Automated Sequence Design of 3D Polyhedral Wireframe DNA Origami with Honeycomb Edges

Supporting Information

Hyungmin Jun,^{†,‡} Tyson R. Shepherd,^{†,‡} Kaiming Zhang,^{†,§} William P. Bricker,[‡] Shanshan Li,[§] Wah Chiu,^{§,I} Mark Bathe^{*,‡}

[‡]Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

[§]Department of Bioengineering, Microbiology and Immunology, and James H. Clark Center, Stanford University, Stanford, CA 94305, USA

SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025 USA

S1 Design algorithm

S1.1 Top-down sequence design software

The fully automatic inverse design procedure TALOS (<u>Three-dimensional</u>, <u>Algorithmically-</u> generated <u>Library of DNA Origami Shapes</u>) is available for use as open source software (<u>http://github.com/lcbb/talos</u>) and online at <u>http://talos-dna-origami.org</u>. Details for compiling the source code can be found in the documentation provided with the software.

S1.2 User-specified geometric input

The goal of this work is to design and synthesize wireframe polyhedral scaffolded DNA origami structures with edges composed of six-helix bundles (6HB),¹ which is a molecular complex consisting of a cyclic configuration of six duplexes on a honeycomb lattice covalently attached using antiparallel double crossovers. Given a target 3D polyhedral structure of specified size and geometry (Figure S19), the algorithm will route a single-stranded scaffold throughout the entire geometry with 6HB edges and generate the required staple strands needed to experimentally fold the structure (Figures S20-S27 and Tables S8-S16). 3D geometries are specified using a closed surface that is discretized using a polyhedral mesh (Figure S1a). In order to specify the geometry for scaffold routing, the spatial coordinates of all vertices and faces to which these vertices belong must be provided (Figure S1b). These may be provided manually or through an ASCII file format that defines the polygonal geometry, such as the Polygon File Format (PLY), STereoLithography (STL), or Virtual Reality Modeling Language (WRL). As explained in more detail below, any closed, 3D surface geometry can serve as input to the algorithm.

S1.3 Generating 6HB duplex segments from the wireframe model

To generate six line segments per each wireframe edge, representative of the six duplexes in the 6HB, each wireframe edge is detached from the wireframe vertices and its length is shortened (Figure S1c) with the offset-distance (between the vertex and the end point of the adjusted line segment) calculated with respect to the minimum angle between any two adjacent edges at a vertex and according to that vertex's degree to eliminate steric hindrance in the final structure. Then, at the center of every separated line, three basis vectors t_1 - t_2 - t_3 of the local coordinate system are introduced to determine the orientation of the 6HB along the wireframe edge. The local vector t_1 (red arrow in Figure S1) is defined by position vectors of two endpoints of each line segment. The direction of the vector t_3 (olive arrow in Figure S1) is determined by the centers of the two intersecting faces of the wireframe edge and oriented such that the vector starts in the face with the direction of the curl of the face oriented in the same direction as t_1 and ends in the face with the direction of the curl of the face oriented in the opposite direction as t_1 (Figure S1d). The local vector t_2 (blue arrow) is obtained by the cross product of two vectors t_3 and t_1 .

Based on the t_3-t_2 plane, the cross-section of a honeycomb lattice shape has six circles representative of the six DNA duplexes and each circle has a diameter of 2.25 nm, as assumed previously.^{2–4} The integer number (hereafter called a section ID) on each circle is assigned to model the asymmetric ends of DNA strands: even section IDs have 5'-terminal phosphate groups and odd section IDs have 3'-terminal hydroxyl groups orientations of the scaffold strand.

Then, according to the section ID, each separated line is replaced (Figure S1e) with six scaffold segments (blue line) with endpoints. For even number circles, the scaffold segment points from 5' to 3' in the same direction to local vector \mathbf{t}_1 . For odd-numbered circles, the scaffold segment points from 5' to 3' in the opposite direction of \mathbf{t}_1 . The desired minimum edge length is assigned to the shortened line and the other lines are subsequently scaled likewise. The minimum edge length should be a multiple of 21 base pairs (bp) and greater than or equal to 42 bp to have at least two double-crossovers per every edge.

To avoid clashing between neighboring duplexes, which occurs depending on the dihedral angle between two adjacent faces of the structure, two vertex designs are suggested; the inner connection layer (Figure S3a) in which the origin of two local vectors is located at the center of two inner circles (hereafter called reference circles) and the middle connection layer (Figure S3f) in which two middle circles are used as reference circles.

S1.4 Building the loop-crossover structure and two vertex designs

The next step is to generate the loop-crossover structure as an intermediate process of the scaffold routing. The endpoints of multiple scaffold segments are joined such that every segment becomes part of a loop (Figure S1f). In the flat vertex (FV) case, the endpoint of the scaffold segment located on the reference circle is connected (red line) to the closest endpoint of the neighboring scaffold segment from reference circle by crossing the vertex. Four remaining endpoints are interconnected (blue line) with each other according to the following rule; two endpoints are diagonally connected (Figure S4a) in the inner connection layer and horizontally connected (Figure S4b) in the middle connection layer. Thus, the initial geometry consisting of N_F faces and N_E edges introduce $N_F+2 \times N_E$ closed loops, where the N_F loops are generated by the connection through the red line

shown in Figure S4 and the $2 \times N_E$ loops are generated by the connection of the endpoints by the blue line shown in Figure S4. In the mitered vertex (MV) case, all scaffold segments are covalently connected to segments on the adjacent edge across the vertex, with the algorithm computing the precise length of dsDNA required to extend the duplex without inducing steric hindrance (Figure S2a,b). Thus, joining all scaffold segments with neighboring segments across the vertex results in two more scaffold crossings per 6HB wireframe edge than the FV case. In the MV case, $4N_F$ closed loops are generated.

To find all scaffold double crossovers between every two neighboring loops, a DNA model to define the position of each nucleotide is introduced. First, the length of scaffold segments that are the part of the scaffold loop is discretized as a multiple of base pair lengths, 0.34 nm that is the length of base-pair rise in the double-helical B-form DNA model. By adopting the conventions of caDNAno, for the inner connection layer, the initial angles pointing the nucleotide of the scaffold (block ID = 0, where the block ID is the base pair position along the length of the 6HB) are set as 270° and 90° (Figure S3b) for the even and odd section IDs, respectively. For the middle connection layer, the initial angles are set as 30° and 210° (Figure S3g) for the even and odd section IDs, respectively. Given the helical periodicity with 21 bp every two turns, there are two possible starting blocks: the prior and posterior block, where the directions of two nucleotides from the reference circles are opposite to each other and nearly the same to the local vector t_3 . The prior and posterior block are located in the block ID of 3 and 1 for the inner connection layer (Figure S3c), 1 and 11 for the middle connection layer (Figure S3h), respectively, where the nucleotide at the end of the scaffold segment can be connected without any unpaired nucleotides one of the ends of the scaffold if the scaffold segment length is a multiple of 10.5 bp.

Possible staple crossovers are restricted to intersections between the block and every third layer of a stack of planes orthogonal to the helical axes, spaced apart in intervals of 7 bp or two-thirds of a turn⁵. Then, possible scaffold crossovers (red line) are permitted (Figure S3d,i) at positions displaced upstream or downstream of the corresponding possible staple crossover points by 5 bp or a half-turn. For the FV design, because scaffold segments that are not located in reference circle are connected each other without crossing the vertex, all segments are adjusted to where the next single crossover position exists. For the inner connection layer, discretized segments originated from a section ID of 2 or 3 are moved 3 bp on the 3'-end direction and those from a section ID of

4 or 5 are moved 1 bp on the direction of the 5'-end (Figure S3c,d), which is to connect diagonally each other at the permitted position of the scaffold single crossover. For the middle connection layer, all discretized segments except for those from a section ID of 3 are shifted by 1 bp on the 3'-end direction (Figure S3h,i), resulting in each pair of duplexes to be connection through allowable crossover locations based on the dsDNA helix. For the MV design, the connections between two scaffold segments crossing the vertex are accomplished by introducing unpaired nucleotides of the scaffold strand at vertices in order to accommodate 5'- and 3'-end misalignment. The number of unpaired nucleotides is calculated by dividing the distance between two nucleotides by the ssDNA length which is used as the value of 0.42nm to release the tensional stresses for their connections.⁶

To build the loop-crossover structures, possible scaffold crossovers that are 7 bp away from both ends of the discretized segments (faint red line in Figure S3) and the double-crossovers (faint red line in Figure S3) connecting its loop are eliminated (Figure S3d,i). Then, only one doublecrossovers (yellow and red line lines in Figure S3) per section 0 to 5 in a zig-zag pattern with respect to the center edge are selected (Figure S3e,j), creating the loop-crossover structure. The scaffold loops with initial scaffold double-crossovers (Figure S1g and Figure S2c) can be projected in 2D as a Schlegel diagram (Figure S1h and Figure S2e), in which N_F +2× N_E -1 (for the FV) or $4N_F$ -1 (for the MV) double-crossovers among them are selected through the following scaffold route process.

The use of different starting blocks results in the different patterns of scaffold and staple crossovers, which affect the processes, especially, final staple route and sequence design. We adapted and used the posterior block as the starting block in both the inner and middle connection layers since it has more the 14-nt seed dsDNA domains whose presence enhances folding yield (Tables S1 and S2).^{7,8}

S1.5 Generating the spanning tree of the dual graph

In routing the single-stranded scaffold through the entire DNA origami structure, the first requirement is to ensure an Eulerian circuit exists.⁹ An Eulerian circuit, which is stricter than an Eulerian path, is required because the ends of the scaffold should be adjacent to create a single

scaffold nick. An Eulerian circuit is guaranteed when the degree of every vertex is even. This can be achieved by using an even number of duplexes per edge in the structure; in this work, we have chosen to use six duplexes per edge, each a 6HB. Because the degree of every corner connected by the crossover and loop always remains two (even), it becomes an Eulerian circuit by choosing the proper number of double-crossovers of the loop-crossover structure. Thus, the scaffold routing problem can be solved by computing a spanning tree of the dual graph of the loop-crossover structure, which determines the proper number of double-crossovers without any cycle that is a path of edges and nodes wherein a node is reachable from itself.

For the FV design, N_f+2N_e closed loops should be connected to each other with N_f+2N_e -1 doublecrossovers, implying that the edge is constructed by six duplexes with two or three scaffold doublecrossovers which are determined by the spanning tree calculation. In order to consistently select two or three double-crossovers for each edge, the weight factor is assigned (Figure S4a for the inner connection layer and Figure S4b for the middle connection layer) to each double-crossover with the value of 1 for two mandatory double-crossovers (red), the value of 2 for the occasional double-crossover (orange), and the value of 3 for the unwanted double-crossover. Despite having twelve ways to impose the weight factor of the double-crossover connecting two adjacent loops (Figure S4), we chose to adapt pattern #1 for the inner connection layer and pattern #13 for the middle connection layer since the final staples with this pattern include more 14-nt seed dsDNA domains (Tables S1 and S2). These patterns are also applied in the MV design.

Then, the dual graph of the loop-crossover structure is generated (Figure S1i and Figure S2e), in which each loop becomes represented by a node (black circle in Figure S1 and Figure S2) and each double-crossover becomes represented as an edge (red line in Figure S1 and Figure S2) joining the associated nodes and transferring the assigned weight factor of the double-crossover. Given the dual graph network, Prim's algorithm can be used to find the minimum weight spanning tree (Figure S1j, Figure S2f, Figure S20 and Figure S21) in which $N_F+2 \times N_E-1$ edges or $4N_F-1$ edges (cyan line in Figure S1 and Figure S2) are determined with the priority of small weight factor of the edge. The edges that are members of the spanning tree corresponding to the subset of double-crossovers required to complete the Eulerian circuit.

S1.6 Inverting the spanning tree and completing scaffold route

Once the spanning tree of the dual graph network has been determined, the graph is inverted back to the loop-crossover structure only using members of the spanning tree. By choosing a particular subset of double-crossovers in the loop-crossover structure, these discrete loops can be connected to form one continuous circular scaffold through the entire structure. The direction of the circular scaffold is set to have the same direction defined by the corresponding section ID, and the scaffold nick position is chosen to be placed on the duplex far from crossovers and staple nicks, which reveals the final scaffold routing (Figures S1k, Figure S1i, Figure S2g, Figure S2h, Figure S22 and Figure S23).

S1.7 Adding staple strands and sequences

In this step, the staple strands wind in an antiparallel direction around the scaffold can assemble B-form double helices, and the staple sequences can be computed based on complementary Watson-Crick base pairing with the scaffold sequence. First, initial staple paths complementary to the scaffold are assigned (Figure S5a-c) by placing and connecting all permitted staple doublecrossovers except for those (dotted orange line) that would be not 5 bp away from a scaffold crossover between the same two helices and not 7 bp away from the both ends of discretized lines in the base pair model. The staples crossing the vertex are connected with a certain number of nucleotides with poly-T bulges where the staple paths do not bind to the scaffold, which serves as to prevent blunt-end stacking. Because a phosphate-phosphate distance of roughly 0.55 nm is known as B-form DNA^{10,11}, the number of unpaired nucleotides in the poly-T bulge is calculated by dividing the spatial distance between two nucleotides to be joined by 0.42 nm (a value slightly smaller than 0.55 nm is used to reduce the tension between the connection).⁶ Second, the initial staple paths are linearized by placing a nick in the staple at the center of the longest dsDNA domain (green circle of the initial staple #1 shown in Figure S5c) and where it is non-coincident with staple and scaffold crossovers. Lastly, the non-circular staple paths are broken into the user-define staple length (20 to 60 nucleotides long as a default, resulting in usually a mean length of about 40 nucleotides). With design criteria of including at least one 14-nt seed domain per each staple, we suggested and investigated two alternative staple-break rules, one to maximize staple length

(hereafter "maximized length") and the other to maximize the number of seed domains (hereafter "maximized seed)" (Figure S5d and Figure S6).

Before applying the "maximized length" staple-break rule, the algorithm first determines the size of dsDNA domains of each initial staple from the 5'-end to 3'-end. From the 5', the algorithm moves in the 3' direction to the next dsDNA domain until the distance traveled exceeds the user-defined maximum staple length (60 nt as a default). The algorithm then moves back to the center of the dsDNA domain in the 3' direction until the domain located is longer than or equal to 14-bp length. If the above conditions are satisfied, the backbone nick is placed at the center of the domain to divide the staple into two. The above steps are repeated until the length of the remaining staple is smaller than the user-defined maximum staple length (see Figures S5-S7) The algorithm does not consider the inclusion of the 14-nt seed domain for the staple when breaking it but guarantees the 7 bp length as the minimum length of the dsDNA domain for the segmented staple (Figures S8-S18, Table S3 and Table S4).

For the "maximized seed" staple-break rule, the algorithm is based on the previously suggested staple-break rule^{7,8} where backbone nicks are never placed in dsDNA domain longer than 7 bp and nicks are positioned 3 or 4 bp away from crossovers in the 7-bp domain. To apply the above staple-break rule to our staple route design procedure automatically, the searching bar that is initially placed at the 5' end and scans in the 3' direction to the next dsDNA domain until finding the domain that is longer than or equal to the 14-bp length and the distance traveled exceeds the user-defined minimum staple length (20 nt as a default). Then the backbone nick is placed at the center position of the next dsDNA domain regardless its size (Figures S5-S7). In the above rule, the initial staples are broken by considering the presence of the 14-nt seed domain of the staple to be cut, so it is most likely to contain more than one 14-nt seed domain per each staple. However, each broken staple has the potential to include the dsDNA domains with the small size since it does not consider the size of the domain to be broken.

Note that each staple broken by the "maximized length" rule contains the 14-nt seed domain with more than 80% of total staples, which is a slight decrease in percentage than when applying the "maximized seed" rule (Figure S13, Table S3 and Table S4). However, since it does not contain

the weak, small-size domain, we adapted and used the "maximized length" staple-break rule in the staple design process.

With introducing weight factors to choose two or three scaffold crossovers in a consistent way, for the FV design, each edge is rendered (Figure S1m and Figures S8-S12) with one of two possible scaffold and staple routing patterns for every structure. After all staples are segmented (Figure S1m, Figure S2i and Figures S24-S27), each staple is denoted by a vector of numbers, with each value corresponding to the scaffold nucleotide to which it is base-paired. The input or generated scaffold sequence is then used to match base identities (A, T, G, or C) to the corresponding scaffold number assuming Watson-Crick base-pairing. If no sequence is provided, a segment of M13mp18 is used by default if the required scaffold length is less than or equal to 7,249-nt, and a sequence is randomly generated of the required length is greater. Finally, this list of staple sequences is output for synthesis (Tables S8-S16).

S1.8 Predicting atomic-level 3D structure and editing staples

Each base pair is modeled with 0.34 nm axial rise per bp, whose center and three orientations are defined using 3DNA convention.⁴ The three orientation vectors point to the major groove, the preferred nucleotide, and along the duplex axis towards the 3' direction of the strand with the preferred nucleotide, respectively. Based on the position and orientation vectors, the atomic-level 3D structure is obtained by four standard reference atomic structures of base pairs A-T, T-A, G-C, and C-G. Each standard reference atomic structure consists of two phosphates, two deoxyriboses, and two paired bases. Thus, an all-atom model is calculated by placing the standard reference atomic structures, using rigid-body translation and rotation, to the positions and orientations of the base pairs (Figures S28-S36).

With the *JSON* file as one of the outputs from the algorithm, the user can edit the staple crossover positions and sequences using the caDNAno software.⁵ We provide the guide model which can be loaded in USCF Chimera,¹² which gives the information which edges of the target structure is associated with the which cross-sections of caDNAno representation (Figures S37-S45).

In conclusion, we have demonstrated here an algorithm that automatically generates scaffold routing and staple sequence design of 6HB DNA-NPs from a polyhedral mesh. The algorithm provides advantageous features such as two alternative vertex designs, editing capability for the staple routing and sequences, no use of unpaired scaffold nucleotides for the FV design, at least one continuous dsDNA domain of 14 nt per staple if possible, no less than 4 nt for any dsDNA domains, and vertex staples (connecting two neighboring edges) containing unpaired stretches with poly-T bulges whose length depend on the distance between two nucleotides to be joined. In addition, the automated sequence design includes the following constraints such as edge lengths as multiples of 21 bp, at least two scaffold double-crossovers per edge.

S2 Experimental Methods

S2.1 Assembly of 6HB DNA-NPs

To maximize DNA-NP yield, we varied several conditions important for assembly, including staple-to-scaffold ratio, magnesium and sodium chloride concentration, and time of folding. Folding conditions for the DNA-NPs were tested on tetrahedra of 42-bp and 63-bp edge lengths and an octahedron of 84-bp edge length. To test salt conditions, solutions containing 10 nM fulllength M13 scaffold and 400 nM staples in 1× TAE were combined with 0, 2.5, 5, 7.5, 10, 12, or 14 mM MgCl2 or 0, 25, 50, 100, 150, 200, or 500 mM NaCl and brought up to 50 µL (Figure S46). Structures were annealed in a T100 thermocycler (Bio-Rad) over a 24-hour annealing time (5 min at 95°C, 5 min at 90°C, 5 min at each 0.5°C temperature interval between 85°C and 70°C, and 13.75 min at each 0.5°C intervals between 70°C and 29°C, and 10 min at each 1°C between 29°C and 25°C). To test the staple ratio, in a solution containing 10 nM full-length M13 scaffold in 1× TAE with 100 mM NaCl and 14 mM MgCl2, staples were added to final concentrations of 50, 100, 200, 400, 600, and 800 nM individually final concentration, and brought up to 50 µL. Annealing was done as above. To test optimal annealing time, with 50 μ L solutions containing 1× TAE with 100 mM NaCl and 14 mM MgCl2, 10 nM M13 scaffold and 400 nM staples, annealing times of 12, 18, 24, and 48 hours were tested by increasing the length of time for each 0.5°C step (7.5 min/°C, 11 min/°C, 15 min/°C, and 35 min/°C).

In all cases, folding was initially checked by agarose gel electrophoretic mobility shift assays (EMSA). 20 μ L of folded sample was combined with 4 μ L 6× loading buffer (NEB), and loaded to a 2% agarose gel with 1× TAE and 12.5 mM MgCl₂ and 1× SybrSafe (ThermoFisher). Each gel was run at 90V for 5 minutes followed by 65V for 2-4 hours in 1× TAE with 12.5 mM MgCl₂. Gels were run in an ice-chilled water bath. Gels were then visualized under blue light (Figure S48).

Folded DNA-NPs used for subsequent structural studies were folded in a solution of 20 nM scaffold, 600 nM staples, $1 \times TAE$, 100 mM NaCl, and 14 mM MgCl₂ and annealed over the course of 24 hours.

Folded DNA-NPs were purified from staples and folding buffer by the use of buffer exchange via spin filter concentrator columns with size 100 kDa MWCO first cleaned with nuclease free water. DNA-NPs were exchanged into buffer composed of 30 mM Tris-HCl pH 8.1 with 100 mM NaCl and 12 mM MgCl₂ by centrifugation at 3000 RPMs for 40 minutes at 20°C and diluted approximately 10-fold and re-concentrated a total of 6 times. PEG-8000 precipitation and size exclusion spin purification (Illustra S300, GE) was also successfully used to purify the folded DNA-NPs.

Dynamic light scattering (DLS) was used to assay the monodispersity of the folded DNA-NPs. A Wyatt DynaPro NanoStar M3300 was used to collect light-scattering data (Figure S49a,b). DNA-NPs were folded and purified as described. Additionally, purified particle solution was filtered by a 0.22µm to remove any large aggregates. DNA-NP concentration was determined by a ThermoFisher NanoDrop 2000, and a final concentration of 10 nM was used to collect the light scattering data. Data was collected at multiple temperatures to assay global particle thermal stability. A Malvern NanoSight NS300 was additionally used to collect light-scattering data on the folded nanoparticles. Folded, purified, and filtered MV tetrahedron of 84-bp edge length and MV octahedron of 84-bp edge length DNA-NPs were diluted to approximately 10 pM concentration and individual particle tracking was used to obtain particle sizes (Figure S49c,d). Movie captures of the light scattering from individual particles are shown in Movies S1 and S2.

Melting curves were generated to assay the thermal stability of the folded DNA-NPs. 20 µl of 1 or 5 nM folded and purified DNA-NPs in 30 mM Tris-HCl pH 8.1 with 100 mM NaCl and 12 mM MgCl₂ were incubated with 1× SybrGreen I and a QuantStudio 6 (ThermoFisher) was used to

assay thermal stability by observing fluorescence as temperature increased stepwise from 25-90°C in 5-minute increments per 1°C (Figure S50).

S2.2 Transmission electron microscopy (TEM)

The final DNA-NP concentration was approximately 10 nM. Samples were floated to the formvar surface for 1 minute, blotted with ashless Whatman paper #45, stained by 2% uranyl formate with 50mM NaOH for 30 seconds, and blotted dry. Negative stained TEM images were captured using a FEI Tecnai Spirit Transmission Electron Microscope set to 120kV potential (Figure 2g, Figures S51–S54, Figure S58 and Figure S59).

S2.3 Cryogenic Electron Microscopy (cryo-EM) and Single particle images processing

Three microliter of the freshly concentrated DNA nanostructure solution was applied onto the glow-discharged 200-mesh Quantifoil 2/1 grid, blotted for three secs and rapidly frozen in liquid ethane using a Vitrobot Mark IV (FEI). All grids were screened on a JEM2200FS cryo-electron microscope (JEOL) or a Talos Arctica cryo-electron microscope (FEI) operated at 200 kV. And then imaged in the JEOL 3200 cryo-electron microscope (JEOL) or in a Titan Krios cryo-electron microscope (FEI). Micrographs were recorded with a Gatan K2 Summit direct electron detector in counting mode, where each image is composed of 32 individual frames with an exposure time of 8 s and a total dose ~40 electrons per Å². A total of 96 images for the FV tetrahedron of 84-bp edge length, 119 images for the MV tetrahedron of 84-bp edge length, 724 images for the FV octahedron of 84-bp edge length, 657 images for the MV octahedron of 84-bp edge length and 662 images for the MV tetrahedron of 63-bp edge length were collected (Figures S55-S57 and Figures S60–S64) with a defocus range of \sim 1.5–4 µm. All the images were motion-corrected using MotionCor2.¹³ Single-particle image processing and 3D reconstruction was performed (Figures S65-S70 and Movies S3-S6) using the image processing software package EMAN2.14 All particles were picked manually by e2boxer.pv in EMAN2. The initial models generated by TALOS software were low pass filtered to 60Å to avoid model bias. The following steps were performed as previously described.¹⁵ A total of 1,669 particles for the FV tetrahedron of 84-bp edge length,

1,092 particles for the MV tetrahedron of 84-bp edge length, 3,308 particles for the FV octahedron of 84-bp edge length, 5,705 particles for the MV octahedron of 84-bp edge length and 2,511 particles for the MV tetrahedron of 63-bp edge length were used for final refinement, applying tetrahedral, tetrahedral, octahedral, octahedral and tetrahedral symmetries, respectively. Resolutions for the final maps were estimated using the 0.143 criterion of the Fourier shell correlation (FSC) curve without any mask. A Gaussian low-pass filter was applied to the final 3D maps displayed in the UCSF Chimera software package.¹² Correlation of each map with its corresponding atomic model is calculated by the UCSF Chimera fitmap function.

S3 Edge and vertex analysis of 6HB and DX MD trajectories

A geometric approach for analyzing each frame in the MD trajectory of a DX DNA-NP was extended to 6HB DNA-NPs here.¹⁶ In this approach, the 6HB edges are split into sets of two duplexes which are connected at the inner (FV and MV) and outer (MV) vertices. At each inner and outer vertex, two *M*-bp DNA duplexes of each edge are connected with a 1-bp offset along the edge direction, resulting in a protruding base pair at each end of the edge. The protruding base pairs are excluded from downstream analysis, and the remaining base pairs of the two-duplex edge are indexed as $bp_{1,1}$, $bp_{1,2}$, ..., $bp_{1,M-1}$, $bp_{2,1}$, $bp_{2,2}$, ..., $bp_{2,M-1}$. The Python package ProDy¹⁷ then computes the geometric center of atoms in each base pair, denoted $\mathbf{x}_{1,1}, \ldots, \mathbf{x}_{2,M-1}$, and the geometric center of atoms in each pair of base pairs $(bp_{1,i}, bp_{2,i})$, i = 1, 2, ..., M - 1, denoted c_i . A right-handed orthonormal basis $(\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3)$ is defined using the three principal axes of the point cloud $\{\mathbf{x}_{1,1}, \dots, \mathbf{x}_{1,M-1}, \mathbf{x}_{2,1}, \dots, \mathbf{x}_{2,M-1}\}$, in which \mathbf{b}_1 is coincident with the first principal axis and points from \mathbf{c}_1 to \mathbf{c}_{M-1} , \mathbf{b}_2 is coincident with the second principal axis and points from $\mathbf{b}_{P_{1,1}}$ to $bp_{2,1}$, and b_3 is coincident with the third principal axis and points outwards of the NP. Next, a L-bp-long region at the starting end of the edge is selected to define a vector \mathbf{a}_1 , which is coincident with the first principal axis of the point clouds $\{c_1, ..., c_L\}$, and points from c_1 to c_L . The bow- and twist-angles associated with the left half-edge are computed by projecting \mathbf{a}_1 onto the \mathbf{b}_3 - \mathbf{b}_1 plane and the \mathbf{b}_1 - \mathbf{b}_2 plane as $\mathbf{a}_{1,\text{ bow}}$ and $\mathbf{a}_{1,\text{ twist}}$, respectively. The bow-angle is defined as the righthanded rotation angle from $\mathbf{a}_{1,\text{ bow}}$ to \mathbf{b}_1 about \mathbf{b}_2 , and the twist-angle as the right-handed rotation angle from \mathbf{b}_1 to $\mathbf{a}_{1, \text{ twist}}$ about \mathbf{b}_3 . This geometric approach allows calculation of two properties of an *N*-arm vertex in each frame: average bow-angle, Ψ , and average twist-angle, Θ . Finally, the bow- and twist-angles are averaged over the *N* half-edges that are directly connected to the vertex. Edge and vertex properties are shown in detail for the FV 6HB tetrahedron (Figure S72), the MV 6HB tetrahedron (Figure S73 and Figure S74), and the DX tetrahedron (Figure S75), all with 42-bp edge lengths and simulated using all-atom MD (Movies S7-S9).

