 39 40	513	Reviews. 2012 Feb;13(2):174-91.
41 42	514	34. Cutler DM, Glaeser EL, Shapiro JM. Why Have Americans Become More Obese? The
43 44 45	515	Journal of Economic Perspectives. 2003;17(1):93-118.
46	516	35. Obesity update 2012 [Internet].; 2012 []. Available from:
48 49	517	http://www.oecd.org/els/health-systems/49716427.pdf.
50 51	518	36. Malik VS, Willett WC, Hu FB. Global obesity: trends, risk factors and policy implications.
52 53 54	519	Nature reviews Endocrinology. 2013 Jan;9(1):13-27.
55 56	520	37. Silventoinen K, Sans S, Tolonen H, Monterde D, Kuulasmaa K, Kesteloot H, et al. Trends in
57 58	521	obesity and energy supply in the WHO MONICA Project. International Journal of Obesity and
59 60	522	Related Metabolic Disorders. 2004 May;28(5):710-8.

BMJ Open

2 3	522	38. Zatonski W/A. Bhala N. Changing trends of diseases in Eastern Eurone: closing the gan
4 5	523	Dublic Health 2012 Mar. 126/3).248-52
6 7	524	
8	525	39. Bray GA, Bouchard C. Handbook of Obesity: Etiology and Pathophysiology. second ed.
9 10 11 12	526	Boca Raton: CRC Press Taylor & Francis Group; 2003.
12	527	40. Monteiro CA, Conde WL, Lu B, Popkin BM. Obesity and inequities in health in the
14 15 16	528	developing world. International Journal of Obesity. 2004 Sep;28(9):1181-6.
17 18	529	41. Wilkins E, Wilson L, Wickramasinghe K, Bhatnagar P, Leal J, Luengo-Fernandez R, et al.
19 20 21	530	European Cardiovascular Disease Statistics 2017. Brussels: European Heart Network; 2017.
22 23	531	42. Robertson A, Lobstein T, Knai C. Obesity and socio-economic groups in Europe: Evidence
24 25 26	532	review and implications for action. Brussels: European Commission. 2007.
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	533	43. Fagerli RA, Wandel M. Gender differences in opinions and practices with regard to a
	534	"healthy diet". Appetite. 1999 Apr;32(2):171-90.
	535	44. Psaltopoulou T, Hatzis G, Papageorgiou N, Androulakis E, Briasoulis A, Tousoulis D.
	536	Socioeconomic status and risk factors for cardiovascular disease: Impact of dietary
	537	mediators. Hellenic Journal of Cardiology. 2017 Jan - Feb;58(1):32-42.
	538	45. WHO. Obesity and inequities. Guidance for addressing inequities in overweight and
	539	obesity. Copenhagen: World Health Organization, Regional Office for Europe; 2014.
43 44 45	540	
46 47 48	541	
49 50 51	542	
51 52 53 54 55 56 57 58	543	
59 60		

3 4	544	Figure legends
5 6	545	Figure 1: Age-standardised obesity-attributable mortality fractions in 26 European
7 8	546	countries* (by 5 regions) and USA, 1975-2014, 18-100 years
9 10	547	
11 12	548	* Countries within the same region are presented with the same colour
13 14	549	Central Europe: Czech Republic, Hungary, Poland, Slovakia
15 16	550	Eastern Europe: Belarus, Estonia, Ukraine, Latvia, Lithuania, Russian Federation
17 18	551	Northern Europe: Denmark, Finland, Iceland, Norway, Sweden
19	552	Southern Europe: Italy, Portugal, Spain
20 21	553	Western Europe: Austria, Belgium, France, Ireland, Luxembourg, Netherlands, Switzerland,
22 23	554	United Kingdom
24 25	555	USA: United States of America
26 27	556	
28 29	557	Figure 2: Potential gains in life expectancy at birth (PGLE) if obesity-attributable mortality
30 31	558	was eliminated, in 26 European countries* (differentiating Western and Central Eastern
32	559	Europe) and the USA, 1975-2012, 18-100 years
35 34 35	560	
36 27	561	* Countries within the same region are presented with the same colour
37 38	562	Central Eastern Europe: Belarus, Czech Republic, Estonia, Hungary, Latvia, Lithuania, Poland,
39 40	563	Russian Federation, Slovakia, Ukraine
41 42	564	Western Europe: Austria, Belgium, Denmark, Finland, France, Iceland, Ireland, Italy,
43 44	565	Luxembourg, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, United Kingdom
45 46	566	USA: United States of America
47 48 40	567	
49 50	568	Figure 3: Average annual increase (%) in potential gains in life expectancy due to obesity in
51 52	569	26 European countries and the USA between 1975-2012, in men
53 54	570	
55 56	571	Figure 4: Average annual increase (%) in potential gains in life expectancy due to obesity in
57 58	572	26 European countries and the USA between 1975-2012, in women
59 60	573	