Reference

- (1) Mathieu, F.; Liao, S.; Kopatsch, J.; Wang, T.; Mao, C.; Seeman, N. C. Six-Helix Bundles Designed from DNA. *Nano Lett.* **2005**, *5*, 661–665.
- (2) Dietz, H.; Douglas, S. M.; Shih, W. M. Folding DNA into Twisted and Curved Nanoscale Shapes. *Science* **2009**, *325*, 725–730.
- (3) Castro, C. E.; Kilchherr, F.; Kim, D.-N.; Shiao, E. L.; Wauer, T.; Wortmann, P.; Bathe, M.; Dietz, H. A Primer to Scaffolded DNA Origami. *Nat. Methods* **2011**, *8*, 221–229.
- (4) Pan, K.; Kim, D.-N.; Zhang, F.; Adendorff, M. R.; Yan, H.; Bathe, M. Lattice-Free Prediction of Three-Dimensional Structure of Programmed DNA Assemblies. *Nat. Commun.* **2014**, *5*, 5578.
- (5) Douglas, S. M.; Marblestone, A. H.; Teerapittayanon, S.; Vazquez, A.; Church, G. M.; Shih, W. M. Rapid Prototyping of 3D DNA-Origami Shapes with CaDNAno. *Nucleic Acids Res.* 2009, 37, 5001– 5006.
- (6) Jun, H.; Zhang, F.; Shepherd, T.; Ratanalert, S.; Qi, X.; Yan, H.; Bathe, M. Autonomously Designed Free-Form 2D DNA Origami. *Sci. Adv.* **2019**, *5*, eaav0655.
- (7) Ke, Y.; Bellot, G.; Voigt, N. V.; Fradkov, E.; Shih, W. M. Two Design Strategies for Enhancement of Multilayer–DNA-Origami Folding: Underwinding for Specific Intercalator Rescue and Staple-Break Positioning. *Chem. Sci.* 2012, *3*, 2587–2597.
- (8) Martin, T. G.; Dietz, H. Magnesium-Free Self-Assembly of Multi-Layer DNA Objects. *Nat. Commun.* **2012**, *3*, 1103.
- (9) Ellis-Monaghan, J. A.; McDowell, A.; Moffatt, I.; Pangborn, G. DNA Origami and the Complexity of Eulerian Circuits with Turning Costs. *Nat. Comput.* **2015**, *14*, 491–503.
- (10) Rich, A. The Rise of Single-Molecule DNA Biochemistry. *Proc. Natl. Acad. Sci.* **1998**, *95*, 13999–14000.
- (11) Murphy, M. C.; Rasnik, I.; Cheng, W.; Lohman, T. M.; Ha, T. Probing Single-Stranded DNA Conformational Flexibility Using Fluorescence Spectroscopy. *Biophys. J.* **2004**, *86*, 2530–2537.
- (12) Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E. UCSF Chimera—A Visualization System for Exploratory Research and Analysis. *J. Comput. Chem.* 2004, 25, 1605–1612.
- (13) Zheng, S. Q.; Palovcak, E.; Armache, J.-P.; Verba, K. A.; Cheng, Y.; Agard, D. A. MotionCor2: Anisotropic Correction of Beam-Induced Motion for Improved Cryo-Electron Microscopy. *Nat. Methods* 2017, *14*, 331–332.
- (14) Tang, G.; Peng, L.; Baldwin, P. R.; Mann, D. S.; Jiang, W.; Rees, I.; Ludtke, S. J. EMAN2: An Extensible Image Processing Suite for Electron Microscopy. J. Struct. Biol. 2007, 157, 38–46.
- (15) Veneziano, R.; Ratanalert, S.; Zhang, K.; Zhang, F.; Yan, H.; Chiu, W.; Bathe, M. Designer Nanoscale DNA Assemblies Programmed from the Top Down. *Science* **2016**, *352*, 1534–1534.
- (16) Pan, K.; Bricker, W. P.; Ratanalert, S.; Bathe, M. Structure and Conformational Dynamics of Scaffolded DNA Origami Nanoparticles. *Nucleic Acids Res.* **2017**, *45*, 6284–6298.
- (17) Bakan, A.; Meireles, L. M.; Bahar, I. ProDy: Protein Dynamics Inferred from Theory and Experiments. *Bioinformatics* **2011**, *27*, 1575–1577.

Figure S1. Schematic illustrating design algorithm for a FV tetrahedron. (a-b) The polygon mesh file contains information for positions of points and the face connectivity, for this example it consists of the triangular mesh (**b**) with the consistent orientation. (**c**) All edges are separated from the vertex associated and the local coordinate system, $t_1-t_2-t_3$ is introduced at the center of each separated edge. (**d**) The three vectors are calculated by the direction of two neighboring faces and the interfacing line. Then, the cross-section of the six-helix bundle is defined on the local vectors, t_3-t_2 and the six lines whose direction depends on the cross-section ID (number in circle) are introduced. (**e-f**) Each separated line is substituted with six scaffold segments and closed loops are generated (**f**) by connecting endpoints of multiple lines at the vertex. (**g**) The multiple lines are discretized to represent the base pair, in which the scaffold double-crossovers (red double line) for each two closed loops are introduced. (**h-j**) The loop-crossover structure is projected in 2D as a Schlegel diagram and converted (**i**) into the dual graph that is used to compute (**j**) the spanning tree. (**k-i**) By inverting (**k**) the spanning tree to the Schlegel diagram, the scaffold routing is completed (**i**). (**m**) Staples are added and sequences are assigned, resulting in two edge routing patterns.

Figure S2. Schematic illustrating design algorithm for a MV tetrahedron. (**a-b**) Line segments are extended to connect their neighboring lines crossing at the vertex and closed loops are formed by connecting endpoints of the each line at the vertex. (**c**) The multiple lines are discretized to represent the base pair, in which the scaffold double-crossovers (red double line) for each two closed loops are introduced. (**d-f**) The loop-crossover structure is projected in 2D as a Schlegel diagram and converted (**e**) into the dual graph that is used to compute (**f**) the spanning tree. (**g-h**) By inverting the spanning tree to the Schlegel diagram, the scaffold routing is completed. **i**, Staples are added and sequences are assigned.

Figure S3. Initial scaffold crossovers according to the inner and middle connection layer. (**a-b**) In the inner connection layer, the nucleotide at the 5'-end is initially located in the 270° direction for even numbers and 90° direction for odd numbers. The positions of nucleotides are rotated by 34.28° counterclockwise per base pair mean twist (21 base pairs every two turns). (**c-d**) There are two possible positions to define the 5'-end of the scaffold, prior and posterior block, resulting in different patterns (**d**) of scaffold possible crossovers (red line) on the edge. The crossover is removed (faint red line) when it is 7-bp away from the end of the line. (**e**) The only double-crossover between two loops is assigned by a zigzag pattern sequentially from section 1 to

6 and imposed a weight factor (1 for red, 2 for yellow, and 3 for black crossovers) according to weight patterns shown in Figure S4. (**f**-**g**) For the middle connection layer, the nucleotide of the scaffold is initially located in the 30° direction for even numbers and 210° direction for odd numbers. (**h**-**j**) Two different block positions also results in the different patterns of scaffold possible crossovers on the edge.

Figure S4. 12 possible patterns to define the weight factor of the scaffold crossovers for the FV design. (a-b) The six-circles show the cross-section of the six-helix bundle. Two circles that are located on the t_3 axis are connected to the neighboring circles crossing the vertex. Four possible double-crossovers can be constructed with three different weight factors, resulting in 12 possible patterns for each connection layer. Each edge has at least two double crossovers of scaffold, which is assigned as weight factor of 1 (red double line). The others are assigned as the weight factor of 2 (yellow) or 3 (black), which is algorithmically selected.

₩₩

(ii)

П

and 7 bp away from the both ends of discretized lines. The six-circles show the cross-section of the 6HB and the arrow indicates the position of the nucleotide of the scaffold (blue) or staple (orange) according to the block ID. (**b**) Initial staple paths (multiple colored lines) are constructed by connecting assigned possible staple crossovers, which have the orientation (arrow) that is opposite to one of the complementary scaffold. (**c**) In the planar representation of six-helix bundle shown in panel (**b**), the initial staple #1 (red) and staple #2 (green) have lengths of 84-bp and 126-bp, respectively, which is complementary to scaffold strand (blue). The staple #2 is non-circular, which is broken by the backbone nick (green circle) at the center of the longest dsDNA domain. (**d**) Two staple-break rules of the "maximized staple length" and "maximized the number of seed domains" are applied into the initial staple #1 and #2 to make short staples ranging from 20 bp to 60 bp.

Figure S6. Procedure to design the staple routing and two algorithms to break the staples ranged from 20 bp to 60 bp. (a) The staple routing consists of three steps; assigning initial staple path, making non-circular and breaking the initial staple. (b-c) Pseudo codes for two staple-break rules, "maximized staple length" (b) and "maximized the number of seed domains" (c). Data structures used in algorithms: *domain* – the linked list to save the information on the dsDNA domain of each initial staple; *window(i).length* – the return value of the length of the *i*-th dsDNA domain; *window(i).cen_pos* – the return value of the center position at *i*-th dsDNA domain; *nucleotides* – vector array to save information on the connectivity of nucleotides; *nucleotide(i).up* – the return value indicating the upper nucleotide ID; *nucleotide(i).dn* – the return value indicating the downward nucleotide ID. Pseudocode does not include exception handling.

Figure S7. User defined staple length design.

Figure S8. Edge staple-design for the inner connection layer when the "maximized staple length" breaking rule is used. (**a-c**) All FV DNA-NPs have only two edge staple-design patterns; type I (orange edge staples with three scaffold double-crossovers) and type II (green edge staples with two scaffold double-crossovers) for 42-bp (**a**), 63-bp (**b**) and 84-bp (**c**) edge length. The blue strand is the part of the M13mp18 scaffold strand. The gray-shaded region represents the 14-nt seed dsDNA domain and arrowheads indicate the 3'-ends of strands.

Figure S9. Edge staple-design for the middle connection layer when the "maximized staple length" breaking rule is used. (**a-c**) All FV DNA-NPs have only two edge staple-design patterns; type I (orange edge staples with three scaffold double-crossovers) and type II (green edge staples with two scaffold double-crossovers) for 42-bp (**a**), 63-bp (**b**) and 84-bp (**c**) edge length. The blue strand is the part of the M13mp18 scaffold strand. The gray-shaded region represents the 14-nt seed dsDNA domain and arrowheads indicate the 3'-ends of strands.

Figure S10. Edge staple-design for the middle connection layer with the "maximized staple length" breaking rule when three different scaffold crossovers are used. All FV DNA-NPs have only two edge staple-design patterns; type I (orange edge staples with three scaffold double-crossovers) and type II (green edge staples with two scaffold double-crossovers) for the 42-bp edge length. (a-c) The pattern of the edge staple-design is depending on how to assign the weight factors of initial scaffold crossovers, for example, pattern #13 (a), pattern #16 (b), and pattern #23 (c). The blue strand is the part of the M13mp18 scaffold strand. The gray-shaded region represents the 14-nt seed dsDNA domain and arrowheads indicate the 3'-ends of strands.

Figure S11. Edge staple-design for the inner connection layer with the "maximized staple length" breaking rule when the prior block (ID = 3) is used. (a-c) All FV DNA-NPs have only two edge staple-design patterns; type I (orange edge staples with three scaffold double-crossovers) and type II (green edge staples with two scaffold double-crossovers) for 42-bp (a), 63-bp (b) and 84-bp (c) edge length. The blue strand is the part of the M13mp18 scaffold strand. The gray-shaded region represents the 14-nt seed dsDNA domain and arrowheads indicate the 3'-ends of strands.

Figure S12. Edge staple-design for the inner connection layer when the "Maximized number of seeds" breaking rule is used. (**a-c**) All FV DNA-NPs have only two edge staple-design patterns; type I (orange edge staples with three scaffold double-crossovers) and type II (green edge staples with two scaffold double-crossovers) for 42-bp (**a**), 63-bp (**b**) and 84-bp (**c**) edge length. The blue strand is the part of the M13mp18 scaffold strand. The gray-shaded region represents the 14-nt seed dsDNA domain and arrowheads indicate the 3'-ends of strands.

Figure S13. A comparison of the number of dsDNA domains with two different staple-break rules; "maximized staple length" and "maximized number of seed domains" in the folded DNA 6HB DNA-NPs. The values indicate the fraction of staples with 14-nt seed dsDNA domains (left) and basepairs that reside on strands with 14-nt seeds (right). The values in parenthesis denote the fraction of strands with 4-nt dsDNA domains (left) and base pairs that reside on strands with 4-nt domains (right).

Figure S14. Quantitative analysis of the computed sequence design of the 42-bp tetrahedron DNA origami structure between the FV and MV designs. (a-d) The distribution of lengths of dsDNA domains (a), of edge lengths (b) of base pairs according to the cross-section ID, of required scaffold lengths (c) and the total number of crossovers (d) for the FV (blue) and MV (orange) tetrahedron of 42-bp edge length. Two pie charts (right in panel (a)) depict the ratio of staple distributions with the number of staples with one 14-nt seed (green), two 14-nt seeds (pink) and without the 14-nt seed (orange). (e) Schematic diagram of the initial geometry of the tetrahedron, which has edge ID with the specific color. (f) Schematic illustration of how to render a circular graph in which the outer circle representing the scaffold has points assigned in the middle of dsDNA domain. Two points can be connected when they are lined up in the same staple. A nick of the scaffold is positioned at the top and arrows indicates the 5 ' to 3 '-end direction of the scaffold. (g-h) Two circular maps for the FV (g) and MV (h) tetrahedron.

Figure S15. Quantitative analysis of the computed sequence design of the tetrahedron of 63bp edge length between the FV and MV designs. (a-d) The distribution of lengths of dsDNA domains (**a**), of edge lengths (**b**) of base pairs according to the cross-section ID, of required scaffold lengths (**c**) and the total number of crossovers (**d**) for the FV (blue) and MV (orange) tetrahedron of 63-bp edge length. Two pie charts (right in panel (**a**)) depict the ratio of staple distributions with the number of staples with one 14-nt seed (green), two 14-nt seeds (pink) and without the 14-nt seed (orange). (**e**) Schematic diagram of the initial geometry of the tetrahedron, which has edge ID with the specific color. (**f**) Schematic illustration of how to render a circular graph in which the outer circle representing the scaffold has points assigned in the middle of dsDNA domain. Two points can be connected when they are lined up in the same staple. A nick of the scaffold is positioned at the top and arrows indicates the 5 ' to 3 '-end direction of the scaffold. (**g-h**) Two circular maps for the FV (**g**) and MV (**h**) tetrahedron.

Figure S16. Quantitative analysis of the computed sequence design of the tetrahedron of 84bp edge length between the FV and MV. (a-d) The distribution of lengths of dsDNA domains (a), of edge lengths (b) of base pairs according to the cross-section ID, of required scaffold lengths (c) and the total number of crossovers (d) for the FV (blue) and MV (orange) tetrahedron of 84bp edge length. Two pie charts (right in panel (a)) depict the ratio of staple distributions with the number of staples with one 14-nt seed (green), two 14-nt seeds (pink) and without the 14-nt seed (orange). (e) Schematic diagram of the initial geometry of the tetrahedron, which has edge ID with the specific color. (f) Schematic illustration of how to render a circular graph in which the outer circle representing the scaffold has points assigned in the middle of dsDNA domain. Two points can be connected when they are lined up in the same staple. A nick of the scaffold is positioned at the top and arrows indicates the 5 ' to 3 '-end direction of the scaffold. (g-h) Two circular maps for the FV (g) and MV (h) tetrahedron.

Figure S17. Quantitative analysis of the computed sequence design of the octahedron of 84bp edge length between the FV and MV designs. (a-d) The distribution of lengths of dsDNA domains (**a**), of edge lengths (**b**) of base pairs according to the cross-section ID, of required scaffold lengths (**c**) and the total number of crossovers (**d**) for the FV (blue) and MV (orange) octahedron of 84-bp edge length. Two pie charts (right in panel (**a**)) depict the ratio of staple distributions with the number of staples with one 14-nt seed (green), two 14-nt seeds (pink) and without the 14-nt seed (orange). (**e**) Schematic diagram of the initial geometry of the tetrahedron, which has edge ID with the specific color. (**f**) Schematic illustration of how to render a circular graph in which the outer circle representing the scaffold has points assigned in the middle of dsDNA domain. Two points can be connected when they are lined up in the same staple. A nick of the scaffold is positioned at the top and arrows indicates the 5 ' to 3 '-end direction of the scaffold. (**g-h**) Two circular maps for the FV (**g**) and MV (**h**) octahedron.

Figure S18. Quantitative analysis of the computed sequence design of the 42-bp pentagonal bipyramid DNA origami structure with the FV design when using either "maximized staple length" or "maximized number of seeds" staple breaking rule. (a-d) The distribution of lengths of dsDNA domains (a), of edge lengths (b) of base pairs according to the cross-section ID, of required scaffold lengths (c) and the total number of crossovers (d) for the 42-bp pentagonal bipyramid using the "maximized staple length" (blue) and "maximized number for seeds" (orange) staple breaking. Two pie charts (right in panel (a)) depict the ratio of staple distributions with the number of staples with one 14-nt seed (green), two 14-nt seeds (pink) and without the 14-nt seed (orange). (e) Schematic diagram of the initial geometry of the tetrahedron, which has edge ID with the specific color. (f) Schematic illustration of how to render a circular graph in which the outer circle representing the scaffold has points assigned in the middle of dsDNA domain. Two points can be connected when they are lined up in the same staple. A nick of the scaffold is positioned at the top and arrows indicates the 5 ' to 3 '-end direction of the scaffold. (g-h) Two circular maps for the 42-pentagonal pyramid using the "maximized staple length" (g) and "maximized number of seeds" (h) staple breaking.

Figure S19. 40 target geometries.

Figure S20. Spanning trees of the dual graph of the loop-crossover structure generated by the algorithm when the FV design is used. The spanning tree (sky blue) of each dual graph (reddish purple) of the loop-crossover structure defines the double crossovers to be retained by inverting into the loop-crossover structure. The double-crossovers associated with the remaining edges are deleted by the inverting procedure. The nodes in the dual graph network are not shown.

Figure S21. Spanning trees of the dual graph of the loop-crossover structure generated by the algorithm when the MV design is used. The spanning tree (sky blue) of each dual graph (reddish purple) of the loop-crossover structure defines the double crossovers to be retained by inverting into the loop-crossover structure. The double-crossovers associated with the remaining edges are deleted by the inverting procedure. The nodes in the dual graph network are not shown.

Figure S22. Scaffold-folding path of 40 diverse DNA-NPs generated by the algorithm when the FV design is used. The continuous blue loop is the single-stranded DNA scaffold routed throughout the entire DNA-NP of arbitrary shape.

Figure S23. Scaffold-folding path of 40 diverse DNA-NPs generated by the algorithm when the MV design is used. The continuous blue loop is the single-stranded DNA scaffold routed throughout the entire DNA-NP of arbitrary shape.

Figure S24. Staple and scaffold design path of 40 diverse DNA-NPs generated by the algorithm when the FV design is used. Complementary staples (green or orange) are wound in an antiparallel direction around the scaffold strand (blue) to assemble B-from double helices.

Figure S25. Staple and scaffold design path of 40 diverse DNA-NPs generated by the algorithm when the MV design is used. Complementary staples (orange) are wound in an antiparallel direction around the scaffold strand (blue) to assemble B-from double helices.

Figure S26. Circular maps of 40 diverse DNA-NPs generated by the algorithm when the FV design is used. DNA-NPs requiring scaffolds longer than 7,249-nt M13mp18 are represented by square maps.

Figure S27. Circular maps of 40 diverse DNA-NPs generated by the algorithm when the MV design is used. DNA-NPs requiring scaffolds longer than 7,249-nt M13mp18 are represented by square maps.

Figure S28. Cylindrical representation of 40 diverse FV DNA-NPs generated by the algorithm. Each cylinder whose diameter is 2 nm represents a DNA double helix.

Figure S29. Cylindrical representation of 40 diverse MV DNA-NPs generated by the algorithm. Each cylinder whose diameter is 2 nm represents a DNA double helix.

Figure S30. Atomic model of 40 diverse FV DNA-NPs generated by the algorithm.

Figure S31. Atomic model of 40 diverse MV DNA-NPs generated by the algorithm.

Figure S32. The staple and scaffold routing (left), atomic (middle) and cylindrical (right) model of the tetrahedron of 42-bp edge length. (a-b) The FV (a) and MV (b) tetrahedron of 42-bp edge length. In the cylindrical model, the scaffold and staples are represented by gray and multiple colors, respectively; See Table S5 for the required scaffold lengths and Table S6 and Table S7 for design parameters.

Figure S33. The staple and scaffold routing (left), atomic (middle) and cylindrical (right) model of the tetrahedron of 63-bp edge length . (a-b) The FV (a) and MV (b) tetrahedron of 63-bp edge length. In the cylindrical model, the scaffold and staples are represented by gray and multiple colors, respectively; See Table S5 for the required scaffold lengths and Table S6 and Table S7 for design parameters.

Figure S34. The staple and scaffold routing (left), atomic (middle) and cylindrical (right) model of the tetrahedron of 84-bp edge length. (a-b) The FV (a) and MV (b) tetrahedron of 84-bp edge length. In the cylindrical model, the scaffold and staples are represented by gray and multiple colors, respectively; See Table S5 for the required scaffold lengths and Table S6 and Table S7 for design parameters.

Figure S35. The staple and scaffold routing (left), atomic (middle) and cylindrical (right) model of the octahedron of 84-bp edge length. (a-b) The FV (a) and MV (b) tetrahedron of 84-bp edge length. In the cylindrical model, the scaffold and staples are represented by gray and multiple colors, respectively; See Table S5 for the required scaffold lengths and Table S6 and Table S7 for design parameters.

Figure S36. The staple and scaffold routing (left), atomic (middle) and cylindrical (right) model of the pentagonal bipyramid of 42-bp edge length. In the cylindrical model, the scaffold and staples are represented by gray and multiple colors, respectively; See Table S5 for the required scaffold lengths and Table S6 and Table S7 for design parameters.

Figure S37. JSON caDNAno for the FV tetrahedron of 42-bp edge length. (**a**-**b**) Scaffold routing model (**a**) and staple oligonucleotide strand and scaffold organization (**b**) from caDNAno. The numbers in the scaffold routing model are associated with the cross-section number in caDNAno.

Figure S38. JSON caDNAno for the MV tetrahedron of 42-bp edge length. (**a-b**) Scaffold routing model (**a**) and staple oligonucleotide strand and scaffold organization (**b**) from caDNAno. The numbers in the scaffold routing model are associated with the cross-section number in caDNAno.

Figure S39. JSON caDNAno for the FV tetrahedron of 63-bp edge length. (**a**-**b**) Scaffold routing model (**a**) and staple oligonucleotide strand and scaffold organization (**b**) from caDNAno. The numbers in the scaffold routing model are associated with the cross-section number in caDNAno.

Figure S40. JSON caDNAno for the MV tetrahedron of 63-bp edge length. (**a**-**b**) Scaffold routing model (**a**) and staple oligonucleotide strand and scaffold organization (**b**) from caDNAno. The numbers in the scaffold routing model are associated with the cross-section number in caDNAno.

Figure S41. JSON caDNAno for the FV tetrahedron of 84-bp edge length. (**a**-**b**) Scaffold routing model (**a**) and staple oligonucleotide strand and scaffold organization (**b**) from caDNAno. The numbers in the scaffold routing model are associated with the cross-section number in caDNAno.

Figure S42. JSON caDNAno for the MV tetrahedron of 84-bp edge length. (**a**-**b**) Scaffold routing model (**a**) and staple oligonucleotide strand and scaffold organization (**b**) from caDNAno. The numbers in the scaffold routing model are associated with the cross-section number in caDNAno.

а

Figure S43. JSON caDNAno for the FV octahedron of 84-bp edge length. (a-b) Scaffold routing model (a) and staple oligonucleotide strand and scaffold organization (b) from caDNAno. The numbers in the scaffold routing model are associated with the cross-section number in caDNAno.

Figure S44. JSON caDNAno for the MV octahedron of 84-bp edge length. (**a**-**b**) Scaffold routing model (**a**) and staple oligonucleotide strand and scaffold organization (**b**) from caDNAno. The numbers in the scaffold routing model are associated with the cross-section number in caDNAno.

а

Figure S45. JSON caDNAno for the FV pentagonal bipyramid of 42-bp edge length. (a-b) Scaffold routing model (**a**) and staple oligonucleotide strand and scaffold organization (**b**) from caDNAno. The numbers in the scaffold routing model are associated with the cross-section number in caDNAno.

a Tetrahedron 63-bp flat

Figure S46. Optimized folding of 6HB DNA-NPs. (a) DNA-NP folding were assayed across MgCl₂, NaCl, and staple concentrations, and annealing time, prototyped with the FV tetrahedron of 63-bp edge length. (b) DNA-NP folding were further assayed by visualizing using electron microscopy, with particles beginning to form in 8 mM MgCl₂.

-

Figure S47. Single strand full-length M13 vs. asymmetric-PCR-produced scaffold. (a) Singlestranded M13 genomic DNA used to fold a MV tetrahedron of 42-bp edge length with increasing concentrations of $MgCl_2$ (mM). (b) Linear, single-stranded DNA amplified from the same region of the M13 that folds to the tetrahedron. Annealing the object under the same conditions did not result in a well-folded object.

a Flat-vertex

Figure S48. Agarose gels of FV and MV DNA-NPs. (a) FV type nanoparticles were folded and ran on a 2% agarose gel in Mg-containing buffer and compared against M13 ssDNA scaffold. (b) MV type nanoparticles were folded and ran on a 2% agarose gel in Mg-containing buffer and compared against M13 ssDNA scaffold. M: Marker (2-log ladder, NEB); Sc: genomic M13mp18 ssDNA (NEB); Tet: tetrahedron; Oct: octahedron; PB: pentagonal bipyramid; 42: 42-bp edge length, 63: 63-bp edge length; 84: 84-bp edge length.

Figure S49. Monodispersed nanoparticles shown by dynamic light scattering. Dynamic light scattering was carried out on an MV octahedron of 84-bp edge length and a MV tetrahedron of 84-bp edge length to check monodispersity. (a) Particle size centered around 60 nm. (b) Melting of the MV tetrahedron of 84-bp edge length visualized by particle size and monodispersity. Heating the particle to 65°C reduced the particle size spread, while heating above 80°C melted the particle visualized by spreading of the particle size. (c-d) Nanoparticle size and uniformity was validated further by particle counting using the NanoSight, for the (c) MV tetrahedron 84-bp edge length and the (d) MV octahedron of 84-bp edge length. Movies associated with the NanoSight data are shown in Movies S1 and S2.

Figure S50. Fluorescent melting curve analysis of 6HB particles. Melting temperature was assayed by following fluorescence from SybrGreen binding to base-paired DNA. Melting temperatures were tested for the FV tetrahedron of 84-bp edge length (Tet84F), FV octahedron of 84-bp edge length (Oct84F), and MV octahedron of 84-bp edge length (Oct84M). Each curve is an average of at least four samples. The inflection point calculated by Newton's method was determined for each.

Figure S51. TEM imaging of a FV tetrahedron of 42-bp edge length.

Figure S52. TEM imaging of a FV tetrahedron of 84-bp edge length.

Figure S53. TEM imaging of a FV octahedron of 84-bp edge length.

Figure S54. TEM imaging of a FV pentagonal bipyramid of 42-bp edge length.

Figure S55. Cryo-EM imaging of a FV tetrahedron of 63-bp edge length. Electron micrograph. Scale bar 50 nm.

Figure S56. Cryo-EM imaging of a FV tetrahedron of 84-bp edge length. (Top) Example cryo-EM micrograph without and with boxed particles. Scale bar 50 nm. (Bottom) Representative class averages and corresponding projections of 3D reconstruction map.

Figure S57. Cryo-EM imaging of a FV octahedron of 84-bp edge length. (Top) Example micrograph images showing unboxed (left) and boxed (right) particles. Scale bar 50 nm. (Bottom) Representative class averages and corresponding projections of 3D reconstruction map.

Figure S58. TEM imaging of a MV tetrahedron of 84-bp edge length.

Figure S59. TEM imaging of a MV octahedron of 84-bp edge length.

Figure S60. Cryo-EM imaging of a MV tetrahedron of 42-bp edge length. Two micrographs showing folded tetrahedra. Scale bar 50 nm.

Figure S61. Cryo-EM imaging of a MV tetrahedron of 63-bp edge length. (Top) Example micrograph images showing unboxed (left) and boxed (right) particles. Scale bar 50 nm. (Bottom) Representative class averages and corresponding projections of 3D reconstruction map.

Figure S62. Cryo-EM imaging of a MV tetrahedron of 84-bp edge length. (Top) Example micrograph images showing unboxed (left) and boxed (right) particles. Scale bar 50 nm. (Bottom) Representative class averages and corresponding projections of 3D reconstruction map.

Figure S63. Cryo-EM imaging of a MV tetrahedron of 84-bp edge length using the middle layer for connection scaling. (Top) Example micrograph images showing unboxed (left) and boxed (right) particles. Scale bar 50 nm. (Bottom) Representative class averages and corresponding projections of 3D reconstruction map.

Figure S64. Cryo-EM imaging of the MV octahedron of 84-bp edge length. (Top) Example micrograph images showing unboxed (left) and boxed (right) particles. Scale bar 50 nm. (Bottom) Representative class averages and corresponding projections of 3D reconstruction map.

Figure S65. 3D structure characterization of the FV tetrahedron of 84-bp edge length using cryo-EM reconstruction and comparison with model predictions. Movie is shown in Movie S3.

Figure S66. 3D structure characterization of the FV octahedron of 84-bp edge length using cryo-EM reconstruction and comparison with model predictions. Movie is shown in Movie S4.

Figure S67. 3D structure characterization of the MV tetrahedron of 63-bp edge length using cryo-EM reconstruction and comparison with model predictions.

Figure S68. 3D structure characterization of the MV tetrahedron of 84-bp edge length using cryo-EM reconstruction and comparison with model predictions. Movie is shown in Movie S5.

Figure S69. 3D structure characterization of the 84-bp edge length DNA tetrahedron with the MV and middle connection layer using cryo-EM reconstruction and comparison with model predictions.

Figure S70. 3D structure characterization of the MV octahedron of 84-bp edge length using cryo-EM reconstruction and comparison with model predictions. Movie is shown in Movie S6.

Figure S71. Root-mean-square deviations (RMSD) of tetrahedra of 42-bp edge length from molecular dynamics simulations. (a) Total RMSD of all nucleic acid atoms of a FV and MV 6HB tetrahedron compared to a DX tetrahedron compared to their respective atomic coordinates of the initial time point at 0 ns. (c-d) Differences in RMSD for the inner, middle, and outer DNA duplexes of the 6HB design for the FV (c) and MV (d). All molecular dynamics simulations were run for 200 ns.

Figure S72. Geometric analysis of a FV 6HB tetrahedron of 42-bp edge length. (a) Location of each distinct vertex on the tetrahedron. (b) Definition of twist- (Θ) and bow- (Ψ) angles at each vertex with respect to the orthonormal basis ($\mathbf{b_1}$, $\mathbf{b_2}$, $\mathbf{b_3}$). (c) Twist-angles in degrees and bow-angles in degrees at each vertex (V1, V2, V3, V4) during a 200 ns MD simulation. The distribution of the twist- and bow-angles are shown separately in the right panel, along with the mean and standard deviation. Mean values are computed using data after the particles have equilibrated, which is distinguished by the vertical dashed line in the trajectory panel.

Figure S73. Geometric analysis of the inner vertex of a MV 6HB tetrahedron of 42-bp edge lengths. (a) Location of each distinct vertex on the tetrahedron. Both an inner vertex connection, and an outer vertex connection are defined. (b) Definition of twist- (Θ) and bow- (Ψ) angles at each inner vertex with respect to the orthonormal basis ($\mathbf{b_1}, \mathbf{b_2}, \mathbf{b_3}$). (c) Twist-angles in degrees and bow-angles in degrees at each inner vertex (V1, V2, V3, V4) during a 200 ns MD simulation. The distribution of the twist- and bow-angles are shown separately in the right panel, along with the mean and standard deviation. Mean values are computed using data after the particles have equilibrated, which is distinguished by the vertical dashed line in the trajectory panel.

Figure S74. Geometric analysis of the outer vertex of a MV 6HB tetrahedron of 42-bp edge lengths. (a) Location of each distinct vertex on the tetrahedron. Both an inner vertex connection, and an outer vertex connection are defined. (b) Definition of twist- (Θ) and bow- (Ψ) angles at each outer vertex with respect to the orthonormal basis ($\mathbf{b_1}, \mathbf{b_2}, \mathbf{b_3}$). (c) Twist-angles in degrees and bow-angles in degrees at each outer vertex (V1, V2, V3, V4) during a 200 ns MD simulation. The distribution of the twist- and bow-angles are shown separately in the right panel, along with the mean and standard deviation. Mean values are computed using data after the particles have equilibrated, which is distinguished by the vertical dashed line in the trajectory panel.

Figure S75. Geometric analysis of a DX tetrahedron of 42-bp edge lengths. (a) Location of each distinct vertex on the tetrahedron. (b) Definition of twist- (Θ) and bow- (Ψ) angles at each vertex with respect to the orthonormal basis ($\mathbf{b_1}$, $\mathbf{b_2}$, $\mathbf{b_3}$). (c) Twist-angles in degrees and bow-angles in degrees at each vertex (V1, V2, V3, V4) during a 200 ns MD simulation. The distribution of the twist- and bow-angles are shown separately in the right panel, along with the mean and standard deviation. Mean values are computed using data after the particles have equilibrated, which is distinguished by the vertical dashed line in the trajectory panel.

Figure S76. Design and folding characterization of a fully asymmetric wireframe tetrahedron. (a) Design of an asymmetric tetrahedron with incongruent triangular faces shown at right (b) Agarose gel electrophoresis shows a subtle shift in the folded band compared to scaffold. (c) Wide-field and near-field TEM shows mainly monodispersed and well-folded tetrahedra. Scale bar is 1 um for the wide-field image and 200 nm for the zoomed image.

		Р	rior bloc	:k (ID =	3)		Posterior block (ID = 13)					
Pattern	Т	etrahedro	on	C	Octahedro	on	Т	etrahedro	on	C	Octahedro	on
	42bp	63bp	84bp	42bp	63bp	84bp	42bp	63bp	84bp	42bp	63bp	84bp
Pattern #1	68.2	80.4	81.1	70.6	83.5	83.3	91.7	100	100	90.3	100	100
	(39.9)	(40.9)	(38.4)	(39.9)	(43.0)	(38.4)	(46.6)	(44.6)	(40.9)	(46.1)	(44.6)	(40.9)
Pattern #2	54.0	62.9	67.5	59.4	64.8	69.2	81.6	94.4	95.8	78.9	95.4	95.1
	(29.1)	(31.8)	(33.4)	(30.5)	(33.0)	(33.4)	(49.6)	(48.9)	(39.7)	(48.5)	(49.0)	(39.6)
Pattern #3	71.1	80.4	73.0	75.3	83.5	75.0	76.9	80.0	79.2	77.9	80.0	78.5
	(50.6)	(43.2)	(39.4)	(53.3)	(44.5)	(39.4)	(44.7)	(39.3)	(34.7)	(45.2)	(39.3)	(34.6)
Pattern #4	54.0	62.9	67.5	58.3	65.3	69.2	81.6	94.4	95.8	86.3	95.4	95.1
	(29.1)	(31.8)	(33.4)	(29.9)	(33.8)	(33.4)	(49.6)	(48.9)	(39.7)	(50.2)	(49.0)	(39.6)
Pattern #5	71.1	80.4	73.0	75.3	83.5	75.0	76.9	80.0	79.2	77.9	80.0	78.5
	(50.6)	(43.2)	(39.4)	(53.3)	(44.5)	(39.4)	(44.7)	(39.3)	(34.7)	(45.2)	(39.3)	(34.6)
Pattern #6	61.4	69.6	77.0	63.1	71.3	78.5	100	100	95.8	100	100	95.1
	(38.9)	(40.7)	(38.9)	(38.8)	(40.6)	(39.0)	(52.6)	(46.4)	(40.1)	(53.0)	(46.7)	(39.9)
Pattern #7	71.1	80.4	73.0	75.3	83.5	75.0	76.9	80.0	79.2	77.9	80.0	78.5
	(50.6)	(43.2)	(39.4)	(53.3)	(44.5)	(39.4)	(44.7)	(39.3)	(34.7)	(45.2)	(39.3)	(34.6)
Pattern #8	51.1	61.0	70.1	53.9	63.7	72.5	100	94.4	95.8	100	95.4	95.1
	(32.1)	(36.1)	(36.4)	(33.1)	(36.8)	(36.9)	(55.3)	(48.2)	(39.7)	(55.3)	(48.2)	(39.6)
Pattern #9	68.2	80.4	81.1	70.6	83.5	83.3	91.7	100	100	90.3	100	100
	(39.9)	(41.0)	(38.4)	(39.9)	(43.0)	(38.4)	(46.6)	(44.6)	(40.9)	(46.1)	(44.6)	(40.9)
Pattern #10	58.5	69.6	73.0	60.8	71.3	75.0	84.6	89.5	87.5	85.7	90.3	88.2
	(43.2)	(41.2)	(39.4)	(42.4)	(41.0)	(39.3)	(48.7)	(43.8)	(37.2)	(49.2)	(44.1)	(37.5)
Pattern #11	68.2	80.4	81.1	70.6	83.5	83.3	91.7	100	100	90.3	100	100
	(39.9)	(40.9)	(38.4)	(39.9)	(43.0)	(38.4)	(46.6)	(44.6)	(40.9)	(46.1)	(44.6)	(40.9)
Pattern #12	54.0	62.9	67.5	58.3	65.3	69.2	81.6	94.4	95.8	82.7	95.4	95.1
	(29.1)	(31.8)	(33.4)	(29.9)	(33.8)	(33.4)	(49.6)	(48.9)	(39.7)	(49.6)	(49.0)	(39.6)
Average		71.0 (38.9)						90.2	(43.9)			

Table S1. The percentage of the staples with the 14-nt dsDNA seed dsDNA domain in total staples when applying the inner connection layer. The values in parenthesis denote the fraction of basepairs that reside on strands with seeds. The patterns used are shown in Figure S4.

		P	rior bloc	ek (ID =	1)		Posterior block (ID = 11)					
Pattern	Ic	osahedro	on	Cu	boctahed	ron	Ic	osahedro	on	Cu	boctahed	Iron
	42bp	63bp	84bp	42bp	63bp	84bp	42bp	63bp	84bp	42bp	63bp	84bp
Pattern #13	78.5	70.0	79.2	77.4	70.0	79.7	94.2	85.4	79.2	92.9	84.6	78.5
	(43.3)	(36.6)	(35.4)	(43.7)	(36.8)	(35.9)	(48.1)	(41.0)	(37.4)	(46.9)	(40.3)	(36.8)
Pattern #14	73.2	72.9	69.2	76.4	77.8	69.2	66.7	83.7	86.8	66.7	82.8	86.1
	(42.2)	(40.4)	(33.8)	(44.5)	(43.4)	(34.1)	(39.4)	(37.5)	(43.8)	(39.3)	(36.7)	(43.2)
Pattern #15	67.9	80.5	76.1	67.8	84.8	77.1	72.8	87.1	85.2	74.1	85.8	86.0
	(36.3)	(38.1)	(31.5)	(35.7)	(40.0)	(31.7)	(39.9)	(44.4)	(41.4)	(41.1)	(44.3)	(41.5)
Pattern #16	72.1	75.0	70.7	74.1	79.6	70.4	68.1	86.4	89.4	67.8	84.8	88.0
	(39.2)	(39.8)	(32.8)	(41.3)	(42.9)	(33.3)	(38.3)	(40.1)	(44.5)	(38.5)	(38.7)	(43.8)
Pattern #17	66.7	79.8	78.1	66.7	82.8	78.8	75.4	84.8	85.2	76.4	83.8	86.0
	(35.6)	(37.3)	(31.7)	(35.0)	(38.6)	(31.9)	(43.3)	(44.9)	(41.4)	(44.2)	(44.8)	(41.5)
Pattern #18	75.0	72.4	74.1	77.4	74.0	75.4	84.3	80.0	69.7	84.5	80.0	70.5
	(48.5)	(40.0)	(36.0)	(49.8)	(40.9)	(36.4)	(44.7)	(35.7)	(32.3)	(44.1)	(35.7)	(32.5)
Pattern #19	68.6	81.4	75.0	69.0	87.5	75.0	71.4	88.4	85.2	71.4	88.3	86.0
	(36.7)	(38.8)	(31.3)	(36.4)	(41.7)	(31.5)	(37.9)	(44.1)	(41.4)	(37.4)	(43.8)	(41.5)
Pattern #20	75.8	72.9	69.2	83.3	77.8	69.2	77.2	79.2	71.9	75.7	79.0	73.3
	(48.1)	(41.1)	(35.0)	(51.8)	(44.0)	(35.2)	(44.2)	(34.4)	(34.6)	(43.4)	(34.1)	(35.4)
Pattern #21	77.8	71.4	79.2	76.5	71.8	79.7	94.1	85.1	82.4	92.6	84.2	82.5
	(40.6)	(36.1)	(34.3)	(40.2)	(36.2)	(34.5)	(49.9)	(42.7)	(39.2)	(49.2)	(42.4)	(39.1)
Pattern #22	75.0	72.4	70.5	80.0	75.7	72.5	79.2	79.5	71.3	80.7	79.6	71.7
	(47.9)	(40.6)	(33.4)	(50.7)	(42.3)	(35.8)	(44.3)	(34.8)	(34.0)	(43.8)	(35.0)	(33.8)
Pattern #23	77.2	72.7	79.2	75.7	73.4	79.7	93.9	84.8	85.2	92.4	83.8	86.0
	(38.2)	(35.7)	(33.4)	(37.3)	(35.7)	(33.4)	(51.4)	(43.3)	(40.8)	(51.1)	(44.1)	(41.0)
Pattern #24	71.4	75.8	71.2	71.4	82.0	71.8	68.6	87.5	90.4	69.0	87.5	90.4
	(37.9)	(39.6)	(32.4)	(37.4)	(42.3)	(32.4)	(37.9)	(41.0)	(44.8)	(37.4)	(41.1)	(44.5)
Average			75.0	(38.3)					81.6	(41.0)		

Table S2. The percentage of the staples with the 14-nt dsDNA seed dsDNA domain in total staples when applying the middle connection layer. The values in parenthesis denote the fraction of basepairs that reside on strands with seeds. The patterns used are shown in Figure S4.

Table S3. Fraction of staples with 14-nt seed domains and basepairs that reside on strands with 14-nt seed domains when using the FV design. Ratio, A (%) = (# of staples with one or more 14-nt seed domains / total # of staples) and Ratio, B (%) = (# of nucleotides in 14-nt seed domains / total # of staple nucleotides)

Target structures	Edge length	Staple- break	# of staples with 14-nt seed domains	# of staples with 4-nt dsDNA domains	Ratio A	# of nucleotides in 14-nt seed domains	# of nucleotides in 4-nt dsDNA domains	Ratio B
	42	Max. length	33	0	91.7	744	0	46.6
	42	Max. seeds	36	6	100	813	21	50.9
Tetra-	63	Max. length	54	0	100	1050	0	44.6
hedron		Max. seeds	66	36	100	1218	168	51.8
	94	Max. length	72	0	100	1272	0	40.9
	64	Max. seeds	102	75	100	1707	420	54.9
Octa-	9.4	Max. length	144	0	100	2544	0	40.9
hedron	84	Max. seeds	202	147	100	3381	812	54.4
Pentagonal	42	Max. length	81	0	90.0	1833	0	45.8
bipyramid	42	Max. seeds	90	18	100	2040	63	51.0

Table S4. Fraction of staples with 14-nt seed domains and basepairs that reside on strands with 14-nt seed domains when using the MV design. Ratio, A (%) = (# of staples with one or more 14-nt seed domains / total # of staples) and Ratio, B (%) = (# of nucleotides in 14-nt seed domains / total # of staple nucleotides)

Target structures	Minimum edge length	Staple- break	# of staples with 14-nt seed domains	# of staples with 4-nt dsDNA domains	Ratio A	# of nucleotides in 14-nt seed domains	# of nucleotides in 4-nt dsDNA domains	Ratio B
	42	Max. length	31	1	64.5	603	4	28.2
	42	Max. seeds	45	36	77.6	693	158	32.4
Tetra-	63	Max. length	51	0	82.3	907	0	31.3
hedron		Max. seeds	76	73	82.6	1174	378	40.5
		Max. length	67	0	80.7	1143	0	31.3
	04	Max. seeds	104	101	85.2	1577	581	43.2
Octa-	94	Max. length	111	6	68.5	1712	24	24.3
hedron	84	Max. seeds	189	182	82.5	2829	1036	40.1

Table S5. Required scaffold lengths for 40 rendered 6HB DNA-NPs of 42-bp edge length. The values in parenthesis denote required scaffold lengths for the MV DNA-NPs. 28 (FV) and 32 (MV) of the 40 structures, indicated with (*), require a scaffold length longer than the 7,249-nt M13mp18. These each used a random sequence of the appropriate length to demonstrate the theoretical scaffold and staple routing.

Category		R	equired scaffold le	ngth (nt)	
Platonic	Tetrahedron 1.512 (2.218)	Cube 3.024 (3.704)	Octahedron 3.024 (3.738)	Dodecahedron 7.560* (8.590*)	Icosahedron 7.560* (9.708*)
	Cuboctahedron	Icosidodecahedron	Rhombi- cuboctahedron	Snub cube	Truncated cube
Archi-	6,048 (8,736*)	15,120* (22,140*)	12,096* (18,282*)	15,120* (20,340*)	9,072* (14,700*)
medean	Truncated Cuboctahedron	Truncated dodecahedron	Truncated icosahedron	Truncated octahedron	Truncated Tetrahedron
	18,144* (23,760*)	22,680* (36,900*)	22,680*(27,000*)	9,072* (11,676*)	4,536 (6,732)
	Gyroelongated pentagonal pyramid	Triangular pyramid	Pentagonal bipyramid	Gyroelongated square bipyramid	Square gyrobicupola
Iohnson	6,680* (8,334*)	2,292 (3,075)	3,780 (4,794)	6,096 (7,897*)	8,192* (11,992*)
301113011	Pentagonal orthocupola- rotunda	Pentagonal orthobirotunda	Elongated pentagonal gyrobicupola	Elongated pentagonal gyrobirotunda	Gyroelongated square bicupola
	12,830* (18,710*)	15,120* (22,100*)	15,300* (22,935*)	20,340* (30,110*)	14,720* (19,658*)
	Rhombic dodecahedron	Rhombic triacontahedron	Deltoidal icositetrahedron	Pentagonal icositetrahedron	Triakis octahedron
Catalan	6,048 (7,232)	15,120* (18,240*)	13,824* (16,018*)	16,992* (19,724*)	11,088* (14,227*)
Catalali	Disdyakis dodecahedron	Triakis Icosahedron	Pentakis dodecahedron	Tetrakis hexahedron	Triakis tetrahedron
	23,040* (29,086*)	28,260* (36,215*)	22,980* (29,988*)	9,912* (12,664*)	5,364 (7,063)
Miscel- laneous	Twisted Triangular prism	Heptagonal bipyramid	Enneagonal Trapezohedron	Small stellated dodecahedron	Rhombic hexe-contahedron
	3,024 (4,359)	10,668* (12,786*)	40,716* (43,897*)	34,560* (46,302*)	30,720* (42,270*)
		* indicates desig	ns that require scaff	old length greater than t	he 7,249-nt M13mp18

	-	Fetrahedron		Octahedron	Pentagona bipyramic
	42bp	63bp	84bp	84bp	42bp
Geometry					
# of faces, N_f	4	4	4	8	10
# of vertices	4	4	4	6	7
# of edges, N_e	6	6	6	12	15
# of arms at the junction	3	3	3	4	4,5
Maximum edge length (bp)	42	63	84	84	42
Minimum edge length (bp)	42	63	84	84	42
The minimum spanning tree of the dual gra	ph of the loop	p-crossover st	ructure		
# of nodes, $N_f + 2N_e$	16	16	16	32	40
# of edges, $4N_e$	24	24	24	48	60
# of members of the spanning tree	15	15	15	31	39
Scaffold					
# of unpaired nucleotides, N_{un}	0	0	0	0	0
Required length (bp) = $6 \times \left[\sum_{i=1}^{N_e} i \text{ th edge length}(bp) \right] + N_{un}$	1,512	2,268	3,024	6,048	3,780
# of double crossovers	15	15	15	31	39
Staples					
# of staples	36	54	72	144	90
# of nucleotides in staples	1,596	2,352	3,108	6,216	4,000
Minimum length (bp)	30	30	30	30	30
Maximum length (bp)	54	54	54	54	54
Average staple length (bp)	44.33	43.56	43.17	43.17	44.44
# of double crossovers	33	69	105	209	81
# of unpaired nucleotides	84	84	84	168	220

Table S6. Design parameters of the automatic sequence design for the FV DNA-NPs.

Table S7. Design parameters of the automatic sequence design for the MV DNA-NPs.

		Tetrahedron		Octahedron
	42bp	63bp	84bp	84bp
Geometry				
# of faces, N_f	4	4	4	8
# of vertices, N_v	4	4	4	6
# of edges, N_e	6	6	6	12
# of arms at the junction	3	3	3	4
Maximum edge length (bp)	42	63	84	84
Minimum edge length (bp)	74	95	116	106
The minimum spanning tree of the dual g	graph of the loo	p-crossover str	ucture	
# of nodes, $4N_f$	12	12	12	24
# of edges, $4N_e$ - N_f	20	20	20	40
# of members of the spanning tree	11	11	11	23
Scaffold				
# of unpaired nucleotides	102	102	102	138
Required length (bp)	2,118	2,874	3,630	6,762
# of double crossovers	11	11	11	23
Staples				
# of staples	48	62	83	162
# of nucleotides in staples	2,142	2,898	3,654	7,056
Minimum length (bp)	23	29	25	21
Maximum length (bp)	59	61	60	60
Average staple length (bp)	44.63	46.74	44.02	43.56
# of double crossovers	61	97	133	253
# of unpaired nucleotides	126	126	126	432

Table S8. Staple sequences for the FV tetrahedron of 42-bp edge length. The sequence is represented by colors; unpaired nucleotides with blue, and crossovers with orange, the 14-nt seed dsDNA domain with green, and the 4-nt dsDNA domain with red.

Staple ID	Length (bp)	Staple sequences
1	54	AACAAAATTAATTACATTTAACAAAGGAAGATGATGAAACACGTTATTGAATAA
2	54	AGAACTCAAACTATCGGCCTTGCTCAGTAATAACATCACTGCCCCCGGAAATAC
3	54	AAGAATACGTGGCACAGACAATATA <mark>CA</mark> TAGAACCCTTCTGTTTACAATTAAAAA
4	52	ACAAAATCGCGCAGTTTCATTTGAATATATATGTGGCTTTGAATACCAAGTT
5	52	GTCTGTCCATCACGGGTAATATCCAGAAACGCTCAGGCCACCGAGTAAAAGA
6	52	TCACCAGTCACACGTTTTGAATGGCTAAACATCGCTATTTACATTGGCAGAT
7	52	TAGCGGTCACGCTGTTCCTCGTTAGAAAGGGATTTTAGGGCGCTGGCAAGTG
8	52	CCAGCAGCAAATGAGAATTGAGGAA <mark>GC</mark> TAATAGATCAGTGCCACGCTGAGAG
9	52	GATGATGGCAATTCAACAGAAATAAAATGAATATACATATTCCTGATTATCA
10	52	CATATCAAAATTATTTGCACGTAAATTGAATAATGGAAGGCGAGTACCTTTT
11	52	AGTTGGCAAATCAACAGTTGAAAGAAATCAAACCCTCAATGGGTCAATAGAT
12	52	TTTGACGAGCACGTATAACGTGCTCGCGCTACAGGGCGCGACGAACGGTACG
13	51	GCCATTGCATTGACGCTTTTTTTCAATCGTCTGAAATGGATCAACAATTC
14	50	AACAGTACATCTGTAAATTTTTTTCGTCGCAAAGGGATGCCTGAGTAGA
15	50	GCCGCGCTTTGAGAAGTTTTTTTGTTTTTATAATCAGTGATGATTTAGA
16	50	GTTTGGAT <mark>TG</mark> AAACAATTTTTTTTAACGGATTCGCCTGATTAGTAATTTT
17	50	CGAACTGA <mark>TC</mark> GAACCACTTTTTTTCAGCAGAAGATAAATACTATGGTTGC
18	49	ATTCTGGCCCGTATTATTTTTTTAATCCTTTGCCCGAAAACATCAAGAA
19	49	TTGCTGAACGAGGATTTTTTTTTAGAAGTATTAGACACCTGAAAGCGT
20	49	AATTACCT <mark>GT</mark> GAGTAATTTTTTCATTATCATTTTGCCAATATCTGGTC
21	49	AATACTTCTGGGGAAATTTTTTTGCCGGCGAACGTGGGTTAGAACCTAC
22	47	GCGGGCGCTAGACAGAGAGGTGAGCCGATTAATCAGAGCGGGAGCTA
23	47	GCCTGCAATAGAGCCAACAAAGAACTAACAAGTTATCTAAAATATCT
24	47	ATTATCATCAGTAACAGAAAGGAAACGTCAGGAAATTGCGTAGATTT
25	34	AACAGGAGGGCGGTCAGTTTTTTTTATTAACACC
26	34	TCAGGTTTAGGGAAGAATTTTTTTAGCGAAAGGA
27	34	TTAGGAGCAACCACCAGTTTTTTTAAGGAGCGGA
28	32	CCAGAATCCAATGCGCCGTAACCACCACCC
29	32	AATACATTTCTCAAATAATCTAAAGCATCACC
30	32	ACATCGGGAATACTTCCAATATAATCCTGATT
31	30	AAAAGTTAGCAAAAGCGAATTATTCATTTC
32	30	GCTTGACTTGATTAAACCGTTGTAGC
33	30	GACAACTAACAGAGCAGTAATAAAAGGGAC
34	30	CCTTGCTTAAATCATACCTTTTTAATGGA
35	30	CTACATTACAGGAAAACAATATTACCGCCA
36	30	TACCGAAAGCCCTAATTAGTCTTTAATGCG

Table S9. Staple sequences for the FV tetrahedron of 63-bp edge length. The sequence is represented by colors; unpaired nucleotides with blue, and crossovers with orange, the 14-nt seed dsDNA domain with green, and the 4-nt dsDNA domain with red.