3 4	574			
5 6	575			
7 8 9	576			
 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 	576			
32 33				
34 35 36				
37 38				
39 40 41				
41 42 43				
44 45				
46 47				
48 49				
50 51				

Figure 3: Average annual increase (%) in potential gains in life expectancy due to obesity in 26 European countries and the USA between 1975-2012, in men

Page 31 of 38

Impact of obesity on life expectancy among different European countries, 1975-2012

Nikoletta Vidra¹, Sergi Trias-Llimós¹, Fanny Janssen^{1,2}

¹ Population Research Centre, Faculty of Spatial Sciences, University of Groningen, Landleven

1, 9747 AD Groningen, The Netherlands.

² Netherlands Interdisciplinary Demographic Institute, Lange Houtstraat 19, 2511 CV The

Hague, The Netherlands

Supplementary material

Table S1: Age-and sex-specific RRs of dying from obesity from the meta-review fromLobstein et al. (2010)

Age	RR*				
	Men	Women			
<50	1.55	1.5			
50-59	1.539	1.49			
60-69	1.5225	1.475			
70+	1.495	1.45			

*Reference group for the RRs: normal weight $(18.5 \ge BMI \le 24.9 \text{ kg/m}^2)$

 Table S2: Potential gains in life expectancy at birth (PGLE) if obesity-attributable mortality was eliminated, in 26 European countries (differentiating Western and Central Eastern Europe) and the USA, in 1975 and 2012, 18-100 years

	PGLE 1975		PGLE 2012	
Country	Men	Women	Men	Women
Central Eastern Europe (CEE)				
Belarus	0.41	0.79	1.41	1.19
Czech Republic	0.70	0.98	1.39	1.03
Estonia	0.55	1.00	1.37	1.04
Hungary	0.64	0.86	1.52	1.04
Latvia	0.58	1.00	1.48	1.18
Lithuania	0.54	1.05	1.67	1.31
Poland	0.57	0.93	1.48	1.19
Russian Federation	0.51	1.26	1.53	1.54
Slovakia	0.43	0.62	1.31	0.96
Ukraine	0.47	0.95	1.25	1.16
Average CEE	0.54	0.94	1.44	1.16
Western Europe				
Austria	0.40	0.39	1.03	0.73
Belgium	0.55	0.61	1.17	0.97
Denmark	0.42	0.46	1.04	0.79
France	0.49	0.53	1.18	0.84
Finland	0.45	0.40	1.19	0.90
Ireland	0.38	0.31	1.21	1.01
Iceland	0.49	0.48	0.97	0.80
Italy	0.44	0.60	1.06	0.93
Luxembourg	0.47	0.42	1.19	0.79
Netherlands	0.29	0.39	0.86	0.88
Norway	0.34	0.39	1.07	0.91
Portugal	0.24	0.41	1.01	0.81
Spain	0.42	0.66	1.22	1.05
Sweden	0.42	0.43	0.91	0.76
Switzerland	0.35	0.35	0.93	0.66
United Kingdom	0.53	0.50	1.27	1.09
Average Western Europe	0.41	0.48	1.08	0.86
USA	0.69	0.72	1.73	1.44
Average European countries	0.46	0.64	1.22	0.98
Average all countries	0.47	0.64	1.23	1.00

* Countries within the same region are presented with the same colour

Figure S2: Potential gains in life expectancy at birth (PGLE) if obesity-attributable mortality was eliminated, in 26 European countries*, grouped by 5 regions and USA, 1975-2012, 18-100 years

* Countries within the same region are presented with the same colour

Table S3: Age-standardised obesity prevalence and 95% confidence intervals, in 26European countries (differentiating Western and Central Eastern Europe) and USA, 18-100years in 2012.