Staple ID	Length (bp)	Staple sequences
1	54	ATCGGAACGAGGGTAGCAAAAACGGGCCTAAAACGAAAGAACCCCCCACGTTAAT
2	54	TTCATTCCATATAACAGTTGCAAATGGGGGCGCGAGCTGAAATTAACATAGGAAT
3	54	CTGTATGGGATTTTGCTAAATTGCGAAAAAAGGCTCCAAAGCTTTCGTCCTCAT
4	52	GTCATTTTTGCGGATTTAGTTTGACCCATCAATTCGCTCCTTTTGATAAGAG
5	52	AACTACAACGCCTGGAGAATAGAAAGTTTAATTGTGTTTCGTCACCAGTACA
6	52	TCGCCCACGCATAAGACTTTTTCATGGAATACACTGACAATGACAACAACCA
7	52	GTCAGTGCCTTGAGTACCAGGCGGATCCACCCTCATAATAAGTTTTAACGGG
8	52	CTTAGCCGGAACGAATTCATTACCCATGGGCTTGACGACCTGCTCCATGTTA
9	52	AAATAGCGAGAGGCCGAGAATGACCAGAAGCCCGAGACGACGATAAAAACCA
10	51	AATAGGTG <mark>TC</mark> GCCTGATTTTTTTTAAATTGTGTCGAAATCCGGACTGGCTC
11	51	CTTGCCCT <mark>GA</mark> ACACTATTTTTTTCATAACCCTCGTTTACCAAACAAACTC
12	51	GTTGAAAA <mark>TA</mark> ACAGCTTTTTTTTGATACCGATAGTTGCGCCAAGAACAAC
13	51	TCAGAAGCACTTTTGATTTTTTTGATACAGGAGTGTACTGGGAATAGCAA
14	50	ACTACGAA <mark>GC</mark> GCGAAACTTTTTTTAAAGTACAACGGAGTATTAAGAGGCT
15	50	GCTATATT <mark>TC</mark> AGGCAAGTTTTTTTGCAAAGACACAAACTAAATGAATTTT
16	50	CAGTTAAT <mark>GA</mark> GGAACCTTTTTTTCATGTACCGTAACACTGAATAAAGCGC
17	50	GCCAGAGG <mark>GT</mark> CAGGATTTTTTTTTAGAGAGTACCTTTAATTTAATGCAGA
18	49	GAGGCTTG <mark>CC</mark> AGGTAGTTTTTTTAAAGATTCATCAGTGTGTCTGGAAGT
19	49	CCTCATAG <mark>TG</mark> AATTTATTTTTTCCGTTCCAGTAAGCGGAATCGTCATA
20	49	TAAGGGAA <mark>CC</mark> AGTCAGTTTTTTTGACGTTGGGAAGAAGCGAAAGACAGC
21	49	CTGAATAT <mark>AC</mark> GCCAAATTTTTTTAGGAATTACGAGGCGACCAGGCGCAT
22	46	GAGACTCCTCAAGAGAAGGGGGTTGATACTCAGGAGGTTTAACCGC
23	46	AATATTCATTGAATCCCCCGGTCTTTTTGCATCAAAAAGACGTTTT
24	46	AGGCTGGCTGACCTTCATCAGCTGCTACACCAGAACGAGTCTTTAA
25	45	CACCCTCATTTATTATTTAGCGGGGTTTTGCTCAGTACCTATTT
26	45	TTATGCGATTAGGACAGATCTTGACAAGAACCGGATGGACCAACT
27	45	GCGAACCAG <mark>AC</mark> TGGAT <mark>ACTTTAAACAGTTCAGAAAATTG</mark> TAAAAT
28	42	ACCACATTAAATATAATTCTGCGAACGAGTAGATGAGCTCAA
29	42	TTGAAA <mark>GT</mark> TAAGA <mark>ATGGTTTAATTTCAAA</mark> GTAAA <mark>TA</mark> ATCAAC
30	42	TAAAGCCTGTCGTCTCAACAGTTTCAGCGGAGTTAACGATCT
31	42	AAAACGAGCGGGATAGAGGCTTTGAGGACTAAACCTAAAGGC
32	42	CGGAACCTTCAGGGACCGCCACCCTCAGAGTACCGAAGTGCC
33	42	TTCCATTCGGCTACCGTCACCCTCAGCAAAATCTAGCGATTA
34	42	GTTTAG <mark>AC</mark> CGGAA <mark>GGACTTCAAATATCGT</mark> TAAGA <mark>GT</mark> AAATCA
35	42	CATGTTTCAACTACTAATAGTAGTAGCAAGGTGGATTAGAT
36	42	ACATTTCGATTCCCGCAACTAAAGTACGTGAGATTTCCAATA
37	42	AAAGTT <mark>TA</mark> GAATG <mark>GCGGTTTATCAGCTTA</mark> GGAGCCGAACAAC
38	42	TAAAGGAACAACTTTTTCCAGACGTTAGAAATAAAAGGTGAA
39	42	CGCTTT <mark>TA</mark> CTAAC <mark>GAACACTCATCTTTGG</mark> GCAAA <mark>AA</mark> GGAAGT
40	39	GTCGAGAATTAGGACTGAAACATGAAAGATCAGAGCCAC
41	39	GTAACAAAAGAGTAATGAACGGTGTACAATTGAATTACC
42	39	AAAATCATCAAATGGCGTCCAATACTGCGTAGCTTCAAA
43	38	TCATTGAGTAAGAG <mark>CA</mark> CGAGA <mark>ACATTCAGTGAATAAGG</mark>

44	38	AATTCGCATACATGGAAGCGGAACCCTGACTATTATAG
45	38	CACCCTTTGTATCATAACCCGTATAAGTATAGCCCGG
46	30	TACATAAATGCTGTGCTTAGAGCTTAATTG
47	30	AGTCTCTTAGCGTAGCATTCCACAGACAGC
48	30	ATTATT <mark>AA</mark> GGGAG <mark>TGATATATTCGGTCGCT</mark>
49	30	GCCCAA <mark>TC</mark> CCCCT <mark>GACAGTGCCCGTATAAA</mark>
50	30	ATTATA <mark>CC</mark> GAACT <mark>GCGCAGACGGTCAATCA</mark>
51	30	CAACAG <mark>GG</mark> GTAAT <mark>ATTGCAAAAGAAGTTTT</mark>
52	30	AATCATATCATTT <mark>GGTCAATAACCTGTTTA</mark>
53	30	TTTCTT <mark>AC</mark> TCCAA <mark>AATAATAATTTTTTCAC</mark>
54	30	TACCAA <mark>GG</mark> CACCAATAAAATACGTAATGCC

Table S10. Staple sequences for the FV tetrahedron of 84-bp edge length. The sequence is represented by colors; unpaired nucleotides with blue, and crossovers with orange, the 14-nt seed dsDNA domain with green, and the 4-nt dsDNA domain with red.

Staple ID	Length (bp)	Staple sequences
1	54	GAGTACCTTTAATTGCTCCGGTGTCTAATTCTGCGAACGAGCGAG
2	54	CACCACCAGAGCCGCCGCCCTGAATTGATGATACAGGAGTTATTTCGCCAATAA
3	54	CCTCAGAACCGCCACCCTCCAAACTATAGTTAGCGTAACGCAGTTTCCGCAGAC
4	52	AAGCGGATTGCATCAATATAATGCTGTTCGCAAATTATTATAGTCAGAAGCA
5	52	CTTTTCATAATCAACAAAACAAATAGTGCCTTGATTATTAGCGTTTGCCAT
6	52	ATTAGGATTAGCGGGCCCAATAGGAATTAGTAAATGACTCCTCAAGAGAAGG
7	52	AAAAGAACTGGCATACCGATTGAGGGAAGGCCGGAATAATAACGGAATACCC
8	52	TATCAGCTTGCTTTAGCAACGGCTACAACACTCATCTTTAATTGTATCGGTT
9	52	CTTTAATCATTGTGAAAAGGAATTA <mark>CT</mark> TAGACTGGAGATGGTTTAATTTCAA
10	52	ATTTTGTCACAATCAATAGAGGTGAAATTAGAGCCAGCAATCTTTTTCACG
11	52	AGGTAGAAAGATTCATCAGTTTACCATTTGCAAAAGAAGTTTGCAGATAGCC
12	52	GGAGTTAAAGGCCGCTTTTAGTTTCCAAGGCACCAACCTAGTCTTGCCCTGA
13	51	AAAATAGC <mark>GT</mark> ACCAGAATTTTTTTGGAAACCGAGGAAACGCAAATGTAGCG
14	51	ACGTAATG <mark>CC</mark> CAGAACGTTTTTTTAGTAGTAAATTGGGCTTGATAGAATGA
15	51	GTCATACA <mark>TG</mark> AAACATGTTTTTTTAAAGTATTAAGAGGCTGAGAAAAAGAGG
16	51	CTTGAGCCATCCAAAAATTTTTTTAAAGGCTCCAAAAGGAGCCTCGAAATC
17	50	ATAACAGT <mark>TA</mark> ATTCTACTTTTTTTTAATAGTAGTAGCACGCCACCAGAAC
18	50	CGCAGTATGATCGGCATTTTTTTTTCGGTCATAGCCCCCGTTGAAATA
19	50	CCACAGACAAGAAAGGATTTTTTTACAACTAAAGGAATCGGAATAAGTTT
20	50	TAATAAAGTAGCGA <mark>CA</mark> AAAGA <mark>AATATGGTTTACCAGT</mark> TGACG <mark>GA</mark> GTAGCA
21	50	ATAAGGACAACGGA <mark>GA</mark> TAACC <mark>GCGTCACCCTCAGCAC</mark> TAAAG <mark>AA</mark> GAGGCA
22	50	TAAGAACTGTCAAAAATTTTTTTCAGGTCTTTACCCTGACGGTCATTAC
23	50	AAGTAAGAATCCCCCTAATAAATTAGGAATACCACAGCAACACGAGGGGG
24	49	GCGGATAA <mark>GA</mark> ACGGTGTTTTTTTTACAGACCAGGCGCGTCAGGATTAGA
25	49	CAGCTTGATTGCTCCATTTTTTTGTTACTTAGCCGGTAGTACCGCCAC
26	49	CCCGAAAGAAACGTAATTTTTTTCAAAGCTGCTCATTTGAGGCTTGCAG
27	49	CACCACCGGCTATCTTTTTTTACCGAAGCCCTTTTCAACATTATTAC
28	45	TTTTAACAAACAGTGCAAAGAAGAGCAACACCCTCGACGATTGGC
29	45	CGTCTTTATTTTGCGAACCGAACTGACCAAGTATATCATTTTCAG
30	45	ACCATTAAGCTATAATCTTGACAAGAACTCGAGCTGCTTAGAGCT
31	44	AAAGAATTTATACCTCATCGCCTGATAAGACAACAACAGCATCG
32	44	CCATTACCCATCGAAGTTTGCCTTTAGCTACATAAGACAAAAGG
33	44	TAATAGTCGGAATCCTTTAAACAGTTCAGTTGGGAAATGCAGAT
34	42	
35	42	A I CA I ACCAGAGCCACAGGAGGTTGAGGCCAGAATTAA I AAG
36	42	GGICAAIIAICACCCCACCCICAGAGCCCACIGAGGIIIIGI
37	42	AATACIGAAAATGIGAGGCATAGTAAGATTCAACTAGAAAAA
38	42	
39	42	
40	42	
41	42	
42	42	
43	42	
44	42	
43	42	

46	42	CCACCCTAGGCAAGTAATGCCCCCTGCCGTACTGGGGAAAGC
47	42	GCAGTCTAGCATTGACCACCCTCAGAGCTTAACATGAACCTA
48	42	CCCACGCATTTGTAAAGCGCGAAACAAAAAACGAACTTTTTC
49	42	GTATGG <mark>GC</mark> CAGAC <mark>GCCCATGTACCGTAAA</mark> CCACC <mark>CG</mark> CCCGGA
50	42	ATAGGT <mark>GC</mark> ATAAG <mark>GTAAACAACTTTCAAA</mark> TCTAA <mark>AT</mark> TTCGTC
51	42	ACCAGTAAGAACCGGTACTCAGGAGGTTAACGAGGAGCGGAG
52	40	ACATAACGCCAAATACCAGTCAGGACGAAAAACGAGCGTCC
53	40	GAACGAGGGTC <mark>GGTTGCGCCGACAATA</mark> TTGTGTTTGACCC
54	40	GCGACATTCAGAACGTAGAAAATACAGTCAGACCGTCACC
55	39	TAATTGCTGA <mark>ATATCGCGTTTTAATC</mark> GGATA <mark>TT</mark> CAATAA
56	39	CTTGATATTA <mark>ATCCCTCAGAGCCGCG</mark> AAACAAACAGTG
57	39	GGATAGCAAG <mark>GGAGAGGGTTGATATA</mark> ACTTT GA TTTTCT
58	34	TCATTA <mark>AA</mark> AAATT <mark>CACGCAAAGACACCAT</mark> GCGAA
59	34	ATGAGG <mark>AG</mark> CGGGATATATATTCGGTCGCCAGTGA
60	34	ACCCTCGTTGAGATACGAACTAACGGAATAAGAA
61	32	CGAGAAAC <mark>AC</mark> ACTAC <mark>GATTAAACGGGTAAAAT</mark>
62	32	GAACAAAGTAGAGGCTGACGACGATAAAAACC
63	32	TTGAAAAT <mark>CT</mark> TTGGG <mark>ATTATCACCGTCACCGA</mark>
64	30	CCAAATCCTTCAAAAAAGATTAAGAGGAAG
65	30	GCAATA <mark>GA</mark> ACCGCCTCACCGGAACCAGAGC
66	30	ACAGATGTGCCGTCTTTTGCTCAGTACCAG
67	30	CGTTTTCTTAGCAATTAAGACTCCTTATTA
68	30	CGCGACCACCGATAAGGTGAATTTCTTAAA
69	30	CCATAAAGCTCATTTTACCTTATGCGATTT
70	30	TGGCAT <mark>CG</mark> ATTCC <mark>CGGAAGTTTCATTCCA</mark> T
71	30	TTATTCTGGCTTTTACCGTTCCAGTAAGC
72	30	TGAGAATGCCCTCACAACGCCTGTAGCATT
Table S11. Staple sequences for the FV octahedron of 84-bp edge length. The sequence is represented by colors; unpaired nucleotides with blue, and crossovers with orange, the 14-nt seed dsDNA domain with green, and the 4-nt dsDNA domain with red.

Staple ID	Length (bp)	Staple sequences
1	54	GAGTACCTTTAATTGCTCCGGTGTCTAATTCTGCGAACGAGCGAG
2	54	ATGCAAATCCAATCGCAAGTAAGGCGCTAGAAAAAGCCTGCGCCATATAGAAAA
3	54	GCAGCAAATGAAAAATCT <mark>AT</mark> AAAAT <mark>AG</mark> CCGTCAATAGATATTATTAACCAATAA
4	54	CACAGACAGCCCTCATAGTGGAGTGATAATAATTTTTTCAGAATTTCAACGGGG
5	54	TTTGCACGTAAAACAGAAATTGCTTTATTATTCATTTCAAATTACCTGAAAGCG
6	52	GGTGAATTATCACCGGCATTTTCGGTCACCACCCTGGAAATTATTCATTAAA
7	52	AAGAAACGATTTTTAGAGCAAGAAACAACTGGCATTTTATCCCAATCCAAAT
8	52	ATCGGAACGAGGGTAACAAAGTACAAGAAAGAGGACAGCAGCGAAAGACAGC
9	52	AACCGCCACCCTCAGAATTTTCTGTAAAAAGGAGCAGAACCGCCACCCTCAG
10	52	AAGCGGATTGCATCAATATAATGCTGTTCGCAAATTATTATAGTCAGAAGCA
11	52	CTGATAGCCCTAAATGGTCAGTTGGCCTTTACAAAAGTCTTTAATGCGCGAA
12	52	CGGAATTATCATCAGTAACAGTACCTAAAACATCAAGAAACCACCAGAAGGAG
13	52	GAATCAGAGCGGGAAGAAGAACTCAACATTGGCAGACGTGCTTTCCTCGTTA
14	52	GCTTAGATTAAGACTCTTCTGACCTATTACCAGTATTGAAAACATAGCGATA
15	52	GCGAAAATCCTGTTATCACCCAAATCCGAAAGGAGCTGGTTTGCCCCAGCAG
16	52	CAACATGTTCAGCTCCGTTTTTATTTAAGCCTTAACAGACGACGACAATAAA
17	52	CTTTAATCATTGTGAAAAGGAATTACTTAGACTGGAGATGGTTTAATTTCAA
18	52	GAACGTGGACTCCAACGTCATCGGAAGGGGAAAGCCGGCGGCAATAAGAGAA
19	52	AGGTAGAAAGATTCATCAGTTTACCATTTGCAAAAGAAGTTTCCCTTCACCG
20	52	TGTCTTTCCTTATCATTCCCAAATCAGCGAGGCGTTTTAGTTCTTGCCCTGA
21	52	AGCACCGTAATCAGTAGCGAATCAAACTCCCTCAGAGCCGAGTATTAAGAGG
22	52	TCAGAGGGTAATTGAGCGCTTTAAGAAAGGAAACCGAGGATATCAGTACCAG
23	52	TCCATCACGCAAATTAACCTACCGCCTACCTACATTTTGACTTGCTTCTGTA
24	52	ACGAAAGAGGCAAAAGAATAAATCCGGCGCAGACGGTCAATGAATAGGTGTA
25	51	AAAACGCTCTATTAATTTTTTTTTTTTTTTTTTTTTTTT
26	51	CGATTTAG <mark>AC</mark> CGACAAATTTTTTTAGGTAAAGTAATTCTGTCATGAGCCTA
27	51	AAAATAGC <mark>GG</mark> AGAGAGTTTTTTTTGCAGCAAGCGGTCCACGCGACAGGGC
28	51	CAACTAAT <mark>AG</mark> TAACATTTTTTTTTTTTTCATTTTGCGGAACAAAGACATGGCT
29	51	ACTTAGCCGTCAGGAGGTTTTTTTTTAGTACCGCCACCCTCCTTAATGCC
30	51	CCGGTATT <mark>CC</mark> CAGAACGTTTTTTTAGTAGTAAATTGGGCTTGATAGAATGA
31	50	TGAAAGCATTGACA <mark>GG</mark> CCGGA <mark>ACAAGTTTGCCTTTAT</mark> AGCGT <mark>TC</mark> AGAACC
32	50	ACCGGAAT <mark>CC</mark> ATGTAATTTTTTTTTAGGCAGAGGCATTCCACTATTAAA
33	50	CGGCAAAA <mark>TA</mark> TGGTTGTTTTTTCTTTGACGAGCACGTATAATAAGAATA
34	50	TTTTGCGAAAATAC <mark>AG</mark> ACGGG <mark>AAGAGAGAGATAACCCAA</mark> GCTATCTAATAAC
35	50	GCCCGGACCTTCAT <mark>CT</mark> ACGTAAAACACTCATCTTTGATCGCCTGGAACCG
36	50	CCACCACC <mark>GC</mark> TCAAGAGTTTTTTTAAGGATTAGGATTACCCTGAACAAAG
37	50	TGAATTTATTGAGGGATTTTTTTGGGAAGGTAAATATTGACCATTGATAT
38	50	TTATCAACAAGTTACATTTTTTAAATAAACAGCCATATTAGAACGCAAA
39	50	CTAAAGGA <mark>AA</mark> CCGATAGTTTTTTTTGCGCCGACAATGGTCAGGATTAGA
40	50	ATAACAGTTAATTCTACTTTTTTTTTTAATAGTAGTAGCACGCTGAGAGCCA
41	50	CCCGAAAGAGCCGCTTTTTTTTTGCGGGATCGTCACCCTCATCATTAC
42	50	TAAGAACTGTCAAAAATTTTTTTCAGGTCTTTACCCTGACGGGCAGGGA
43	50	TAACCTGGCCAACAGATAATCACAATACTTCTTTGATGGTAATTCGTCTG
44	50	TAAAGGGA <mark>TC</mark> AGACAATTTTTTTTTTTTTTGAATGGCTATTCACCAGGGT
45	50	AATCGCGCAAGTACATATTTTTTTAATCAATATATGTGTAAAAGAGTCTG

46	50	GCCAGTGCGTAACCATGTTCCAGAAAAACCGTCTATCGAGGTGCGAGAAA
47	50	ATAAGGATCCTGAATTTACGAGGGTATTAAACCAAGATTACCGCCCGACT
48	50	CGAACAAAGTGCCGTCGTTTTTTTAGAGGGTTGATATACACCAACCTAAA
49	50	TGATTGGAATCCCCCTAATAAATTAGGAATACCACAGCAACACGAGGGGG
50	49	TCAGGGATATATTTCGTTTTTTGAACCTATTATTCTACCATCGATAGC
51	49	GATGGCAATATACAGGTTTTTTTAGTGTACTGGTAATCCTGTAGCATTC
52	49	TTGGGAAT <mark>TC</mark> AAATAATTTTTTTTTCCTCATTAAAGCATATCAAAATTA
53	49	AAAATAGC <mark>AC</mark> GGAATATTTTTTAGTTTATTTTGTCAATGTAAATGCTG
54	49	TTTGAGGACAACGTAATTTTTTCAAAGCTGCTCATTTCAATAATCGGC
55	49	CCGAACGAACTTTTCATTTTTTCCAGTGAGACGGGCCAACATTATTAC
56	45	TTAGAA <mark>GA</mark> TTAAA <mark>TGCAAAGATTGCGTAG</mark> AGGTG <mark>AC</mark> AAACCCTCA
57	45	GAAGATGACATTTAACCGTTCCAGTAAGTTTGGATAACGTCAGAT
58	45	ACCATTAAGCTATATATATTCGGTCGCTTCGAGCTGCTTAGAGCT
59	45	AAAAAAATTATCAGAACAGTGCCCGTATGTACCGTTTTCCAGACG
60	45	CGTTATACAGTAGGCAGCGCCAAAGACACTACCTTATATTTTAG
61	44	AACTGACAGACCAGATCTTGACAAGAACGTTTCCAGCGATTATA
62	44	TGCGGGAATTTTGCACGCTAACGAGCGTAAAATAACTCATCGAG
63	44	
64	44	GULALUCALUAAGGUAGGIUAGAUGAGUAUUAAUIGIAGUG
65	44	AAATGGAACCAGTAACCCTTCTGACCTGAGAATCCTAACATCAC
66	44	GGAAGGGGGCAAGICGCCGCGCIIAAIGGCCCCGAGAIGGCCCCAC
67	44	
68	42	
09 70	42	
70	42 42	
71	42 42	
72	42	
73	42	
74	42	
76	42	
70	42	CGCTCAACAAATTCAATTTAATGGTTTGTTTCAAATTTAACC
78	42	TTCATATTAGGTTGACGCGAGAAAACTTAAATACCTCATATG
79	42	TCCGGCTGGTTTACGCTTAATTGAGAATTTTAGTAGACCGTG
80	42	AATACTGAAAATGTGAGGCATAGTAAGATTCAACTAGAAAAA
81	42	CGCCTGATAAAGAAGGTTAGAACCTACCCAGAATGTTTTTAA
82	42	CACCAGATCAGAGCCATAGCCCCCTTATGCGTCAGTTACCAT
83	42	TAGCAA <mark>GG</mark> AGGTT <mark>GCCAGAGCCGCCGCCC</mark> CACCCTTGCCATC
84	42	TCCTTA <mark>TC</mark> CAAAA <mark>GAATGAAATAGCAATC</mark> AAGAATAGGGAAG
85	42	CGCATTATACATAATATGTTAGCAAACGAACGCAATTACCGA
86	42	GGTGTACCAACTTTCGGAGATTTGTATCACCCCCATTAAACG
87	42	GGTAAAAAAGAGT <mark>AGCGCATAGGCTGGCT</mark> CATAA <mark>GG</mark> ATAAAT
88	42	GGGCGC <mark>TA</mark> AGAAA <mark>GAAGTTTTTTGGGGTC</mark> AGGGC <mark>GA</mark> TAGGGT
89	42	TCACAC <mark>GT</mark> TATTT <mark>AACTATCGGCCTTGCT</mark> TAGTA <mark>AT</mark> GAGAAG
90	42	TATCGG <mark>TA</mark> GGCTC <mark>CTGGGATTTTGCTAAT</mark> GTCGT <mark>CA</mark> ACACTG
91	42	AGTTTC <mark>GC</mark> TTGAG <mark>TCTTGCTTTCGAGGTC</mark> GTTGA <mark>AT</mark> CAACAG
92	42	TTTCAG <mark>CT</mark> AGCGT <mark>ATACAAACTACAACGA</mark> AGTTTTTTAAACA
93	42	CCTGTT TG ATACA TTAGCTCAACATGTTG CGGATGTCAAAGC
94	42	GAACCA <mark>GT</mark> AACCG <mark>ATTTTCATTTGGGGCG</mark> TAGAT <mark>TT</mark> GCAACT
95	42	AAAGTACTTTTGATGCAAACTCCAACAGACAACAAGAAAAGG
96	42	TCTACGTTCAAATGGTCATAAATATTCATTTGCCATATCATA
97	42	TGTTTTTAGATAGAATAAAAGGGACATTCGCTCAAATCCAGA
98	42	AACTCGTTATTAGAAAATCAACAGTTGACAAATATGGCGGTC
99	42	AGTATTAAGGCAAGCCTTTGCCCGAACGATACATTTGAGGAA

101 42 ATTAATTATGAAACTITACATCGGGAGACAGGTTTTATACTT 102 40 TTGCCTGAGGAACGGTACGCCAAGGTTTCACCAG 103 40 AACAAGCAGAGAAGTCCTGAACAAGACGTTTCACCAGAGTTT 104 40 ACATAACGCCAAGAAAGTCCCGAACAGCGTACGCCAAGAGTT 105 40 CCCAATAATGCCAGGAGAATAACACAAAAAGAATTAGGCCGCGC 106 40 CCCAATAATGCCAGAGAGAATAACACAAAAGAATTAAGAC 107 40 TACGTGAACCTGAAATCAAAAAGAATACGCCGCGCGCGCA 108 40 CCAAAGCGCGAAGTTTTTCATGAGGAACCGAATTAGAAC 109 39 TTAATTTCAGCGCATAGGTCTGAGGAGAAAAGGCCAATTAATACAC 109 39 TTAATTGCACAGAAGAAACAATAGGGCCATTAGACCCAAAAACAATAC 110 39 TAATATCACACAGAAAAACATAGGGCCATTAGACCCAAAAACAATAA 111 39 TAATACATATACACAGAAAAACATTGGCGCATTCAAAACAAA 112 39 ATCAATACCACAGAAAGAACGATATAGCGCAAAACAA 113 34 ACCCTTTAATACGCCAGAAAAACATTGCGCACTCAAGGGAAAACAA 114 34 TTTTCATCAGAAAAAAGGCCACCCGAGGGGGATATA 115 34 ACCCTTTAATATGCAGAAAAACATTGCGCACCGAGGGGAAAACAA 116 34 ACGCTTTAATATGCAGAAAGACCAACCGAGGGGGAAAACAA <tr< th=""><th>100</th><th>42</th><th>GGTTAT<mark>CA</mark>AGCAT<mark>CCTGCAACAGTGCCAT</mark>TAACATTTTTAAA</th></tr<>	100	42	GGTTAT <mark>CA</mark> AGCAT <mark>CCTGCAACAGTGCCAT</mark> TAACATTTTTAAA
10240TTGCCTGAGTGCAGGAACGGTACGCCAAAGCGTTCACCAG10340AACAAGCAAGAAAGTCCTGAAACAAGACTTTCCCACAAGGCTT10440ACATAACGCCCAAATACCAGTCAGCGAAACCGAAAACGAGGCTCC10540CCTTTTCATCGTGCAAAATCACCAGTAATGGCCGAGGCCGC10640CCCAACTAATATGCCAGAGGAATAACAAAAGAATTAAGAC10740TACGTGGAACCTGAAATCAAAAGAATAACGAAAGAGTTAGAGC10840CCAAGCGGGAAGTTTTTCATGAGGACGGATGGCTGAAACGCGCGCG	101	42	ATTAAT <mark>TA</mark> TGAAA <mark>CTTTACATCGGGAGAC</mark> AGGTT <mark>TT</mark> ATACTT
103 40 AACAAGCAAGAAAGTCCTGAACAAGACTTTCCACAAGATT 104 40 ACATAACGCCAAATACCCAGGACCAAGAACGAGGCTTCC 105 40 CCTTTCATCGTGCAAAATCACCAGGACCAAGAACGAGGCGCC 106 40 CCCAATATATGCAGAGAGAATAACAAAAAGAATTAAGAC 107 40 TAGCTGAAACTCAAAAGAATACCACGGCGCGCGCGCGCGC	102	40	TTGCCTGAGTG <mark>CAGGAACGGTACGCCA</mark> AAGCG <mark>TT</mark> CACCAG
10440ACATAACGCCAAATACCAGTCAGGACGAAAACGAGGGTCC10540CGTTTTCATCGTGCAAAATCACCAGTATTGGCCGAGCCGC10640CCCAATATATGCACAGAGAATAACACAAAAGAATTAAGAC10740TACGTGAACCTGAAATCAAAAGAATACGCCGCGCGGCGCTA10840CCAAAGCGCGAAGTTTTTCATGAGGAACGGATATGATGAAC10939TTAATTTCAGCATAGGTCTGAGGAGAAAAGGGCAAGCCAA11039TTAGTAAATGACAATAGGACCCTGAAGAGGAACCGCATAAACAA11139TAATTGCTGAATATGGCGGTTTTAATGAGGCTTTCAATAA11239ATCAATATCACCAGAAGAACAAACATTGGCCGTCATAAAACAAT11339GAATATACATATATAAATCCTGATTGCGTCATAAAACAAA11434TTTTCATACAGAATACGTCACCAATGAAGAAAACA11534AGCCCTTTAATATCGAATAACGTGACCACCAGGGGGG11634TGTGTGCACCAATGACGAACTAACGGAGGAACAA11734ACACTCGATGTAGGGAGGCCCCCCGGGGGAACCAGAGAGAAACGAAAGAAG	103	40	AACAAGCAAGAAAGTCCTGAACAAGACTTTCCACAAGATT
10540CGTTTTCATCGTGCAAAATCACCAGTATTGGCCGAGCCGC10640CCCAATCATATTGCCAGAGAGAATAACACCAGAGATAAGACC10740TACGTGAACCTGAAATCACAAAAGAATACGCCGGCGGCGCTA10840CCAACGCGAAGTTTTTCATGAGGAACGGATATGATGAAC10939TTAATTTCAGCATAGGTCTGAGAGAAAAGGGCAAGCCAA11039TTAATTGCTGAATATGCGCGTTTTAATGAGGCATTCAATAA11139TAATTGCTGAATATCGCGTTTTAATGAGGCATTCGAC11339GAATATACATATTAATCCTGATGCGCGTTTCAAAACAAA11434TTTTCTTAATACCGCACCAATGAGAAACAA11534AGCCCTTTAATATCGCACTACGAAGAGAACAA11634TGTGTCGCACCTAATGCCACTACGAAGAGAACAA11734ACAATATGTTGTAGGTGAGGCGCTTCGGAACAAGGGGG11834GCCCTTGAGAAAGAGCCCATGTAGAAAACAGCC11934TAGCAAGAAGAAGCCCATGTAGAAAACAGCC12034ACCCTCGTTGAGAATCGAACTAACGGAAAACAGC12132CTGAGACTCGAACGACTAACGGAAACCAACAGGC12232CCGAGAAACTAACGAAAGAAGCACTAACGGAAAACAGC12332CTGAGCGCTAGGAGGCATTGCCCCAAGAGG12432GCGGATAAGTTACCAGAAAGTAAGAAGCACTAACGGAA12532TCACCGTACGAAGGCGACCTGCCCCATGAGGAAAAACCC12632CCCGGCCCTAGAGGCGCACCGCCCATGAGGAAGA1300CCCATAAAGAGCCAACCGCATTGCAACAGGGAAAGAGGAAAAAAAGA13130CCCATAAAAGAGCCAACCCGCATTGCAACAGGGAAAGAAGAAGAAAAAAGAAAAAAAA	104	40	ACATAACGCCAAATACCAGTCAGGACGAAAACGAGCGTCC
10640CCCAATAATATGCAGAGAGAATAACAAAAAGAATTAAGAC10740TACGTGAACCT GAAATCAAAAGAATACGCCGCT GGCGCTA10840CCAAGCGCGAAGTTGAAGAACGGAACGGATATGATGAAC10939TTAATTGCAGATAAGGTCTGAGAGAAAAGGGCAACCCAA11039TTAGTAAATGACAATAGGAACCCATAAACAGTTTAATTG11139TAATTGCTGAATATCGCGTTTTAATGAGGCTTTCAATAA11239ATCAATATCACTATATAATCGCGTTTTAATGAGGCGATTCGAC11339GAATATACATATATATATCCTGATTGCGTCATAAAACAAA11434TTTTCATACAGAATACGTCACCAATGAGAGAAAAAGCGGGGG11634AGCCCTTTAATATCGCATTTGACAAGCGAGGATATA11734ACAATATCTTGTAGGTGAGGCCACCGAGAGATAA11834GCACTAAAAAGGGCGTTTGGAACAAGAGGAGTTCGA11934TAGCAAGAGAAACGCCCTGTAGGAACCAACAGGC12034ACCCTCGTTGAGACTGACGAACACACAGGGAGCCC12132CTGAGAACTAAGGATGACCCCCTAAAGGGAGCCCC12232CTGAGAACCTAAGGCGACCAGGAACAAGGGC12332CTGAGACTGGAACGAGTAATGGAACCAGGGAGCCC12432GCCGGATAAGTTACCAGAAGAGGCACTTGCAACAGGA12532TCACCGTACGGCCACCGCACCCGCACCCGCATTAAAAGCAGA12830TCACAAAAAGAGCCACTGGCACCACCCGATTGAACAGGA13330GGTTTTCAAAAAGAGCCATTAGAACAGAGAATAAGAGAATAA13430TTTGATCAAAAGAGCCACCACCCCTCATTT13230GCCACCAGCCCTTAATGCAGAATAGAAGAGAATAAGAGAATAAGAGAATAAACAAAAGAGA13330GCCTTAAAGCTCATTAACTGAAAAGAGACCAATAGAAAAACAAAAGAGAATAAGAGAATAAGAACAAATAAGAGAATAAGAACAAATAAGAGAATAAGAAGAATAAGAACAAAAAGAAATAAAAAAGAATAAAAAAAA	105	40	CGTTTTCATCG TGCAAAATCACCAGTA TTGGC CG AGCCGC
10740TACGTGAACCTGAAATCAAAAGAATACGCCGCTGGCGCTA10840CCAAAGCGCGAAGTTTTTCATGAGGAACAGGAACAGGCAAC10939TTAATTTCAGCATAGGTCTGAGAGAAAAGGCAAGCCAA11039TTAATTGCAGCATAGGCTCTGAGAGAAAAGGGCAAGCCAA11139TAATTGCTGAATAGCAATAGGAACCCATAAACAGTTGAAGCAAGC	106	40	CCCAATAATAT <mark>GCAGAGAGAATAACAA</mark> AAAGA <mark>AT</mark> TAAGAC
10840CCAAGCGCGAAGTTTTTCATGAGGAACGGATATGATGAAC10939TTAATTTCAGCATAGGTCTGAGAGAAAAGGGCAAGCCAA11039TTAGTAAATGACAATAGGAACCATAAACAGTTTAATTG11139TAATTGCGGAATATGGCGTTTTAATGAGGCCATTCAATAA11239ATCAATATCACCAGAAGATAAAACATTGGCGCTTTCAATAA11339GAATATACATATATATATCAGCGTCATAAAACAAA11434TTTTCATACAGAATACGTCACCAATGAAGAAACA11534AGCCCTTTAATATGCGACTACGAAGGAGGGG11634TGTGTCGACACTAATGCCACCTACGAAGGAGAGTATA11734ACACTATAGTGTGGAGGCCACCGAGAGTGGAA11834GCACTAAAAAGGGCCTTTGGAACAACAACGGGGGA11934TAGCAAGAAGAACGCATGTAGAAACCAACAGGC12132TATAAAGTAGCTTGACCCCTAAAGGGAGCCCC12232CGAGAAACATAAGAACGACGCATATAGAAGGAGCCCC12332CTGAGACTCGAACCGCATCACCGGAACCAAGAG12432GCGGATAAGTACCAGCAGCAGCAGAGAGAGCAGCA12532TCACCGAAGCGATGGACAACCAGCGATTGCAACAGGA12632CCTGGCCCTAGAGGCGACCGCCTCCACCGGATAAAAAACC12732AATCGTCGCAAGCGCGCCACCACCCCCTATT12830TCCAAAAGGCCACCGCCTCACGGCCTACAGAGGC13030CCAAACCAGCGCTTATTTAACGGCAACAGAGGAGAG13330GGTTTTCCACCAGACGCCCCCCCCTATT13430CCTTGCAACCAGCGCCCCCCCCCTGT13530CGTGGCATTAGAACGGCGCCCCCGCCCCGAAT13630ACCCGTCCCAAGCGCCCCCCCCCTTTTTTAACGGAGGAGAAGA13730GCGTACTCCCGGAAGCTGAAACAGGGCGCCGTT13830ACCGTCCCTTTAATTGGGAGGCGCCCCTG	107	40	TACGTGAACCT <mark>GAAATCAAAAGAATAC</mark> GCCGCTGGCGCTA
10939TTAATTTCAGCATAGGTCTGAGAGAAAAGGGCAAGCCAA11039TTAGTAAATGACAATAGGAACCCATAAAACAGTTTAATTG11139TAATTGCTGAATATCGCGTTTTAATGAGGCTTTCAATAA11239ATCAATATCACCAGAAGATAAAACATTGGGGCATTCGAC11339GAATATACATATATAATCCTGATTGCGTCATAAAACAAA11434TTTTCATACAGAATACGTCACCAATGAAGAAACAA11534AGCCCTTTAATTGCGACTCACGAAGGAGAAACA11634TGTGTCGACACTAATGCCACTACGAAGGAGTATA11734ACCATTAGTGTGAGGCGCCCCCGAGAGTGAA11834GCACTAAAAAGGGCGTTTGGAACCAACAGTGGA11934TAGCAAGAAGAACGCATTAAGGAAAACCAACAGTGA12034ACCCTCGTTGAGACTAACGGAAAACCAACAGGC12132CTGAGACTCGAACCGCATCAACGGGAAACCAGCG12232CGAGAAACATAAGAACGAATAAGGAAGGCCCC12332CTGAGACTCGAACCGCATCACCGGAACCAGAG12432GCGGCTATGGAACGAGCGACCAGCGCACCC12732AATCGTCGCATGGAAAAGCAATGAGCGACCAGCGATAAAAACC12830TCACAAAAGAGCCACCGCATTGCAACAGGA13130CCAAAATCTAAAGACCAACGGCTACAAGAGCCA13330GGTTTTCCACCAAGGCCGCCACCCCCCCATTT13430CCTGCCCCAAGCCGCCCCCCCCCCCTGT13530CGTGGCATTAGAACAGGAGGCGCGAT13630AACCGATCAAAATCGAAGAGGCAGCGCCGAT13730GCGTACTCCCCTTATATGCGGAATAGGAAGGCACAA13830AATTGCCATAAAATCGCGAACAACAGGAGCCAAT13930CCATAAAAGCTTCCCTTATGCGGAATAGGAAGGACAA14130TTGGCATCGGAAGATAGCAAGGCGCCTGT139 </td <td>108</td> <td>40</td> <td>CCAAGCGCGAA<mark>GTTTTTCATGAGGAAC</mark>GGATA<mark>TG</mark>ATGAAC</td>	108	40	CCAAGCGCGAA <mark>GTTTTTCATGAGGAAC</mark> GGATA <mark>TG</mark> ATGAAC
11039TTAGTAAATGACAATAGGAACCCATAAACAGTTTAATTG11139TAATTGCTGAATATCGCGTTTTAATGAGGCTTTCAATAA11239ATCAATATCACCAGAAGATAAACATTGGGCGATTCGAC11339GAATATACATATAATCCTGATTGCGCCATAAAACAA11434TTTTCATACAGAATACGTCACCAATGAAGAAACA11534AGCCCTTTAATATCGAATTAACTGAACAGCGGGG11634TCGTGTCGACACTAATGCCACTAAGAGCGAGTGAA11734ACCATATGTTGTAGGGCAGCGACCGAGGGAGTAA11834GCACTAAAAAGGCCGTTTGGAACCAACAGGTGAA11934TAGCAAGAAGAACGCCATGTAGAAACCAACAGTGA12034ACCCTCGTTGAGATACGAACCAACAGGGCCCC12132TATAAAGTAACGTTACCGGAACCAACAGGCCCC12232CGGAGAACTAAGAACGATATAGGAAGGCCTTAT12332CTGAGGACTCGAACGGCATCACCGGAACCCAGAG12432GCGGATAAGTTACCAGAAGGCATTGCACCAGAG12532TCACCGTACGAACGAGCGCACCAGCCACCAGAG12632CCTGGCCTAGAGGCAACGAGCGCCCCC12732AATCGTCGCATGGAAAGGCCATTGCAACAGGGA13830GGTTTAAAGCTCAAAGAGCCATTGCAACAGGGA13930CCCAAATCTAAAGAGCCAACGGCTACACAGGGCCAT13130CCCTGCCGCAAGCCCCACCCCCCCCCCTATT13230GGTTAAAGCTTCAAAAAGAGCCATTGCAAAAGG13330GGTTAAAGCTCCAATTCCTGATTAACAGGAGGAAGA13430TTTGATCACAAAATGCGAGCCACTATAGGAAGTCAATAG13530CCATAAAGCTCCTTTATGGGAAGTCAAAGGAGCCATT13830ATTGCCATAAAATTCTGGAAGATCAAAAGGAGCCCTGT13930CCATAAAGCTCCTTTATGGGAGAGTCATAG <t< td=""><td>109</td><td>39</td><td>TTAATTTCAG<mark>CATAGGTCTGAGAGAA</mark>AAGGG<mark>CA</mark>AGCCAA</td></t<>	109	39	TTAATTTCAG <mark>CATAGGTCTGAGAGAA</mark> AAGGG <mark>CA</mark> AGCCAA
11139TAATTGCTGAATATCGCGTTTTAATGAGGCTTTCAATAA11239ATCAATATCACCACGAGATAAAACATTGGGCGATTCGAC11339GAATATACATATATATCCTGATGCGTCATAAAACAAA11434TTTTCATACAGAATACGTCACCAATGAAAACAA11434TTTTCCATACAGAATACGTCACCAATGAAAACAA11534AGCCCTTTAATATCGAATTACTGAACAGCGGGG11634TGTGTCGACACTAATGCCACTACGAAGGAGTATA11734ACAATATGTTGTAGGTGAGGCCACCGAGGAGGAAA11834GCACTAAAAAGGCCATTGGAACAACAGCGAACTACGGA11934TAGCAAGAAGAACGCATGTGAAAACCAACAGTGA12034ACCCTCGTTGAGATACGAACTAACGGAAACCAACAGGC12132TATAAAGTAGCTTGACCCCTAAAGGAAGCCACCGAA12232CGAGAAACATAAGAACGCATATAGAAAGGAGCCCC12332CTGAGACTCGAACGGCATCACCGGAACCAGAGG12432GCGGATAAGTTACCAGAAAGGCAGCAGCAGCAGCAGCAGCAGC12532TCACCGTACGAACGAGCGCCACCCGACTGGACCAAGGAA12830TCACAAAAGAGCCCACCGACCTGCCCATGAAAAAACC13130CCCTGCCCGCAAGCGCCACCCGCCTACAGAGGAG13330GGTTTTCCAAAAAAGAGCCATCAAAAAGAGCCATTGAAAAAG13430TTTGATGTCAAAAAAGAGCCACTACAGGAAGGAAGA13530CGTGGCATTTAACTGAAAAAGGAACGCCCTGAAAAAAAGAGCCATTAAAGAGGAAGA13830ATTTGCCATAGAATAGCAGAAGGAACGGCCCGTGT13930CCCATAAAAGCTCCATTTAACGGAAATAGAAAGGAACAA14130TTTGCAAAAAGCCACTTAAACGGAAGAACGAACAA14130TTGGCATCCGATTCCGGAAGTTCCATAAA14230GCTGAATTAGCAAAAGCGCCCTTAAAAAGGAACCACAA14	110	39	TTAGTAAATG <mark>ACAATAGGAACCCATA</mark> AACAG <mark>TT</mark> TAATTG
11239ATCAATATCACCAGAAGATAAAACATTGGGCGATTCGAC11339GAATATACATATATAATATCCTGATTGCGTCATAAAACAAA11434TTTTCCATACAGAATACCGCGTCACCAATGAAGAAACA11534AGCCCTTTAATATCGAATTAACTGAACAGCGGGG11634TGTGTCGACACTAATGCCACTACGAACAGAGAGTATA11734ACAATATGTTGTAGGTGAGGCCACCGAGAGTGAA11834GCACTAAAAAGGGCGTTTGGAACAACGAACTGA11934TAGCAAGAAGAACGCATGTAGAAACCAACAGAGTGAA12034ACCCTCGTTGAGATACGAACTAACGGAAACAACGCC12132TATAAAGTAGCTTGAGCCCCTAAAGGGAGCCCC12232CGAGAAACATAAGAACGCATCACCGGAACCAGAGG12332CTGAGACTCGAACCGCATCACCGGAACCAGAGG12432GCGGATAAGTTACCAGAAGAGAGCAATAGC12532TCACCGTACGAACGAGCGACCTGGCCCAGGAG12632CCTGGCCCTAGGACGACCGACCTGCTCCATGTT12630TCACAAAAGAGCCCACCGACCTGCACCAGAGGA13030CCCAAACCGCCACCCGACCTGAGGAGGAACGAGGAG13130CCCTGGCCCAAGCGCCCACCCCCACTTTT13230GTTAAAGCTTCAAAAAAGAGCCACCGCCACCCTCATTT13330GGTTTTCCACCAGAGCGCCACCCCCTCATTT13430TTTGACGATCAGAAAACTGAGAAGAGCCAATAG13530GCTGCATTAAGAGACAAAAGGAGCCAATAG13630AACCGATCAAAATCTGAGAAAGAGCCCATGGGATTAGAAGGAACAA13730GCTGCATTAAGGATCGAGAGGGCCGAT13830ATTTGCCATAGATATGCAGAAGGAACGAACAA14130TCGCATCAGATTCCTTATGGGAGAGTTCCATAAA14130TCGCATCGATTCCGGAAGTTCCATAAA14	111	39	TAATTGCTGAATATCGCGTTTTAATGAGGCTTTCAATAA
11339GAATATACATATATATATCCTGATTGCGTCATAAAACAAA11434TTTTCATACAGAATACGTCACCAATGAAGAAACA11534AGCCCTTTAATATCGAATTACTGAACAGCGGGG11634TGTGTCGACCTAATGCCACTACGAAGGAGTATA11734ACAATATGTTGTAGGTGAAGGCCACCGAGAGTGAA11834GCACTAAAAAGGCCTTTGGAACAAGAGTTTCGA11934TAGCAAGAAGAACGCATGTAGAAACCAACAGTGA12034ACCCTCGTTGAGATACGAACTAACGGAAAACAGC12132TATAAAGTAGCTTGACCCCTAAAGGGAGCCCC12232CGAGAAACATAAGAACGATATAGAAGGAGCACCACCGAGG12332CTGAGACTCGAACCGCATCACCGGAACCAGAG12432GCCGGATAAGTTACCAGAAAGTAAGCAATAAGAAGCATAACGAGAAGCA12532TCACCGTACGAACGAGCGACCTGCTCCATGTT12632CCTGGCCCTAGAGGCCGACCTGACCAGCAGCACCGACCTGCTCCATGT12732AATCGTCGCATGGAAAAGCCAACGGCTACAGAGGA13830GGTTTTTCCACCAGAAGCACACCGCTTCATGTT13230GGTTTTTCCACCAGAAGCCACCGCCTCATTT13330GGTTTTTCCACCAGAAGCCCACCCCCTCATTT13430TTTGATGTCATCAATCGAGAAGAGCCAATAGG13330GGTTTTTGCAAAAAGGTCAATAG13430CTTGATGCATCAATTCCTGATTAACAGGAGGCCGAT13830AATCTGCATAGAATAGCAGAAGGCCCATA13830ATTTGCCATAGATATGCAGAAAGGAATCAATAGGAAGCACATAAGGAATCAATAGGAATAGCAAAGGAACAA14130TGGCATCCCCTTATTAGCGAATT14230AGCTGCATTGCAGAAATCCCCGGAAATCATAGCAACAA14130TGGCATCGCCCGGAAATTCCATTCCAT14230AGCTGCATTAGATTGCAGAAA	112	39	ATCAATATCA <mark>CCAGAAGATAAAACAT</mark> TGGGC <mark>GA</mark> TTCGAC
11434TTTTCATACAGAATACGTCACCAATGAAGAACA11534AGCCCTTTAATATCGAATTAACTGAACAGCGGGG11634TGTGTCGACACTAATGCCACTACGAAGGAGTATA11734ACAATATGTTGTAGGTGAGGCCACCGAAGGAA11834GCACTAAAAAGGCGTTTGGAACAAGAGTTTCGA11934TAGCAAGAAGAACGCATGTAGAAACAACAGCGC12034ACCCTCGTTGAGATACGAACTAACGGAAAACAGC12132TATAAAGTAGCTTGACCCCTAAAGGGAGCCCC12232CGAGAAACATAAGAACGATATAGAAGGGTTATA12332CTGAGACTCGAACCGCATCACCGGAACCAGAGG12432GCGGATAAGTTACCAGAAGGAGCAGATAGC12532TCACCGTACGAAGGAGCGACCTGCTCCATGTT12632CCTGGCCCTAGAGGCTGACGACGACAGAAGGA12830TCACAAAAGAGCCACCGACTTGCAACAGGA13030CCAAATCTAAAGAGCCACCGCACTCACTGAGGC13130GGTTTATCCACCAGAAGCGCCACCACCCGCAT13330GGTTTTTCCACCAGAAGCGCCACTAAAAAATA13430TTTGATGTCACAAAAAGGTCAAAGAGGCCAAT13830ACCGATCAAAAACTGAAGAAGCAACGGGCCAATAGG13930CCATAAAGCTTCAAAAAGGGACCAATAGG13930CCATAAAGCTTCAAAAAGGAGCCACTAATAG14130TTGCCATAGAATGGAGAATGCAGAAACGAATAAGGAACAA	113	39	GAATATACATATAAATCCTGATTGCGTCATAAAAACAAA
11534AGCCCTTTAATATCGAATTAACTGAACAGCGGGG11634TGTGTCGACACTAATGCCACTACGAAGGAGTATA11734ACAATATGTTGTAGGTGAGGCCACCGAAGAGTGAA11834GCACTAAAAAGGGCGTTTGGAACAAGAGTTCGA11934TAGCAAGAAGAACGCATGTAGAAACCAACAGGGA12034ACCCTCGTTGAGATACGAACTAACGGAAAACAGC12132TATAAAGTAGCTTGACCCCTAAAGGGAGCCCC12232CGAGAAACATAAGAACGACGATATAGAGGGAGCCCC12332CTGAGACTCGAACGGCGCACCACGGAACCAGAGG12432GCGGATAAGTTACCAGAAGGAGGCGACCAGAGG12532TCACCGTACGACGAGGCGACCAGCAGATAAAAACC12732AATCGTCGCATGGAAAAGCCATTGCAACAGGAG12830TCACAAAAGAGCCCACCGACTTGAGCCAT12930GACACCAGCCTTTATTTAACGTCAAAAATG13030CCAAATCTAAAGACCCACCGCCACCACCGCCATTAAAAAAGT13330GGTTTTTCCACCAGACGGCCATTAAAAAAGAT13430TTTGATGTCATAAAAGAGCCAATACGGAAGGGCGAT13530CGTGGCATTAGAATTCCTGATTATCAGAT13630AACCGATCAAAATCTGAGAGGCCGAT13730GCGTACTCCCTTATTATGGGAGGCCGAT13830ATTTGCCATAGATATGCAGAAGGACGGCCGAT13930CCATAAAAGCTCATTATGGAAGGAACGAAAAGATAAGGAAAGAAA	114	34	TTTTCA <mark>TA</mark> CAGAA <mark>TACGTCACCAATGAAG</mark> AAACA