Age-standardised (stand.) obesity prevalence (%)

Country	Age- stand.	95% confidence intervals	Age- stand.	95% confidence intervals
	Men		Women	
Central Eastern Europe				
Belarus	20.4	13.6; 28.5	25.4	17.7; 34.1
Czech Republic	25.6	18.9; 33.4	25.2	18.3; 33.0
Estonia	21.0	16.0; 26.8	22.7	17.4; 28.8
Hungary	24.6	17.9;32.0	22.1	15.4; 29.8
Latvia	22.2	15.2; 30.2	25.8	18.4; 34.5
Lithuania	23.8	16.9; 31.8	28.7	21.2; 37.1
Poland	23.6	18.0; 29.7	25.7	19.5; 32.5
Russian Federation	20.4	14.8; 26.8	29.1	22.6; 36.2
Slovakia	22.2	15.7; 29.6	22.2	15.8; 29.6
Ukraine	17.7	11.2; 25.7	23.9	16.3; 32.5
Western Europe				
Austria	21.1	14.7; 28.2	19.1	13.4; 25.5
Belgium	22.9	17.3; 29.1	22.7	17.1; 28.9
Denmark	21.3	15.5; 27.9	18.4	13.1; 24.5
France	22.6	16.3; 29.6	23.1	16.9; 29.9
Finland	22.3	17.1; 28.2	21.7	16.7; 27.3
Ireland	26.2	19.4; 33.8	26.0	19.5; 33.2
Iceland	22.3	15.6; 29.8	21.0	14.7; 28.3
Italy	22.3	17.0; 28.1	23.5	18.1; 29.6
Luxembourg	24.9	17.6; 32.9	20.7	14.3; 28.0
Netherlands	18.9	13.8; 24.5	20.3	15.3; 25.8
Norway	24.5	18.5; 31.2	23.7	18.0; 30.2
Portugal	19.6	13.8; 26.4	21.1	15.0; 28.1
Spain	24.2	18.5; 30.5	26.4	20.3; 32.8
Sweden	21.6	16.3; 27.4	19.8	14.7; 25.6
Switzerland	22.0	16.3; 28.3	18.6	13.1; 24.8
United Kingdom	26.5	22.3; 31.2	29.1	24.8; 33.6
USA	33.4	27.5; 39.5	35.5	29.7; 41.5

Table S4: Potential gains in life expectancy at age 50 (PGLE) if obesity-attributable mortality was eliminated, own estimates and those by Preston et al.2011, in the same countries studied, in 2006

Country	/	PGLE e50 2006, own estimates	PGLE e50 2006, Preston's estimates	Difference
Men				
Austria		0.81	1.00	-0.19
Belgium		0.95	0.98	-0.03
Czech R	epublic	1.14	1.34	-0.20
Denmar	k	0.88	0.82	0.06
France		0.94	0.99	-0.05
Italy		0.88	0.90	-0.02
Netherla	ands	0.69	0.73	-0.04
Poland		1.14	1.37	-0.23
Spain		1.02	1.15	-0.13
Sweden		0.75	0.72	0.03
Switzerl	and	0.77	0.79	-0.02
United k	Kingdom	0.99	1.34	-0.35
USA		1.29	1.85	-0.56
Women				
Austria		0.62	0.71	-0.09
Belgium		0.86	0.73	0.13
Czech Ro	epublic	0.87	1.01	-0.14
Denmar	k	0.71	0.62	0.09
France		0.72	0.52	0.2
Italy		0.84	0.57	0.27
Netherla	ands	0.76	0.69	0.07
Poland		1.08	1.19	-0.11
Spain		0.95	0.87	0.08
Sweden		0.67	0.63	0.04
Switzerl	and	0.59	0.50	0.09
United k	Kingdom	0.94	1.23	-0.29
USA		1.18	1.28	-0.10

Figure S3: Age-standardised obesity prevalence in 26 European countries*, grouped by 5 regions and USA, 1975-2012, 18-100 years

* Countries within the same region are presented with the same colour