11634TGTGTCGACACTAATGCCACTACGAAGGAGTATA11734ACAATATGTTGTAGGTGAGGCCACCGAAGGTGAA11834GCACTAAAAAGGGCGTTTGGAACAAGAGGTTTCGA11934TAGCAAGAAGAACGCATGTAGAAACCAACAGTGA12034ACCCTCGTTGAGATACGAACTAACGGAAACAACGC12132TATAAAGTAGCTTGACCCCTAAAGGAGACCACCGC12232CGAGAAACATAAGAACGATATAGAAGGCTTAT12332CTGAGACTCGAACCGCATCACCGGAACCAGAG12432GCGGATAAGTTACCAGAAAGAACGATAAAGAAGCA12532TCACCGTACGAACGAGCGCACCTGCTCCATGTT12632CCTGGCCCTAGAGGCTGACGACGACGAACAGAGGA12732AATCGTCGCATGGAAAAGCCATTGCAACAGGA12830TCACAAAAGAGCCACCAGCCTACAGGGCA13030CCAAATCTAAAGACCCACCCGCATCAGAGGC13130CCTGCCGCAAGCCTCCAATTT13230GGTTTTTCCACCAGACTGACAAGAGGAAGG13330GGTTTTTCCACCAGATCGCCATTAAAAAATA13430TTTGCATCAAAATCTGAGAGAGGAGGGCGGAT13530CGTGGCATTTAGACTAAACAGGAGGGCCGAT13630AACCGATCAAAATCTGAGAAGGAGCCGAT13830ATTGCCATAAAATTAGGAGAACGGCCCGAT13830ATTGCCATAAAGCTCATATGGAAAAGGAACAAA14130TTGGCATCGGAAATGCGAAAGGAACAA14130TGGCATCGCATTTAGGAATGCAAAAGGAACAA	115	34	AGCCCTTTAATATCGAATTAACTGAACAGCGGGG
11734ACAATATGTTGTAGGTGAGGCCACCGAGAGTGAA11834GCACTAAAAAGGGCGTTTGGAACAAGAGTTTCGA11934TAGCAAGAAGAACGCATGTAGAAACCAACAGTGA12034ACCCTCGTTGAGATACGAAACTAACGGAAAACAGC12132TATAAAGTAGCTTGACCCCTAAAGGAGGCCCC12232CGAGAAACATAAGAACGATATAGAAGGACCCC12332CTGAGACTCGAACCGCATCACCGGAACCAGAG12432GCGGATAAGTTACCAGAAAGTAAGCAGATAAGCAGATAAGC12532TCACCGTACGAACGAGCGACCTGCTCCATGTT12632CCTGGCCCTAGAGGCTGACGACGACGAGGAG12732AATCGTCGCATGGAAAAGCCACGGCACTGCACACAGGA12830TCACAAAAGAGCCACACCGACCTGAACAGAGGC13030CCAAATCTAAAGACCAACGGCTACAAGAGGC13130CCCTGCCCGCCAAGCCGCCACCCCCCACCTCATTT13230GGTTTTTCCACCAGACGCCATTACAAAATA13430TTTGATGCATCAAAAACGGAAGGCCGAT13530CGTGGCATTAAGACTAACAGGAAGGCCGAT13630AACCGATCAAAATCTGAGAAGAGCCACTGC13730GCGTACTCCCTTATATGGTGGTTCCGAAAT13830ATTTGCCATAGAATAGCAGAAGGACCCGCCTGT13930CCATAAAGCTCATTTACCTTATGCGATTT14030GCTTGATTGCGAATAGCAGAAGGAACAA14130TGGCATTGCCGGAAGTTCATTCCAT14230AGTTGCGATTACCAGAGATTTAGCGACTAAA	116	34	TGTGTCGACACTAATGCCACTACGAAGGAGTATA
11834GCACTAAAAAGGGCGTTTGGAACAAGAGTTTCGA11934TAGCAAGAAGAACGCATGTAGAAACCAACAGTGA12034ACCCTCGTTGAGATACGAACTAACGGAAAACAGC12132TATAAAGTAGCTTGACCCCTAAAGGGAGCCCC12232CGAGAAACATAAGAACGATTATGAAGGCTTAT12332CTGAGACTCGAACCGCATCACCGGAACCAGAG12432GCGGATAAGTTACCAGAAGGAGCAGACGAGAGG12532TCACCGTACGAACGAGCGACCTGCTCCATGTT12632CCTGGCCCTAGAGGCGACCGACTGACACAGGA12732AATCGTCGCATGGAAAAGCCATTGCAACAGGA12830TCACAAAAGAGCCACCGGCCTACAGAGGC13030CCAAATCTAAAGACCAACGGCTACAGAGGC13130CCCTGCCGCAAGCCGCCACCCTCCATTT13230GGTTTTTCCACCAGATCGCCATTAAAAATA13430TTTGATGTCATCAAATCCTGAAGAGGCCGCC13530CGTGGCATTAAGATCGAAAGGAGGCCGAT13630AACCGATCAAAATCTGAGAAGGGCCGAT13730GCGTACTCCCTTATATGGTGGTTCCGAAAT13830ATTTGCCATAGATATGCAGAAGGAGCCGCTGT13930CCATAAAGCTCATTTAGCGAATTA14030GCTTGATTGCGAATAGCAGAAGGAACAA14130TTGGCATTGCGAATAGCAAGGAACAAA	117	34	ACAATA <mark>TG</mark> TTGTA <mark>GGTGAGGCCACCGAGA</mark> GTGAA
11934TAGCAAGAAGAACGCATGTAGAAACCAACAGTGA12034ACCCTCGTTGAGATACGAACTAACGGAAAACAGC12132TATAAAGTAGCTTGACCCCTAAAGGGAGCCCC12232CGAGAAACATAAGAACGATATAGAAGGCTTAT12332CTGAGACTCGAACCGCATCACCGGAACCAGAG12432GCGGATAAGTTACCAGAAGAGAGCGACCTGCTCCATGTT12632TCACCGTACGAACGAGCGACCTGCTCCATGTT12632CCTGGCCCTAGAGGCTGACGACGACTGGCAACAGGA12732AATCGTCGCATGGAAAAGCCACACCGACTTGAGCCAT12930GACACCAGCCTTTATTTAACGTCAAAAATG13030CCAAAACAAGAGCCACACCGCCCTCATTT13230GTTAAAGCTTCAAAAAGACTAAGAGGAAGG13330GGTTTTTCCACCAGATCGCCATTAAAAAATA13430TTTGATGTCATCAAATCCTGAATAAGAGCCGAT13530CGTAGCTCCATAGAAGAGCCGAAT13630AACCGATCAAAATCTGAGAAGGAGGCCGAT13730GCGTACTCCCTTATATGGTGGTTCCGAAAT13830ATTTGCCATAGAATATGCAGAAGGGCCGAT13930CCATAAAGCTCATTTACCTTATGCGAATTT14030GCTTGATTGCGAATAGGAAAGGAACAA14130TGGCATCGATTCCCGGAAGTTCCCGAAGAAGGAACAA	118	34	GCACTAAAAAGGGCGTTTGGAACAAGAGTTTCGA
12034ACCCTCGTTGAGATACGAACTAACGGAAAACAGC12132TATAAAGTAGCTTGACCCCTAAAGGGAGCCCC12232CGAGAAACATAAGAACGATATAGAAGGGCTTAT12332CTGAGACTCGAACCGCATCACCGGAACCAGAG12432GCGGATAAGTTACCAGAAAGTAAGCAGATAGC12532TCACCGTACGAACGAGCGACCTGCTCCATGTT12632CCTGGCCCTAGAGGCTGACGACGACGACAGAGGA12732AATCGTCGCATGGAAAAGCCATTGCAACAGGA12830TCACAAAAGAGCCACCGGCTACAGAGGC13030CCAAATCTAAAGACCAACGGCTACAGAGGC13130CCCTGCCGCAAGCCGCCACCACCGCCACCACCTATT13230GTTTAAAGCTTCAAAAAAGATTAAGAGGAAGA13330GGTTTTTCCACCAGATCGCCATTAAAAATA13430TTTGATGTCATCAATTCCTGATTATCAGAT13530CGTGGCATTTAGGCAGCAGCGCCGCA13830ATTTGCCATAGATATGCAGAAAGGGTCCAATAG13930CCATAAAGCTCCATTTACCTTATGCGAAAT14030GCTTGATTGCGAAGAATAGAAAGGAACAA14130TGGCATCGATTCCCGGAAGTTCATCCAT14230AGTTGGATTAGCATCTTAAGAGCACCATAA	119	34	TAGCAAGAAGAACGCATGTAGAAACCAACAGTGA
12132TATAAAGTAGCTTGACCCCTAAAGGGAGCCCC12232CGAGAAACATAAGAACGATATAGAAGGGTTAT12332CTGAGACTCGAACCGCATCACCGGAACCAGAG12432GCGGATAAGTTACCAGAAAGTAAGCAGATAGC12532TCACCGTACGAACGAGCGACCTGCTCCATGTT12632CCTGGCCCTAGAGGCTGACGACGACGACAGAGA12732AATCGTCGCATGGAAAAGCCATTGCAACAGGA12830TCACAAAAGAGCCACCGGCTACAGAGGCC13030CCAAATCTAAAGACCAACGGCTACAGAGGC13130CCCTGCCGCAAGCCGCCACCACCCTCATTT13230GTTAAAGCTTCAAAAAAGATTAAGAGGAAG13330GGTTTTCCACCAGATCGCCATTAAAAATA13430TTTGATGTCATCAATTCCTGATTATCAGAT13530CGTGGCATTTAGGCAGCAGCGCCGCA13730GCGTACTCCCTTATATGGTGGTTCCGAAAT13830ATTTGCCATAGATATGCAGAACGGGCCCGT14030GCTTGATTGCGAAGAATGGAAAAGGAACAA14130TGGCATCGATTCCCGGAAGTTCATCCAT	120	34	ACCCTCGTTGAGATACGAACTAACGGAAAACAGC
12232CGAGAAACATAAGAACGATATAGAAGGCTTAT12332CTGAGACTCGAACCGCATCACCGGAACCAGAG12432GCGGATAAGTTACCAGAAAGTAAGCAGATAGC12532TCACCGTACGAACGAGCGACCTGCTCCATGTT12632CCTGGCCCTAGAGGCTGACGACGACAGAGAAAACC12732AATCGTCGCATGGAAAAGCCATTGCAACAGGA12830TCACAAAAGAGCCACCGACTTGAACAGGAGA12930GACACCAGCCTTTATTTAACGTCAAAAATG13030CCCAAATCTAAAGACCAACGGCTACAGAGGCC13130CCCTGCCGCAAGCCGCCACCCCCCACTTT13230GTTAAAGCTTCAAAAAAGATTAAGAGGAAG13330GGTTTTTCCACCAGATCGCCATTAAAAATA13430TTTGATGTCATCAATTCCTGATTATCAGAT13630AACCGATCAAAATCTGAGAAGAGTCAATAG13730GCGTACTCCCTTATATGGTGGTTCCGAAAT13830ATTTGCCATAGATATGCAGAACGGCCCTGT13930CCATAAAGCTCATTTAACTTATGCGATTT14030GCTTGATTTGCGAAGAATAGAAAGGAACAA14130TGGCATCGGATCCCGGAAGTTCAATCCAT	121	32	TATAAAGT <mark>AG</mark> CTTGACCCCTAAAGGGAGCCCC
12332CTGAGACTCGAACCGCATCACCGGAACCAGAG12432GCGGATAAGTTACCAGAAGTAAGCAGATAGC12532TCACCGTACGAACGAGCGACCTGCTCCATGTT12632CCTGGCCCTAGAGGCTGACGACGACAAAAAACC12732AATCGTCGCATGGAAAAGCCATTGCAACAGGA12830TCACAAAAGAGCCACCGACTTGAGCCAT12930GACACCAGCCTTTATTTAACGTCAAAAATG13030CCAAATCTAAAGACCAACGGCTACAGAGGC13130CCCTGCCGCAAGCCGCCACCACCCTCATTT13230GTTTAAAGCTTCAAAAAAGATTAAGAGGAAGG13330GGTTTTTCCACCAGATCGCCATTAAAAATA13430TTTGATGTCATCAATTCCTGATTATCAGAT13530CGTGGCATTTAGACTAAACAGGAGGCCGAT13630AACCGATCCAAAATCTGAGAAGAGTCAATAG13730GCGTACTCCCTTATATGGTGGTTCCGAAAT13830ATTTGCCATAGATATGCAGAACGCGCCTGT13930CCATAAAGCTCATTTACCTTATGCGGATTT14030GCTTGATTTGCGAAGAATAGAAAGGAACAA14130TGGCATCGGATTCCCGGAAGTTCCAT	122	32	CGAGAAAC <mark>AT</mark> AAGAA <mark>CG</mark> ATATAGAAGGCTTAT
12432GCGGATAAGTTACCAGAAAGTAAGCAGATAGC12532TCACCGTACGAACGAGCGACCTGCTCCATGTT12632CCTGGCCCTAGAGGCTGACGACGACGATAAAAACC12732AATCGTCGCATGGAAAAGCCATTGCAACAGGA12830TCACAAAAGAGCCACCCGACTTGAGCCAT12930GACACCAGCCTTTATTTAACGTCAAAAATG13030CCCAAATCTAAAGACCAACGGCTACAGAGGC13130CCCTGCCGCAAGCCGCCACCACCCTCATTT13230GTTAAAGCTTCAAAAAAGATTAAGAGGAAG13330GGTTTTTCCACCAGATCGCCATTAAAAAATA13430TTTGATGTCATCAATTCCTGATTATCAGAT13530CGTGGCATTTAGACTAAACAGGAAGGGCCGAT13630AACCGATCAAAATCTGAGAAGAGTCAATAG13730GCGTACTCCCTTATATGGTGGTTCCGAAAT13830ATTTGCCATAGATATGCAGAACGCGCCTGT14030GCTTGATTTGCGAAGAATAGAAAGGAACAA14130TGGCATCGATTCCCGGAAGTTCATTCCAT14230AGTTGGATTAGGATCATAGGAGCACCATAA	123	32	CTGAGACTCGAACCGCATCACCGGAACCAGAG
12532TCACCGTACGAACGAGCGACCTGCTCCATGTT12632CCTGGCCCTAGAGGCTGACGACGATAAAAACC12732AATCGTCGCATGGAAAAGCCATTGCAACAGGA12830TCACAAAAGAGCCACCGACTTGAGCCAT12930GACACCAGCCTTTATTTAACGTCAAAAATG13030CCAAATCTAAAGACCAACGGCTACAGAGGC13130CCCTGCCGCAAGCCGCCACCCCCCTCATTT13230GTTAAAGCTTCAAAAAGATTAAGAGGAAG13330GGTTTTTCCACCAGATCGCCATTAAAAATA13430TTTGATGTCATCAATTCCTGATTATCAGAT13530CGTGGCATTTAGACTAAACAGGAGGCCGAT13630AACCGATCAAAATCTGAGAAGGGCCGAT13830ATTTGCCATAGATATGCAGAACGCGCCTGT13930CCATAAAGCTCATTTAGCAGAACGGGCCGAT14130TGGCATCGATTCCCGGAAGTTCCATAA14230AGTTGAGATCAGATCTTTAGGAGCACTAA	124	32	GCGGATAAGTTACCAGAAAGTAAGCAGATAGC
12632CCTGGCCCTAGAGGCTGACGACGACGACGACAAAAACC12732AATCGTCGCATGGAAAAGCCATTGCAACAGGA12830TCACAAAAGAGCCACCGACTTGAGCCAT12930GACACCAGCCTTTATTTAACGTCAAAAATG13030CCCAAATCTAAAGACCAACGGCTACAGAGGC13130CCCTGCCGCAAGCCGCCACCCCTCATTT13230GTTAAAGCTTCAAAAAAGATTAAGAGGAAG13330GGTTTTTCCACCAGATCGCCATTAAAAAATA13430TTTGATGTCATCAATTCCTGATTATCAGAT13530CGTGGCATTTAGACTAAACAGGAGGCCGAT13630AACCGATCAAAATCTGAGAAGAGTCAATAG13730GCGTACTCCCTTATATGGTGGTTCCGAAAT13830ATTTGCCATAGATATGCAGAACGCGCCTGT13930CCATAAAGCTCATTTACCTTATGCGATTT14030GCTTGATTTGCGAAGAATAGAAAGGAACAA14130TGGCATCGATTCCCGGAAGTTCCAT	125	32	TCACCGTA <mark>CG</mark> AACGA <mark>GCGACCTGCTCCATGTT</mark>
12732AATCGTCGCATGGAAAAGCCATTGCAACAGGA12830TCACAAAAGAGCCACCGACTTGAGCCAT12930GACACCAGCCTTTATTTAACGTCAAAAATG13030CCAAATCTAAAGACCAACGGCTACAGAGGC13130CCCTGCCGCAAGCCGCCACCACCCTCATTT13230GTTAAAGCTTCAAAAAAGATTAAGAGGAAG13330GGTTTTTCCACCAGATCGCCATTAAAAATA13430TTTGATGTCATCAATTCCTGATTATCAGAT13530CGTGGCATTTAGACTAAACAGGAGGCCGAT13630AACCGATCAAAATCTGAGAAGGGCCGAT13830ATTTGCCATAGATATGCAGAACGCGCCTGT13930CCATAAAGCTCATTTACCTTATGCGAATT14030GCTTGATTGCGAAGAATAGAAAGGAACAA14130TGGCATCGATTCCCGGAAGTTCATTCCAT14230AGTTGGATTAGATAGATAGAAGGCACTAA	126	32	CCTGGCCC <mark>TA</mark> GAGGCTGACGACGATAAAAACC
12830TCACAAAAGAGGCCACACCCGACTTGAGCCAT12930GACACCAGCCTTTATTTAACGTCAAAAATG13030CCAAATCTAAAGACCAACGGCTACAGAGGC13130CCCTGCCGCAAGCCGCCACCACCCTCATTT13230GTTAAAGCTTCAAAAAAGATTAAGAGGAAG13330GGTTTTTCCACCAGATCGCCATTAAAAATA13430TTTGATGTCATCAATTCCTGATTATCAGAT13530CGTGGCATTTAGACTAAACAGGAGGCCGAT13630AACCGATCAAAATCTGAGAAGGGTCAATAG13730GCGTACTCCCTTATATGGTGGTTCCGAAAT13830ATTTGCCATAGATATGCAGAACGCGCCTGT13930CCATAAAGCTCATTTACCTTATGCGATTT14030GCTTGATTGCGAAGAATAGAAAGGAACAA14130TGGCATCGATTCCCGGAAGTTCATTCCAT14230AGTTGGATTAGATTAGATCTTTAGGGAGCACTAA	127	32	AATCGTCG <mark>CA</mark> TGGAAAAGCCATTGCAACAGGA
12930GACACCAGCCTTTATTTAACGTCAAAAATG13030CCAAATCTAAAGACCAACGGCTACAGAGGC13130CCCTGCCGCAAGCCGCCACCACCCTCATTT13230GTTAAAGCTTCAAAAAAGATTAAGAGGAAG13330GGTTTTTCCACCAGATCGCCATTAAAAATA13430TTTGATGTCATCAATTCCTGATTATCAGAT13530CGTGGCATTTAGACTAAACAGGAGGCCGAT13630AACCGATCAAAATCTGAGAAGAGTCAATAG13730GCGTACTCCCTTATATGGTGGTTCCGAAAT13830ATTTGCCATAGATATGCAGAACGCGCCTGT13930CCATAAAGCTCATTTACCTTATGCGATTT14030GCTTGATTGCGAAGAATAGAAAGGAACAA14130TGGCATCGATTCCCGGAAGTTTCATTCCAT14230AGTTGGATTAGATTAGATCTTTAGGAGCACTAA	128	30	TCACAAAAGAGCCACACCGACTTGAGCCAT
13030CCAAATCTAAAGACCAACGGCTACAGAGGC13130CCCTGCCGCAAGCCGCCACCACCTCATTT13230GTTAAAGCTTCAAAAAGATTAAGAGGAAG13330GGTTTTTCCACCAGATCGCCATTAAAAATA13430TTTGATGTCATCAATTCCTGATTATCAGAT13530CGTGGCATTTAGACTAAACAGGAGGCCGAT13630AACCGATCAAAATCTGAGAAGAGTCAATAG13730GCGTACTCCCTTATATGGTGGTTCCGAAAT13830ATTTGCCATAGATATGCAGAACGCGCCTGT13930CCATAAAGCTCATTTACCTTATGCGATTT14030GCTTGATTGCGAAGAATAGAAAGGAACAA14130TGGCATCGATTCCCGGAAGTTTCATTCCAT14230AGTTTGATTAGATCTTAGGAGCACTAA	129	30	GACACCAGCCTTTATTTAACGTCAAAAATG
13130CCCTGCCGCAAGCCGCCACCACCCTCATTT13230GTTAAAGCTTCAAAAAAGATTAAGAGGAAG13330GGTTTTTCCACCAGATCGCCATTAAAAATA13430TTTGATGTCATCAATTCCTGATTATCAGAT13530CGTGGCATTTAGACTAAACAGGAGGCCGAT13630AACCGATCAAAATCTGAGAAGAGTCAATAG13730GCGTACTCCCTTATATGGTGGTTCCGAAAT13830ATTTGCCATAGATATGCAGAACGCGCCTGT13930CCATAAAGCTCATTTACCTTATGCGATTT14030GCTTGATTGCGAAGAATAGAAAGGAACAA14130TGGCATCGATTCCCCGGAAGTTTCATTCCAT14230AGTTTGATTAGATCTTTAGGAGCACTAA	130	30	CCAAATCTAAAGACCAACGGCTACAGAGGC
13230GTTAAAGCTTCAAAAAAGATTAAGAGGAAG13330GGTTTTTCCACCAGATCGCCATTAAAAATA13430TTTGATGTCATCAATTCCTGATTATCAGAT13530CGTGGCATTTAGACTAAACAGGAGGCCGAT13630AACCGATCAAAATCTGAGAAGAGTCAATAG13730GCGTACTCCCTTATATGGTGGTTCCGAAAT13830ATTTGCCATAGATATGCAGAACGCGCCTGT13930CCATAAAGCTCATTTACCTTATGCGATTT14030GCTTGATTGCGAAGAATAGAAAGGAACAA14130TGGCATCGATTCCCGGAAGTTTCATTCCAT14230AGTTTGATTAGATCTTTAGGAGCACTAA	131	30	CCCTGCCGCAAGCCGCCACCACCTCATTT
13330GGTTTTTCCACCAGATCGCCATTAAAAATA13430TTTGATGTCATCAATTCCTGATTATCAGAT13530CGTGGCATTTAGACTAAACAGGAGGCCGAT13630AACCGATCAAAATCTGAGAAGAGTCAATAG13730GCGTACTCCCTTATATGGTGGTTCCGAAAT13830ATTTGCCATAGATATGCAGAACGCGCCTGT13930CCATAAAGCTCATTTACCTTATGCGATTT14030GCTTGATTTGCGAAGAATAGAAAGGAACAA14130TGGCATCGATTCCCGGAAGTTTCATTCCAT14230AGTTTGATTAGATCTTTAGGAGCACTAA	132	30	GTTAAA <mark>GC</mark> TTCAA <mark>AAAAGATTAAGAGGAAG</mark>
13430TTTGATGTCATCAATTCCTGATTATCAGAT13530CGTGGCATTTAGACTAAACAGGAGGCCGAT13630AACCGATCAAAATCTGAGAAGAGTCAATAG13730GCGTACTCCCTTATATGGTGGTTCCGAAAT13830ATTTGCCATAGATATGCAGAACGCGCCTGT13930CCATAAAGCTCATTTACCTTATGCGATTT14030GCTTGATTGCGAAGAATAGAAAGGAACAA14130TGGCATCGATTCCCGGAAGTTTCATTCCAT14230AGTTGGATTAGATCTTTAGGAGCACTAA	133	30	GGTTTT <mark>TC</mark> CACCA <mark>GATCGCCATTAAAAATA</mark>
13530CGTGGCATTTAGACTAAACAGGAGGCCGAT13630AACCGATCAAAATCTGAGAAGAGTCAATAG13730GCGTACTCCCTTATATGGTGGTTCCGAAAT13830ATTTGCCATAGATATGCAGAACGCGCCTGT13930CCATAAAGCTCATTTACCTTATGCGATTT14030GCTTGATTTGCGAAGAATAGAAAGGAACAA14130TGGCATCGATTCCCGGAAGTTTCATTCCAT14230AGTTTGATTAGATCTTTAGGAGCACTAA	134	30	TTTGAT <mark>GT</mark> CATCAATTCCTGATTATCAGAT
13630AACCGATCAAAATCTGAGAAGAGTCAATAG13730GCGTACTCCCTTATATGGTGGTTCCGAAAT13830ATTTGCCATAGATATGCAGAACGCGCCTGT13930CCATAAAGCTCATTTACCTTATGCGATTT14030GCTTGATTGCGAAGAATAGAAAGGAACAA14130TGGCATCGATTCCCGGAAGTTTCATTCCAT14230AGTTTGAGATTAGATCTTTAGGAGCACTAA	135	30	CGTGGCATTTAGACTAAACAGGAGGCCGAT
13730GCGTACTCCCTTATATGGTGGTTCCGAAAT13830ATTTGCCATAGATATGCAGAACGCGCCTGT13930CCATAAAGCTCATTTACCTTATGCGATTT14030GCTTGATTTGCGAAGAATAGAAAGGAACAA14130TGGCATCGATTCCCGGAAGTTTCATTCCAT14230AGTTTGAGATTAGATCTTTAGGAGCACTAA	136	30	AACCGA <mark>TC</mark> AAAAT <mark>CTGAGAAGAGTCAATAG</mark>
13830ATTTGCCATAGATATGCAGAACGCGCCTGT13930CCATAAAGCTCATTTACCTTATGCGATTT14030GCTTGATTTGCGAAGAATAGAAAGGAACAA14130TGGCATCGATTCCCGGAAGTTTCATTCCAT14230AGTTTGAGATTAGATCTTTAGGAGCACTAA	137	30	GCGTACTCCCTTATATGGTGGTTCCGAAAT
13930CCATAAAGCTCATTTTACCTTATGCGATTT14030GCTTGATTTGCGAAGAATAGAAAGGAACAA14130TGGCATCGATTCCCGGAAGTTTCATTCCAT14230AGTTTGAGATCTTTAGGAGCACTAA	138	30	ATTTGCCATAGATATGCAGAACGCGCCTGT
14030GCTTGATTTGCGAAGAATAGAAAGGAACAA14130TGGCATCGATTCCCGGAAGTTTCATTCCAT14230AGTTTGAGATCTTTAGGAGCACTAA	139	30	CCATAAAGCTCATTTTACCTTATGCGATTT
141 30 TGGCATCGATTCCCGGAAGTTTCATTCCAT 142 30 AGTTTGAGATCTTTAGGAGCACTAA	140	30	GCTTGATTTGCGA <mark>AG</mark> AATAGAAAGGAACAA
142 30 AGTITGAGATTAGATCITTAGGAGCACTAA	141	30	TGGCAT <mark>CG</mark> ATTCC <mark>CGGAAGTTTCATTCCAT</mark>
	142	30	AGTTTG <mark>AG</mark> ATTAG <mark>ATCTTTAGGAGCACTAA</mark>
143 30 TGGAAACGAGGCGAGAATACCAAGTTACAA	143	30	TGGAAA <mark>CG</mark> AGGCG <mark>AGAATACCAAGTTACAA</mark>
144 30 ACGCCAAATAATTATTAAATAAGAATAAAC	144	30	ACGCCAAATAATTAAATAAGAATAAAC

Table S12. Staple sequences for a FV pentagonal bipyramid of 42-bp edge length. The sequence is represented by colors; unpaired nucleotides with blue, and crossovers with orange, the 14-nt seed dsDNA domain with green, and the 4-nt dsDNA domain with red.

Staple ID	Length (bp)	Staple sequences
1	54	CCTTATTAGCGTTTGCCATCTTTTCATTCATCGGCATTTTTCATTATGCCACCC
2	54	AAACAGGGAAGCGCATTAGACGGGA <mark>CC</mark> AGCCTTTACAGAGAACAGTTAGAGATA
3	54	CTAAAGTTTTGTCGTCTTTCCAGACAACAGCCCTCATAGTAAATCCGAGCGGAG
4	54	TCATTAAAGGTGAATTATCACCGTAGGGAAGGTAAATATTGAATCGTACCATTA
5	54	GTGAATAAGGCTTGCCCTGACGAGT <mark>AA</mark> TCAACGTAACAAACTCAGAGCATTGTG
6	54	TTTGAAGCCTTAAATCAAGATTAGGCAGCGAACCTCCCGAGCCATATCGTCTTT
7	52	CTGAGTTTCGTCACCGTTAGTAAATGTCAACAGTTACCCATGTACCGTAACA
8	52	CTTTGAGGACTAAAAAGAATACACT <mark>AC</mark> AAGCGCGAAGCAACGGCTACAGAGG
9	52	ATTATTCTGAAACACGAGAGGGTTG <mark>AT</mark> ACTCAGGATGCCTATTTCGGAACCT
10	52	AGCCTTTAATTGTACACGCATAACCGAAAAGGCCGCAAAAAGGCTCCAAAAGG
11	52	AAATATGCAACTAAATTTCGCAAATGGGGCGCGAGGTAGCTCAACATGTTTT
12	52	TCAGAAGCAAAGCGAGCAAACTCCAACCTTTTGATTACCCTGACTATTATAG
13	52	ATCAGATATAGAAGTTGCTATTTTGCACGCTAACGCGCCCAATAGCAAGCA
14	52	AATCCAAATAAGAAAGAATTAACTGAGCTAATATCGCCATATTATTTAT
15	52	ACATTATTACAGGTAAGAGCAACACTAACCAAAATAACGAACTAACGGAACA
16	52	ACCTTCATCAAGAGAAACACCAGAACTCAACTTAAGGCGCATAGGCTGGCT
17	52	
18	52	
19	52 52	
20	52	
21	52 52	
22	52 52	
25	52 52	
24	52 52	
25	52	
20	52 52	
27	52 52	
28	52 52	
30	52 52	GAGCATGTAGAAACCAATCAATAACCAAAAATAATATCCCTAGAACAACAAGCAA
31	51	GCTATATTTTCATAAGGTTTTTTTTGAACCGAACTGACCAGATACATAACG
32	51	ΑΤΥΥΤΑΤΤΙΤΕΑΤΑΙΘΕΤΗΤΗ ΠΟΛΑΘΕΘΑΑΘΤΟΛΕΘΑΟΤΑΘΑΤΑΘΑΤΑΘΑ
33	51	
34	51	AGAAGGAAAGAATAAGTTTTTTTTTTTTTTTTTTTTTTT
35	51	GATATTCATTCAGGGTTTTTTTTTTTTTTTTTTTTTTTT
36	51	AGTACCTTTCTGGATAGTTTTTTTCGTCCAATACTGCGGACGGA
37	51	ACCAGACGAAGGACAGATTTTTTTGAACGGTGTACAGACCAATCCACCAC
38	51	GCCAGCAAACGGAAACGTTTTTTTCACCAATGAAACCATCGCCACCAGTC
39	50	TTTCCATTAATCGCCTTTTTTTTGATAAATTGTGTCGTAGCGTAACGAT
40	50	CCCCCAGCGCAGGCAAGTTTTTTTGCAAAGAGAGAGAATCCTTGCGGGAGGT
41	50	ATAAGTCCTATTTTCATTTTTTCGTAGGAATCATTACCGAGTTAACAA
42	50	GAACGCGA <mark>GA</mark> TGTAATTTTTTTTTTTTTAGGCAGAGGCATCCGATAGTTGCG
43	50	AGGCTTGCATAATAAGATTTTTTGAATATAAAGTACCAATGGAAAGCGC
44	50	TTTTGCTAAAGAAAGGATTTTTTTACAACTAAAGGAATCGGGGTTTTGCT
45	50	ACCACCGG <mark>AC</mark> GCCACCCTTTTTTTCAGAGCCACCACCGGAATACCCAAA

46	50	TTGAGATG <mark>GT</mark> TATGCGATTTTTTTTTTTAAGAACTGGCCGGTCATAGCCC
47	49	TTCATTCCAATAGTAGTTTTTTTTAGCATTAACATCCCACTACGAAGGC
48	49	CTGTAGCATTTACTTATTTTTTGCCGGAACGAGGCGCTGCGAACGAGT
49	49	AGATTTAG <mark>GT</mark> TGCCAGTTTTTTTAGGGGGTAATAGTACGTTTTAATTCG
50	49	GAGACTCCTGCCACCCTTTTTTTCAGAACCGCCACCGCTGCTCATTCA
51	49	CAACCGAT <mark>TG</mark> AATCCCTTTTTTCCTCAAATGCTTTAAGAATAACATAA
52	47	GCTATCTTTATAAAACAGAGCCG <mark>CC</mark> ATAAA <mark>GTGTTAGCAAACGTAGA</mark>
53	47	CAGGTCTTAAGAGGTATGTTTAGAAATTGCTCAGGTCAGGATTAGAG
54	47	GTTAATAAAGCGAGACTTTGAAA <mark>GC</mark> GATAA <mark>AATCATAACCCTCGTTT</mark>
55	47	AGCCGCCGACGGGGTCAAAAGGT <mark>AC</mark> TGGTA <mark>ATGGCTTTTGATGATAC</mark>
56	47	GACGACAATCATCGAAGAGCAAGAAAACCAACCTTATCATTCCAAGA
57	47	ACGAGGGTAACAAAGTAAATCATAATTATACAAACACTCATCTTTGA
58	47	ATGCCCCCGGTTTAGCGAATAATAATCACCGTATAAGTATAGCCCGG
59	47	TCTCCAAATTTTGCGTCGAGCCA <mark>GG</mark> GGAGTTATATATTCGGTCGCTG
60	47	ATAATGCTCTGAAAAGACGGTCA <mark>AT</mark> CATTT <mark>GGTCAATAACCTGTTTA</mark>
61	35	AGGAGTGTAAAGTAATTTTTTTTTTTCTGTCCAGAC
62	35	AATAGGTG <mark>TA</mark> TTTTTTCTTTTTTTACGTTGAAAA
63	34	CAGACTGTATGGGAAGTTTTTTTTTAAAAATCTAC
64	34	AAATACATACACCAGAATTTTTTTCCACCACCAG
65	34	ACGGGTATTAACAATGATTTTTTTAATAGCAATA
66	33	TTCGAGGT <mark>GC</mark> GAAAGATTTTTTTCAGCATCGGA
67	33	CACAAACAAGCCCGTATTTTTTTTTTTAAACAGTTA
68	33	AAGAGGAA <mark>GG</mark> AGCTTATTTTTTTTTTGCTGAAT
69	33	TCAAAAAT <mark>GG</mark> ACCATATTTTTTTAATCAAAAAT
70	32	ATTTGTAT <mark>CA</mark> ACGGGTCTTTTTCATGAGGAAG
71	32	CTCAGAACCCAAGAGAAAAGTATTAAGAGGCT
72	32	CCTCAGCAGAATTTCTGGTTTATCAGCTTGCT
73	32	ATTCTACTATATAACATACGGTGTCTGGAAGT
74	32	GATGGCTT <mark>AC</mark> CCGAA <mark>ATTGCATCAAAAAGATT</mark>
75	32	AAAGAAGTTAATACCAAAAGATTCATCAGTTG
76	32	GCCGTTTT <mark>TG</mark> AACAA <mark>GTGTTTATCAACAATAG</mark>
77	32	GACACCAC <mark>GC</mark> CGAGG <mark>AGCCGAACAAAGTTACC</mark>
78	32	AGTAACAG <mark>TA</mark> TAAAT <mark>CGATTGGCCTTGATATT</mark>
79	30	CTCCATGTCCACAGGTACAAACTACAACGC
80	30	CGCCAA <mark>CG</mark> CGTTTTTTATCCGGTATTCTAA
81	30	CGAGAATAAAATA <mark>GG</mark> ATTTTTTGTTTAACG
82	30	CCTCATTTACCCAAATCTTGACAAGAACCG
83	30	ATTCAT <mark>TG</mark> AGGGA <mark>GACAAAAGGGCGACA</mark> TT
84	30	AGGACG <mark>TG</mark> CGCGT <mark>TAGTTTGCCTTTAGCG</mark> T
85	30	TGAGAATACAACTTAATTTTCTGTATGGGA
86	30	CCAGAG <mark>CC</mark> TTACCAACCCAGCTACAATTTT
87	30	ACCCACAATTGAGCACACCCTGAACAAAGT
88	30	AATTACCTTTAATTGAGTAGTAAATTGGGC
89	30	GCAAGGCATCACCACCATTTGGGAATTAGA
90	30	TCAGAA <mark>CA</mark> CCGCCTCACCGGAACCAGAGCC

Table S13. Staple sequences for the MV tetrahedron of 42-bp edge length. The sequence is represented by colors; unpaired nucleotides with blue, and crossovers with orange, the 14-nt seed dsDNA domain with green, and the 4-nt dsDNA domain with red.

Staple ID	Length (bp)	Staple sequences
1	59	CAAACGTTATAAACGCTGCGCGTAACCTGGCAAACTGCGCAACTGTTGTTTAATGGGAT
2	58	AGGAGCGGGTGCGCTGGCAAGTGTAGAATTGAGGAAGGTTATATATCTTTAGTGATAG
3	57	TAATGA <mark>AT</mark> GTAAA <mark>GAGAACAATATTACCC</mark> GCCTG <mark>CC</mark> GGCCTCAGGAATTTTCGCACT
4	56	TTTTCACCAATTCGTCATCACGCAAATTAGTTAGAAGTCCACGCTGGTTTGCCTGC
5	56	TCACGACGGGAAGGGAATATCTGGTCAGTACCACACATCGGCAAAATCCCGCGGAT
6	54	GGGCGCCTGAAATTTGGATTATTTACATTGGCATTTTTATAATCTGCCACCGAG
7	54	AATGAA <mark>AC</mark> AAACT <mark>AG</mark> CTAACTCACATTTTTTGCGTTGCGCTCACTCCTAGCAAT
8	53	CCCTA <mark>AG</mark> AAACCAGGCAATTTCGCCATTCGC <mark>CG</mark> GTGTAGTTTTTTTATGGGCG
9	53	TAAAAG <mark>AAAACAGGAGGCCGATTAT</mark> TTTAGACAGGGAGCTTGACGG <mark>GC</mark> ACCGC
10	53	CTGGCCTTTGAGAGAGTTGC <mark>AC</mark> AACAGCTTTTTTTGATTGCCCGTCCACTAT
11	53	ACGTCAAAGCATCACCAAAGGGAGCCCCCGATTTAAACGGTACGCCTCTGAGA
12	51	ACCCTTCTTAAGCGTAAGAATACGTCAGAAGATAAAACAGAGTGGTCAGTA
13	51	CATCACCTTCCTCAAATATCAAACCGCGCCGCTACAGGGCGCTGGTTGCTT
14	50	TTTCCTCACCGTTGGGGTACCGAGCTCGAGACTCTAGAGGATCCGCCCGC
15	49	TTAACACGCCAGCCATTGCAACATACGCTCATGGAAATACAGAGATAGA
16	49	TGACGAGTGATTAGTAATAACATTCCTGAGTAGAAGAACTAATCTAAAG
17	49	TAAAGAACAACCCGTC <mark>GG</mark> AGTGT <mark>TGAAAGGAAGGGAAGT</mark> AGCCGTAAAG
18	49	AGGTCGTGAGACGG <mark>GG</mark> CAAGCGTCAGAGCGGGAGCTGTCTGTCAATCAT
19	49	TGACCGGTAAAACGATTCCGAACCGCCGCGCTTAATCTCAATCCGATCG
20	48	CCGAAACCACCAGTTTTTTTTTTTTTTTTTTTTTTTTTT
21	47	CCAGCAGGGGACGTTTTTTTACGACAGTTGCAAGGCGATTGCTGCAT
22	47	GGTG <mark>GC</mark> GGCCAGTTTTTTTGCCAAGCTTGCA <mark>TG</mark> CCCCA <mark>GA</mark> ACGTGC
23	47	TAAAGTCGGCCATTTTTTTACGCGCGGGGAGAGAGATTCCACTTGACGC
24	46	ATGCGCGAACGAGCACTAACATAGATTAGAGCCGTCAAAAAGCGAA
25	46	TGAACGGCGAAATTTTTTTTAACCGTCTACATTATCATTTGCGTATT
26	45	CACTAAATCGGTGGCGAGTTCCAGTTTGGAACAAGATTGAAAGCC
27	44	AGGTCACGTTATTCAGGTCAACAGTTGAAAGGCGGTCATCAAAA
28	43	GAATAGTTTCGAGATAGGGT <mark>TG</mark> ATTCTCCTTTTTTTGTGGGAA
29	42	TACAAA <mark>CT</mark> TCCTG TCATCTGCCAGTTTGC AGCTT TG AACGAA
30	42	TTTTGAAAAATACCCCGGCACCGCTTCTAACCGTGAGCCAGC
31	42	TGCCTA <mark>AC</mark> GTGCC <mark>AAAGTTGGGTAACGCC</mark> GCCAGCAGCAGCA
32	42	GTGCGGGTTTCTTCGCTATTACAGGGTTTTTTTTTTTCCCCAG
33	42	GCTCACAGCGGTTTTGCGGAACAAAGAACGTTATTACATTCT
34	41	TTTCCATTTTTTGTCGGGAAACCTGTTGAGTGATCGGCCT
35	41	CATCGTGGTGCCGAACATCGCCATTAATGGCTATTAGACTT
36	40	AGTTTGAGTAATACACGACCAGTAATTCTGAAAGTTATCC
37	40	GGGGATGTGCATAACAGTGCCACGCTAATATCCCCTGGGG
38	40	GGTCATATTTGTTTCCTGTGAGGGTGGTTTTTTTTTTTT
39	40	GGCGAACGAACCCTCAAATCAAGTTTTTACGTGGACTCCA
40	37	AGTGGATTCACCAGTCCAGGGCGATGGCTTTACTACG
41	36	ACTTCTTCACGTATCAGGCGAAAATCTTTGTTTGAT
42	36	CCACCAGGGCACAGCAACTCGTATTAATTCCTTTGC
43	36	AGCGAGTATGGGGTCGAGGTGATAATACTTTTGAGG
44	35	GGCCAA <mark>CC</mark> TACAT <mark>TA</mark> CAACATACGAGCTTGAAGCA
45	25	ATTTAAACATTATTTTTTTAATGTG
46	23	TCAATC <mark>GA</mark> AAAGG <mark>G</mark> AATTTTAAA

47	23	TGCTGG <mark>TG</mark> AGAGC <mark>CT</mark> GGCGAAAG
48	23	TTTCAT <mark>CG</mark> AAGTA <mark>TT</mark> AGTCTTTA

Table S14. Staple sequences for the MV tetrahedron of 63-bp edge length. The sequence is represented by colors; unpaired nucleotides with blue, and crossovers with orange, the 14-nt seed dsDNA domain with green, and the 4-nt dsDNA domain with red.

Staple ID	Length (bp)	Staple sequences
1	61	CTTTGACCCTTAGCGATTATACGCCTTGATTTTTTGTAACAGTGCCCGTTCAACACTCAT
2	61	ATAATGCTGTTGCTCAACATG <mark>TC</mark> AGTATGTTTTTTTT AGCAAACGTAGAT GTTGCTGAAT
3	60	CCACGGAGTATAGCTTAAACAGCTTGATAAGACTTGAATCAAGTTTGCCCTTGTCACAAT
4	60	CCGCCG <mark>CT</mark> CAAGAGGCTTTTGCGGGATCCTTGACACTGGCTGACCTTCAATGAGGTTGAG
5	57	TCCAGTATGTTACTTTTAATCATTGTGACCCTCAACACCGTCACCGATTTTGAGCCA
6	57	AAATTA <mark>TG</mark> AATTA <mark>GTAGACTGGATAGCGC</mark> AACAC TC AGTTGATTCCCATTTCTGCGA
7	56	TGGCATCTAGATTTATTCAACTAATGCAAGTCAGGTGTGTCGAAATCCTTGACCTG
8	56	CCGCCAC <mark>CT</mark> TTAGC <mark>GAAGAGGAAGCCCGAA</mark> CCGAT <mark>AGAGGGTTGATATAAA</mark> TAAGT
9	56	TCAGAG <mark>CT</mark> TTTCG <mark>GAAATCAGGTCTTTAA</mark> AACACCACTGACCAACTTTTTAAGAGG
10	55	ACCATT <mark>AC</mark> AACCG <mark>AGCAAAGATATTACGT</mark> TTAAA <mark>TG</mark> CGAGAGGCCCTTTAATTGC
11	55	AATCTCCCTTAGAGCTTAATATGGGATTTTTTTCACGCCACCCTCAGAAGAACCC
12	55	CGAAAG <mark>AA</mark> GAATACACTAAAAGAGTAA <mark>TG</mark> TCACC <mark>CGAGGCTGAGACTCCC</mark> AGCAT
13	54	TTCATGAGGATCATTAAACGGGTAAAATACGATAGCCCTCATAGTTTTGCGTAA
14	54	GGTCAG <mark>TC</mark> AAGCG <mark>CA</mark> ACAACATT TAATGCCACTACGAAGGCACCT AAACGAAAG
15	53	TCCTTTTGATTTCATTTTTGCGGATGGAAAAAAAAGGCTCCAAATTTTAATTG
16	53	AGGCAA <mark>AC</mark> AGCATCGGAACGAGGGTGGCTACAGAGGCTTTGAGGAATGGAACC
17	52	TATCGGTCCAGACCGGAAGCAAATCAGGTCAGGATTAGAGAGTATTCGGAAA
18	51	CGCCAAAATCGAGGCATAGTAAGAGTCCAATACTGCGGAATCTATATTCAT
19	51	TTATAGTCTAAGCGGATTGCATCAAGACAACAACCATCGCCCTACCGATAT
20	50	TATTATTTTTGAAAACATGAAAATGCCCCCTTTTTTTTGCCTATTATTTTC
21	49	TGAATC <mark>CATTACCTTATGCGATTTACTGGCTCATTATACCG</mark> ATACATAA
22	49	ATTCGGTAAGCTGCTCATTCAGTTGGCTTGCCCTGACGAGCCCTGACTA
23	49	TTATTTCAGAGCCA <mark>CC</mark> CGTCG <mark>AGTTGCGCCGACAATA</mark> AAGAT <mark>TT</mark> CAGAC
24	48	ACGA <mark>GA</mark> ATTCTACTTTTTTTTTAATAGTAGTAGCACATATAAA
25	48	GAGTTTCGT <mark>CG</mark> ACGTT <mark>AACAACTTTCAACAGA</mark> AAGGA <mark>AC</mark> CTCAGAGCC
26	47	CACC <mark>CT</mark> AAAGGTGTTTTTTTGCAACATATAAA <mark>AT</mark> CACCG <mark>TC</mark> TTGCTT
27	47	CTCCAAGCGTCATTTTTTTTACATGGCTTTTGAGATAAATACGTTGG
28	47	AAGT <mark>GC</mark> ACCCTCATTTTTTTGAGCCGCCACCA <mark>GG</mark> CGGGGT <mark>G</mark> CTTGCA
29	47	ACAG <mark>AA</mark> ACAAATTTTTTTTAAATCCTCATTAAAGAACCGAAGAACGA
30	47	AGGGATCAAACTACAACGCCTAAAGTTGGAGTGAGACTAAAGACTTT
31	47	TTTG <mark>GT</mark> CATTAAATTTTTTTGGTGAATTAAAATCACCGG <mark>AT</mark> TACCGT
32	46	CGATCTGTAGCATTTTTTTTCCACAGTGTTTAGCTATATTAACGG
33	45	CAATAGAAAAAGCGACAAAATATCGCGTTTGAATTTCCCGGAAT
34	45	GCAGGTCAG <mark>AG</mark> CATAG <mark>GAGAACCGGATATTCA</mark> AAGGCCAAGGATT
35	44	ACTGGT <mark>AC</mark> GGAGATGTTAATAAAACGAATTCATCATCGCAAATG
36	44	CGCAGTCCGCAGACTTGAGATGGTTTAATCAGAAATTGCCATCT
37	42	CTTTCCAACCAGTAAGCAAGCCCAATAGCCGCCACTTGCGAA
38	42	ATCATACCGGTGTCACGACGATAAAAACTTGCCAGCACCATT
39	42	AGTACA <mark>AA</mark> TAAGT <mark>TTTTTCATTTGGGGCA</mark> TACAT <mark>TG</mark> TTGAGA
40	42	GAAGAAAATACCACAGTTTGACCATTAGGCGAGCTGGAGTGT
41	42	TTTAGGAAATCTACTTGTATCATCGCCTTGATACAGAAAAGG
42	42	GGGAGTTATTACCCTGTACAGACCAGGCCGATTGGACCAGAG
43	42	TAAAGTAAGGCAA <mark>GTTGAGGGAGGGAAGC</mark> CAGTA <mark>GA</mark> GGGGGT
44	42	CCCTCGTAAATGTTAGCCAGCAAAATCAGTAAATACCAATAA
45	42	AATAGTATTACCAGTGGAAGTTTCATTCTTAACATTTGACGG
46	42	AACGAGGTCTGAATACCAGAGCCACCACTTAGCGTACGAGAA

47	42	GTAGTAAAAATCAATCATAGCCCCCTTACGGAACCTGGAAAG
48	42	TGACCATATTGGG <mark>CGGTCAATCATAAGGG</mark> CCAGAAGCCTCCC
49	42	TGTAGCGTTTTTTCATCGGC <mark>AC</mark> GCCACCCTTTTTTTTCAGAA
50	42	AGGTGT <mark>AG</mark> AAACG <mark>CGGTTTACCAGCGCCG</mark> ATAGCAAGCTTCA
51	42	TCGAGG <mark>TT</mark> AATTC <mark>GGCACCGTAATCAGTT</mark> TCATA <mark>TA</mark> AAGACA
52	42	AGGATT <mark>AA</mark> ACCACCCCTTGATATTCACATGAACGGAAATCAA
53	41	CGTCACTTTATGAAACCAT <mark>CA</mark> AAGACATTTTTTTAAAGGGC
54	41	GACAT <mark>TG</mark> CAAGG <mark>CTTGCAAAAGAAGTTC</mark> AAAAT <mark>AA</mark> TGCAAC
55	40	GTCAATAACCA <mark>CTACAGGTAGAAAGAC</mark> TAACG <mark>GG</mark> AAACAA
56	40	TTTCATAATCA <mark>TATGCTTTAAACAGTT</mark> TTCAA <mark>CT</mark> AGCCGG
57	39	ACCACCCTCT <mark>CAGAAAGGAACAACTT</mark> TTCAG <mark>CT</mark> TGTCGT
58	39	TAATAA <mark>TT</mark> TGCTA <mark>AGTAAATGAATTTTCA</mark> ACGTAACACT
59	36	AAGCGAATTATCAGACTCAGGAGGTTTTTGTACCGC
60	36	CGTAACACGCTGAGTTTGCTCAGTACTTTGGCGGAT
61	29	TGACAGAAACAGTT <mark>AG</mark> TATTA <mark>AT</mark> CAGCAG
62	29	ATGTACATACATACATCAGAACCGTTGAA

Table S15. Staple sequences for the MV tetrahedron of 84-bp edge length. The sequence is represented by colors; unpaired nucleotides with blue, and crossovers with orange, the 14-nt seed dsDNA domain with green, and the 4-nt dsDNA domain with red.

Staple ID	Length (bp)	Staple sequences
1	60	CATCTTTCGTAGAACCTTATTACGCAGTGTAGCGCCTAAAGTTTTGTCGATTTATACCAA
2	59	AAACCAATC <mark>AC</mark> ACCACCTATAAGTATAGCCCAACAGGTTGATAAGAGGTCATTTTTGCG
3	59	ACCATTAGCAGTTTGCCAGACGTTAGTAAATTTCTTAAACAACAACCATCGTTCACGCA
4	59	GCAGA <mark>TG</mark> CATTA <mark>GCTCAAATGCTTTAAA</mark> TAGCA <mark>AAGAGCCACCACCGGA</mark> GTTACCAGAA
5	57	GGGAGG <mark>TA</mark> CCAAC <mark>GAAAAGGAATTACGAA</mark> CGTTG <mark>GC</mark> TGGAAGTTTCATTTCATATAA
6	57	GCCCAA <mark>TT</mark> GTTTA <mark>ACTGACTATTATAGTC</mark> CACCCTACCACCCTCAGATTTCGCCACC
7	56	TGGCAT <mark>CG</mark> ATTCC <mark>CTCATTGTGAATTACC</mark> GGATA <mark>TA</mark> AAGACAGCATCGTTACGAGG
8	56	GAAGCC <mark>CC</mark> AAAGT <mark>CAATGTTTAGACTGGA</mark> GGCGCATAATGCCACTACGTTGGCACC
9	56	AGTCCT <mark>GC</mark> TTAGA <mark>GATATCGCGTTTTAAA</mark> AGCCC <mark>GC</mark> CAATCCAAATATTTAAACGA
10	55	TTGCA <mark>CG</mark> ATAAAAACCAAAAGTGTACAACAGAGGCTTTGAGAGCGCCAGCCCAAT
11	55	CTCATCGAACCGCCCCCCATTTTCAGGGACAGTTCAAAAACAGGGAAGCAGCCGA
12	54	TTTT <mark>TA</mark> GCAAGCTTTTTTTAAATCAGATATA <mark>GA</mark> TTTAT <mark>CA</mark> AAGACTTCTCATCA
13	51	TTTTAAGATCATTATACCAGTCAGGGGCATAGTAAGAGCAACTTAACCCTC
14	51	AATACTGCTTCATAAATATTCATTGCATGTACCGTAACACTGTTCACCAGT
15	50	GTTTAC <mark>CG</mark> ACTAA <mark>AAGGACAGATGAACGT</mark> AGCGA <mark>GA</mark> ATTGAGTTGCTATT
16	50	ACAAAGAACAAGCAAATAACATAGAAAACGAGAATGCCACCACTCCCTCA
17	49	GTTTAC <mark>CGCTGGCTGACCTTCATTTAATCTTGACAAGAACC</mark> TTATGCGA
18	49	ACAAACTGAAATCCGCGACCTGCTTTACTTAGCCGGAACGATAGCGTCC
19	49	GTATGGGATAAACAACTTTCAACATAAAGGAATTGCGAATTTTTTTCAC
20	49	GTTGAA <mark>AT</mark> AATTGTATCGGTTTATTGCTTTCGAGGTGAATGAATTTTCT
21	49	GTATCACCTGGAGGTTTAGTACCGCAGAAGCAAAGCGGATTAAAAAGAT
22	49	TAAGAG <mark>GTTCGAGCTTCAAAGCGTACCGGAAGCAAACTCCG</mark> GAATAGGT
23	48	CAGT <mark>TA</mark> ATTCTACTTTTTTTTTAATAGTAGTAGCAACGGTGTGAAGAAA
24	47	GTAG <mark>CA</mark> CATTCATTTTTTACCGATTGAGGGAGAGCAGCGTCATTAC
25	47	ATCA <mark>CG</mark> AAACGCATTTTTTTTATAATAACGGAATTAGCGT <mark>TC</mark> TGTAGC
26	47	GATG <mark>GA</mark> ACAAGATTTTTTTAAAATAATATCCCACTCCTTTCAGGATT
27	47	TAACCCATTTGGTTTTTTGAATTAGAGCCAGCGACAATGACAGCTT
28	45	GCGCGAAACATAACGATGTTTTCATCGGCATTAAGACTAATACAT
29	45	TATTAAGAG <mark>GG</mark> GCGGA <mark>TAGGAGGTTGAGGCAA</mark> ATAAA <mark>TC</mark> TGAATT
30	44	GGAAACCGA <mark>GC</mark> GGAAC <mark>CGCCCAATAGGAACCA</mark> ATCCC <mark>CA</mark> CGGGA
31	44	ACCATTAAGCTATAAATTAAAGGTGAATTTTGCAGGTAAGGCTTG
32	44	GAATTAATTGAACACCCTGA <mark>AT</mark> TTTTAAGTTTTTTTAAAAGTAA
33	44	TGCCAG <mark>TG</mark> AACGC <mark>GGCAAAGACCTGTTTA</mark> TAATG <mark>CT</mark> TATTACAG
34	43	CGGAATA <mark>AA</mark> AATAC <mark>GGACGGTCAATCATAA</mark> TAGTA <mark>AA</mark> GAGGGT
35	42	CAGAACTTCGCAAATTAATAAGTTTTAAAAAAAAGGAAACAC
36	42	CGGGG <mark>TC</mark> GATTGGCCATCGATAGCAG <mark>CC</mark> GGAGTGAGGATTAG
37	42	GTTAAT <mark>GC</mark> CAGTA <mark>AGATATTCACAAACAG</mark> GTCAG <mark>AT</mark> TTGCTC
38	42	GACGGA <mark>AT</mark> TTTGC <mark>GCAAAGCTGCTCATTG</mark> CTTGA <mark>GT</mark> AGTTTG
39	42	ATCATACTTTTAAAAAACGAACTAACGGCATTCAACCTAATT
40	42	ACATAA <mark>AT</mark> ACACT <mark>AACGGAGATTTGTATA</mark> GACAG <mark>CC</mark> ATAGCC
41	42	ACCAGTGTTAGCAA <mark>AG</mark> ACCCCCAGCGAAGTTGCGC <mark>CA</mark> AAATC
42	42	TACCGT <mark>TC</mark> CCCCT <mark>GTCCTCAAGAGAAGGATTAGAAA</mark> TAAACA
43	42	TTTACGATGGAAAG <mark>CT</mark> ATTATTCTGAACTTTAATT <mark>GT</mark> CCTAA
44	42	CCCTTA <mark>TA</mark> CCCAA <mark>AACATATAAAAGAAAA</mark> AAACG <mark>AT</mark> GATAAA
45	42	CCTGTT <mark>TG</mark> ATACA <mark>TGAGTAGTAAATTGGC</mark> AGTGA <mark>AG</mark> AGTTAA
46	42	AGGCCG <mark>CA</mark> TTATTCTTTTCATTTGGGGCGTAGATTATGGTTT

47	42	CCAAAT <mark>CA</mark> CTTTA <mark>AAATTCTGCGAACGAG</mark> CGAGCTAAATATT
48	42	AATTTCAAACGTAAGGATCGTCACCCTCGGAAGGTGAAAAGG
49	42	ATTCCA <mark>CC</mark> ATCGCCAAGAGGCAAAAGAAGGTGGCAAGAACTG
50	42	ATTCTAATACAAAAATTTAGGAATACCAAACAACATGTAGCT
51	42	CAACAT <mark>GA</mark> GGCAA <mark>GAGGCGTTTTAGCGAT</mark> CCAGA <mark>GC</mark> TAATGC
52	42	AATCTA <mark>CT</mark> AACGCCCTAACGAGCGTCTTACCTCCCCAATAA
53	42	AGATACAGTTAATATATGCAACTAAAGTTTAACATGACTTGC
54	42	AGTACCACTGAGACCCTATTTCGGAACCGCAGTCTCCTCATT
55	42	GCATGATTTTCGGTCCTCATAGTTAGCGAAGTACAAAACACT
56	42	AATAAG <mark>AC</mark> CACAA <mark>GAGGCTTTTGCAAAAT</mark> TGAAA <mark>GG</mark> ACTTTT
57	42	ACCAACTGAAGTTTATCAGAGAGATAACGCAAGAATCATATG
58	42	TCATGA <mark>GA</mark> GAAAA <mark>TACAATGAAATAGCAC</mark> GCTAA <mark>TT</mark> GCCAGA
59	42	AATTGA <mark>GA</mark> TAGCT <mark>ATTGTCACAATCAATG</mark> AAGTT <mark>TC</mark> GAACTG
60	42	GGGGGTAAGGGAACCCATTAAACGGGTAGTTTATTTCTTACC
61	42	TTCCTT <mark>AC</mark> AGAGC <mark>CCAGAACCGCCACCCC</mark> TTTAC <mark>CC</mark> GTCAAA
62	42	ATCAGGTTCAGAACAGAACCGCCACCCTTCATTCCTTACCGC
63	42	AATGAA <mark>AG</mark> GAATC <mark>AAAGAACGGGTATTAC</mark> ACCCT <mark>CC</mark> GCCACC
64	42	GAGCCG <mark>CA</mark> ACCAA <mark>GTTATTTTCATCGTAA</mark> TAGCA <mark>GA</mark> TCAAAA
65	42	CTCAGA <mark>GA</mark> CCATA <mark>ACCTTTACAGAGAGAG</mark> CCGTTTTACCGCA
66	40	CAATGAAACCT <mark>TGCGTCATACATGGCT</mark> GCCCG TT AGAAAG
67	40	AGTGTACTGGG <mark>GTCACCGACTTGAGCG</mark> ATATA <mark>TC</mark> CAAAAG
68	40	CCCTGACGAGCTTCGGTCGCTGAGGCATCACCGTCAATAA
69	40	GTAGAAAGATA <mark>ACTTAATTGCTGAATA</mark> TCAAC <mark>AA</mark> TCCGGT
70	40	AAGATTAGTTAAAAGACAAAAGGGCGAACGGCTGACCAGG
71	39	AAAGCCACATTGACAAGTGCCGTCGAGAACACATGAAAG
72	39	AGAGAGTGGGTTGAAGAGCCGCCGCCAGGAAGCATGTAG
73	39	GATACCGTCTTTCCTTTAGCGTCAGACTATAGCACCATT
74	36	CGCATAGAGACGACCCAGCTACAATTTTTATCCTGA
75	36	TTGTGT <mark>CA</mark> CAACG <mark>CT</mark> GCCATCTTTTCTTTAATCAAA
76	36	GAACAACGTTTCAGACCGTAATCAGTTTTCGACAGA
77	35	GAGCCTTATCTCCAACGGGGTCAGTGTTTTTGAGT
78	34	GTTGAGTAAACAGCCATATTAAGGCTTATAGATA
79	28	ATCTTTTGAAGCTTTTTTCTTAAATC
80	28	ATCAAAGGCCGGATTTTTTTAACGTCAC
81	27	AACAGTTTTGATTTTTTGATACAGG
82	26	AGAACATAATCGGTTTTTTTCTGTCT
83	25	AACCTCGCAAAGTTTTTTTACACCA

Table S16. Staple sequences for the MV octahedron of 84-bp edge length. The sequence is represented by colors; unpaired nucleotides with blue, and crossovers with orange, the 14-nt seed dsDNA domain with green, and the 4-nt dsDNA domain with red.

Staple ID	Length (bp)	Staple sequences
1	60	CCGTGTTTTTTTTGATAAATAAGTTACTAGAAAATTTTTTTT
2	60	ATAGCATTTTTTTGCCTTTACAGATCAAGAAAACTTTTTTTAAAATTAATT
3	59	AGACT <mark>GCACCATTACCATTAC</mark> AGCAAAATGAACGGTTTGACCAGGCGCATAGACCGTCA
4	59	GCCTA <mark>ACACCGGAATCATAAG</mark> CGTTA <mark>AA</mark> CCGAGTATTTTCTGTCCATCACGCTAATGGT
5	59	TTCTTAAGAAGAATCAGTATTAACACCTGGTCAGCGCTTTTGCGGGGATACCCGATAGTT
6	59	AATAA <mark>GAAAATTCATATGGTG</mark> TAAAACGCCCGAAATTTAAATATCGCGTTTTAGGGTTA
7	59	GGGGTACAACCTAAATCCTTTGCCCGACAGATGAGGCCTCAGGAAGATCCTTAGACTGG
8	58	CCGACTTTATCTAAGTCGCTGATTTCAGGGAGTTGACAACATTTTTTTACCATCGCCC
9	58	GATTAATTTTTTTGACGCTGAGACGCCAACATGTTTTTTTT
10	58	TGCTGATTTTTTTGCAAATCCACAAATATATTTTTTTTTT
11	58	TTAACAAAGAGTCAAACCCGTCTTTTCCGTGG <mark>GT</mark> AGCCAGCTTTTTTTTTTCATCAAC
12	57	TCATCAACGTATTAAAACGAAAGTTTAAGAATACAGAAGTTTTTTTT
13	57	GTACCGCGCCTGTTTCGTGCCAGTTTTAATGAATAGCAAGCGTTTTTTGTCCACGC
14	57	IIIIIGCAAAACIAAAATTTAGAAGTATTAGGGCGACATAACAAAGCTTTAIICAGIG
15	57	
16	5/	
17	57	
18	57	
19	5/	
20	33 55	
21	55 55	
22	55 55	
23	55	
24	55	
25	55	
20	55	GTCGAAACCCCAGCAATAGATAGATACATGGAGGGATATTCATTACCCAAAAAAAA
28	55	GAACCTAATACTTCTGCCAGTTTTTGACGACGACGACTACTGCGTTTTTTTGAATCGT
20	53	GCTGGCAAGTGTTTTTTTTTTTTTTAGCGGTCACGCCTTGAGGCCATAAGAATATAGAAA
30	52	
31	51	ACGTAGTTTTTTTTTTTTAAAATACATACAAAACAATAACGGTTTTTTTT
32	51	ACGAGCTTTTTTTGTCTTTCCAGACATGTTCAGCTATTTTTTTT
33	51	GAAGATTTTTTTTAAAACAGAGGTGTTGAAAAGGAATTTTTTTT
34	51	CAAACATTTTTTTTTTTTCGACAACTTATAATCCTGATTTTTTTT
35	50	GCCCGGAGTGCCTTCAAGGCAAAGATCATTTTTTATTTTTTTACCAATAG
36	50	AAATAAGAGAATGA <mark>CA</mark> CTCCA <mark>ATTTTAATGGAAACAT</mark> ATTAA <mark>TT</mark> AGGTCA
37	50	CAAAATCGCGACCT <mark>GA</mark> ACCGG <mark>AAGGTAAATATTGACA</mark> GCCGT <mark>CG</mark> ATTATA
38	50	GGCATA <mark>GG</mark> AAACA <mark>CTTATTTTGTCACAAT</mark> GCGTA <mark>GG</mark> ATTTAGTTGATTAA
39	50	AAATGTACTACGTG <mark>AG</mark> TAATG <mark>CTAATTTTAAAAGTTT</mark> ATCAT <mark>CC</mark> AGCCAG
40	50	CAGAGCGGAATCATTACCGCGTTTTTAGAGCGGGATTTCAGGAGGCTGAC
41	50	TTCACAGTCGTCTT <mark>TA</mark> CCGCC <mark>AACGCGAGGCGTTTTG</mark> CTATT <mark>TA</mark> GTACAA
42	50	GCTTTT <mark>GC</mark> GCCACCCAAATAAGAAACGATAAGAGATTTTCTTTTAGGATC
43	50	CCACCAAATAATAAGAGCAAAAGAATTAAGAGAAGTTTGATTAGCGTTCT
44	50	TGTTGTCGCCAGGG <mark>TC</mark> AATTC <mark>CAGTATAAAGCCAACT</mark> ACCTT <mark>TT</mark> GCGGGC
45	50	TTGATAGTGGCGAG <mark>AA</mark> ATAAC <mark>AACAGTGCCACGCTGA</mark> TCAAA <mark>CC</mark> TCAGCA

16	40	CCCTAACAATCATACCCATTCCAACAACAACAATCCTCACTCACACA
40 47	48	
4/	4 /	
48	4 /	
49	47	
50	47	
51	46	AACAAACAGAGAATTATCACCGTTIGGAGGTTIAGTACCTTTAACG
52	46	IIGAAATCAICIICTACAGAGGTTTGGACTAAAGACTTTCGAGAAA
53	46	TCAAAAAGAGGCATTACCGAGCTTTTCGTAATCATGGTCGCCATAT
54	46	AAATCTCCAAATTTTTTTAAAAAGGCTCCAAAGCGACAGATCGATA
55	46	TAACCCTCGTTTTTTTTTACCAGACGACGATATCAACGTTCAACC
56	46	AATCAAAAGAATTTTTTTTAGCCCGAGATAGGCCGGAAGTGCGTTA
57	45	TGGTAATAAGTTTTTTTTTTTTAACGGGGTCAATAGGTGAACATAA
58	45	TAAACAACTTTTTTTTTCAACAGTTTCAGCTTTCATACCGAAGC
59	45	TTGAGGCAGGTTTTTTTCAGACGATTGGCCACCCTCAGGCTTAT
60	45	GGACGTTAACGGAAGGAATTGCGAATAACGGCATTGTTACCAGAA
61	44	ACTACAATTAGCGTTTAGTAAATGAATTCTCAGAGCTCCCGACT
62	44	CGTTGGTATGCTTTCAAAAATCAGGTCTAGCGAACAATCAAT
63	44	CTTTCCGACCGTCTCCCAAATCAAGTTTTCCATTACATTATCAT
64	44	GCGAAA <mark>GC</mark> TTGACGGGAAGAAAGCGAAAAGCAATAGCAGCAAAT
65	43	ACATTCAAATTTCAATGGCAACATATAAACAGTACCTCATTCC
66	43	AGCGCAGTTTTCAGGTTGCCAGTTACAAACCAGACGCGCGCG
67	42	GATTAGTAAGGAA <mark>GGGGAAAGCCGGCGAC</mark> GTCACCCCTCAAT
68	42	GAAGCA <mark>AC</mark> ATAAATAAACAGTTCAGAAAAATGGGATAATTTT
69	42	TGACCG <mark>TACTTCGCGTCTGGCCTTCCTGA</mark> ACAAA <mark>CG</mark> AAAACA
70	42	CCCTCA <mark>AG</mark> TAGAT <mark>GCTGTAAATCGTCGCG</mark> TACAT <mark>AC</mark> AGACCG
71	42	GCAAT <mark>AA</mark> AAATCTACGAAAGAGGACA <mark>GA</mark> TCACCAGTGGAAAC
72	42	GCCTT <mark>AA</mark> GCATTCCACTGAGACTCCT <mark>CG</mark> AGTTAAGCTTTGAA
73	42	TAGTCTATGGAAATATCGTTAGAATCATTTTCATCGGGCTAT
74	42	AAAGGTGCACTAA <mark>CA</mark> AGTACAACCCGATATATTCGAATATCT
75	42	CTTAAT <mark>TA</mark> AAATC <mark>AG</mark> CCAGCTGGTGAGCGAGTAA <mark>CA</mark> TAGTGA
76	42	ATTTTTGAATT <mark>AC</mark> GCCGCCAGAAAAGGGACATTACAGACAAT
77	42	AAGGAACCCTTATTGTAAGCAGATAGCCAAAAGAACCAGTCA
78	42	ATAAATCCTTAGAGCAATTACCTGAGCAGAAGCGCAAGTATA
79	42	AAAATACACCATCAATCAGGGCGATGGCCGCACTCATATTCC
80	42	CTTTAAACATTGGCATAGAACCCTTCTTAATCAGTAAGGAGC
81	42	TTTAGAGACAGCATGCTGAACCTCAAATAGAGCCACTTCTTT
82	42	ACGAACTGGGAAGAATAACGGAATACCCGAACAAATTCGGTC
83	42	ATAGCCCAACTAAACAACATTATTACAGCATTATACTGGCAT
84	42	CCTTTT TACTCCTTTTTAAGAACTGGCTG TAGAA <mark>AG</mark> AATAGA
85	42	GATTAAGAAGAAAAAGCGTTTGCCATCTGGAGTGAGATTCAT
86	42	GATACATACGAGTAATTTTCAGGTTTAAAATAAGTCAGAACG
87	42	ACCACGGCGTCAGATCCCAATTCTGCGATTCGCAAATTACGA
88	42	AGTAGTAAAAAGGAATGGTCAATAACCTAGTTGATTGAATAT
89	42	ATATAACGTTTAGCAGATACATAACGCCAATTGGGCAAAGAC
90	42	ACAGTAAAGAAACGCTTGAGATGGTTTACTAATGCTATATTT
91	42	ATTTATCGAGAATCATAGCTGTTTCCTGAAACGACAAAGGGG
92	42	AAACAGGAAAGAAGATTTTTGCGGATGGATACAGGGAGTAAC
93	42	AGTGCCCTTGATATATAGACGGGAGAATTCATTCTTAATT
94	42	CGAATTATTAACTGTGCCGTCGAGAGGGGTATAAAACATCCA
95	42	GCTGAATAGCATTACAGTTAATGCCCCCGGATAAGAACACCC
96	42	ΑΓΓΑGGCTGCCTATCTACTACTAGTAGTATAATGCGCAGAGG
97	42	ΤGAACAAAAATCGCTGTAGCTCAACATGATCAATTTTCGGAA
98	42	GATGTGCCTATTACTAGGTCTGAGAGACGCTCAACTTGTTAT
99	42	GAAATTTTTTTCATGAAAGTATTAAGAGGCATGGGATTTTGC
11	74	

100	42	CTCATAGCGCCTGTAATCAAGATTAGTTAGCGAACCCGCCAC
101	42	CCTCAGACCAGACGAACGATCTAAAGTTCGTCACCTGCACCC
102	42	TTAGGAGAATTATCGCTGGCTGACCTTCCGAGGCGAGATTTG
103	42	GACGGGCGGGTGGTATATAAAGTACCGACCCAATCCTCAGAA
104	42	TATTTA <mark>TC</mark> AAAAG <mark>GCGTATTGGGCGCCAA</mark> ACAGC <mark>TA</mark> TACATG
105	42	CCGCCACAAGCGTCGATTGCCCTTCACCCGGTTTGTAAAGTA
106	42	GGAGAGGGCCTGGCTTTACCGTTCCAGTCCTCAGAGCCATAT
107	42	ATTCTGTATAAACAGCCACCACCTCATCTCTGAACCTGAGA
108	42	CTCTTCGTGCAAGGGTCACGACGTTGTATGTGAAAAGTAGGG
109	42	GCGAAAAGCACCGCAGAAGGAGCGGAATTGAGTAAAACGGGT
110	42	TATCATCCGAAACAAACTAATAGATTAGGGAAATTGTAATCT
111	42	CACCCGCGAGAAGTAATAATCGGCTGTCATATCCCATTGCGT
112	42	AAAAATATTTCCTTTACGCCAGAATCCTCGCGCTTGGTGGTT
113	42	TGCGCTCGTTTGATAATGCGCCGCTACAGGAACGGATCATTC
114	42	TTAGACAGGGCGCGCAGGCGAAAATCCTACTGCCCGAACAAG
115	42	CAAGAACAAGTCCTGCTTTCCAGTCGGGGCCCCCAGTACTATG
116	42	GAGCTTTTTTTACGTATAACGTGCTTTCCCCTTGACAGGAGG
117	42	GCGAACTACGTGGCCTGGCCAACAGAGAGATTCACCTGAAAT
118	42	CCAAGCGGCCTGATTTACTTAGCCGGAAATCAAGAATTCATT
119	41	
120	41	GGTGGCTTTTTAAAAATACCAAGTTACAAGTCAGAGCTCAGT
120	41	TGGTTTAAACCTGTATCAACAATAGATGGGTATTAGGGATT
121	41	GAACGCAGAGTACCAATTTCATTTGAAAATCCTTGGCGGAT
122	41	GTGGACACCAGGCGACAAAGAAAAGAAAACCACCTTCTGGT
123	40	
124	40	
125	40	
120	40	TTTGCGGAACCGTTCATGAGGAAGTTTTTGGGGTCAAAGG
127	40	TECEGEAGETCCCCEGAACCECCTCCTTCTETAGACAECC
120	40	
129	40	
130	40	GCAGCACTTAAAAAAGAACAATATTACCTTTTGTATCGGT
131	40	
132	40	
133	40	GATTGAGTTGAGGACACTCATCTTTGACTCAGCGAGGGG
125	40	
135	20	
127	20	
120	29	
120	20	CATTCCATATCAAAATTTTTTTTTTTTTTTTTCCACTTACC
139	38	
140	27	
141	37	
142	24	
145	24	
144	24	
145	21	
140	21	
14/	21	
140	31 21	
147	51 25	
150	20	
151	25	
152	24	
133	24	

154	23	CCGAAA <mark>TC</mark> ACATT <mark>AA</mark> TCCTAATT	
155	21	TCATTT <mark>GG</mark> GAAGT <mark>TT</mark> TTTACA	
156	21	CCTATT <mark>AG</mark> GGTTT <mark>TG</mark> GGTAAT	
157	21	GAGTTG <mark>CC</mark> GGCCA <mark>AA</mark> CGACAA	
158	21	GTTGCT <mark>TC</mark> GATTA <mark>AA</mark> AACCAA	
159	21	ACGCATAAG <mark>GC</mark> AGACGGTCAA	
160	21	TGACAA <mark>GC</mark> TCCAT <mark>GA</mark> AATTGT	
161	21	ATTAAATGC <mark>GG</mark> GCCAGTGCCA	
162	21	CCGCTC <mark>AT</mark> TTCCC <mark>AC</mark> GATTAA	

Table S17. M13 scaffold sequences.

M13 scaffold sequence

(1-1000)

AATGCTACTACTACTAGTAGAATTGAGAATTGATGCCACCTTTTCAGCTCGCGCCCCAAATGAAAATGAAAATATAGCTAAACAGGTTATTGACCATTTGCGAAATGTATCTA ATGGTCAAACTAAATCTACTCGTTCGCAGAATTGGGAATCAACTGTTATATGGAAAGGAAACTTCCAGACACCGTACTTTAGTTGCATATTTAAAACATGT TGAGCTACAAGCATTATATTCAGCAATTAAGCTCTAAGCCATCCGCAAAAATGACCTCTTATCAAAAGGGAGCAATTAAAGGTACTCTCTAATCCTGACCTG TTGGAGTTTGCTTCCGGTCTGGTTCGCTTTGAAGCTCGAATTAAAACGCGATATTTGAAGTCTTTCGGGCTTCCTCTTAATCTTTTGATGCAATCCGCT TTGCTTCTGACTATAATAGTCAGGGTAAAGACCTGATTTTTGATTTATGGTCATTCTGGTCTTCTGAACTGTTTAAAGGCATTTGAGGGGGGATTCAATGAA TATTTATGACGATTCCGCAGTATTGGACGCTATCCAGTCTAAACATTTTACGTCATTACCCCCTCTGGCAAAACTTCTTTTGCAAAAGCCTCCGCTATTTT GGTTTTTATCGTCGTCGGTAAACGAGGGTTATGATAGTGTTGCTCTTACTATGCCCTCGGCAAAACTTCTTTTGCAAAAGCCTCTCGCATTAGTTGAATGTG GTATTCCTAAATCCAACTGATGAAACGAGGTTATGATAGTGTGTCTCTTGTCAGTTGGTTTTATAACGTAGAATTTTCCTCCCAACGTCCTGGTCTTG GTATAATGAGCCAGTTCTTAAAATCGCATAAGGTAATTCACAATGATTAAAGTTGAAATTAAACCATCTCAAGGCCAATTTACTACTCGCTTCTGGTGTTT CTCGTCAGGGCAAGCCTTATTCACAATGAGCAGCTTTGTACGTTGATTGGGTAATGAATATCCGGTTCTTACTACCGGTTCTTGCAAGAGTTACTCTGGTGTTT

(1001 - 2000)

GCCAGCCTATGCGCCTGGTCTGTACACCGTTCATCTGTCCTCTTTCAAAGTTGGTCAGTTCGGTTCCCTTATGATTGACCGTCTGCGCCTCGTTCCGGCT AAGTAACATGGAGCAGGTCGCGGATTTCGACACAATTTATCAGGCGATGATACAAATCCCGTTGTACTTTGTTTCGCGCTTGGTATAATCGCTGGGGT CAAAGATGAGTGATTTTAGTGTATTCTTTTGCCTCTTTCGTTTTAGGTGGGCCTCGTAGTGGCATTACGTATTTACCCGTTTAATGGAAACTTCCTC ATGAAAAAGTCTTTAGTCCTCAAAGCCTCTGTAGCCGTTGCTACCCCTCGTTCGATGCTGTCTTTCGCTGCGAGGGTGACGATCCCGCAAAAACGGCCT TTAACTCCCTGCAAGCCTCAGCGACCGAATATATCGGTTATGCGTGGGCCATGTGTGTCATTGTCGGCGCAACTATCGGTATCAAGCTGTTTAAGAA ATTCACCTCGAAAGCTGATAAACCGATACAATTAAAGGCTCCTTTTGGAGGCCTTTTTGGAGGATTTCCAACGTGAAAAAATTATTATTCGCAAA ACTCTTAGTTGTTCCTTTCTATTCCACTCCGCTGAAACTGTGAAAGTGTTTAGCAAAATCCCATACAGAAAATTCATTACTAACGTCTGAAAGAC GACAAAACTTTAGATCGTTACGCTAACCAGTGGCGGTGGCCTGTGGGAGCTACCGAAACTCCGAGGAGCACCAAGGGCGGTCCTGAGGGTGGCCGTTCTGAGGGTGGCGGAACTCCCG GGGTTCCTATTGGCCTGCTACCCTGAAAATGAGGGTGGCGCTCTGAGGGTGGCGGTTCTGAGGGTGGCGGTACTAAACCTCC TGAGTACGGTGATACACCTATTCCGGGCTATACTTATATCCAACCCTCTCGACGGCACTTATCCGCCTGGTACTGAGCAAAACCCCGCTAATCCTAATCC

(2001 - 3000)

(3001-4000)

(4001-5000)

(5001-6000)

(6001-7000)

(7001 - 7249)

	F	V	MV		
_	Tet84	Oct84	Tet63 Tet84 Tet84* Oct84		
Microscope	Titan Krios	JEOL 3200	JEOL Titan Titan JEOL 3200 Krios Krios 3200		
Voltage (kV)	300	300	300 300 300 300		
Camera	Gatan K2 Summit	Gatan K2 Summit	Gatan K2 Gatan K2 Gatan K2 Gatan K2 Summit Summit Summit Summit		
Pixel size (Å)	1.77	2.4	2.4 1.77 1.77 2.4		
Total dose (e-/Å2)	42.4	40.8	40.8 42.4 42.4 40.8		
Number of micrographs	96	724	662 119 85 657		
Number of final particles	1,669	3,308	2,511 1,092 586 5,705		
Symmetry	Tetra- hedron	Octa- hedron	Tetra- Tetra- Tetra- Octa- hedron hedron hedron hedron		
Resolution (0.143 FSC, Å)	21	18	17.5 25 24 15.3		

Table S18. Data collection and processing for the cryo-EM imaging and 3D reconstructions.

The Tet84* used the middle connection layer.