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Abstract
Background Depth of coverage calculation is an important and computationally intensive preprocessing step in a variety of
next generation sequencing pipelines, including the analyses of RNA-seq data, detection of copy number variants, or
quality control procedures. Results Building upon big data technologies, we have developed SeQuiLa-cov, an extension to
the recently released SeQuiLa platform, which provides e�cient depth of coverage calculations, reaching more than 100x
speedup over the state-of-the-art tools. Performance and scalability of our solution allows for exome and genome-wide
calculations running locally or on a cluster while hiding the complexity of the distributed computing with Structured Query
Language Application Programming Interface. Conclusions SeQuiLa-cov provides signi�cant performance gain in depth of
coverage calculations streamlining the widely used bioinformatic processing pipelines.
Key words: NGS data analysis; depth of coverage; big data; distributed computing; SQL; CNV-calling; RNA-seq; quality
control for sequencing data;

Findings

Introduction

Given a set of sequencing reads and a genomic contig, depth
of coverage for a given position is de�ned as a total number of
reads overlapping the locus.
The coverage calculation is a frequently performed but time-

consuming step in the analysis of Next Generation Sequenc-
ing (NGS) data. In particular, Copy-Number Variant detection
pipelines require obtaining su�cient read depth of the ana-
lyzed samples [1, 2, 3]. In other applications, the coverage
is computed to assess the quality of the sequencing data (e.g.
to calculate the percentage of genome with at least 30X read
depth) or to identify genomic regions overlapped by insu�-
cient number of reads for reliable variant calling [4]. Finally,
depth of coverage is one of the most computationally intensive
parts of di�erential expression analysis using RNA-seq data at

single-base resolution [5, 6, 7].
A number of tools supporting this operation have been de-

veloped, with 22 of them speci�ed in Omictools catalog [8].
Well known, state-of-the-art solutions include: samtools
depth [9], bedtools genomecov [10], GATK DepthOfCoverage [11],
sambamba [12], and mosdepth [13] (see comparison presented
in Table 1).
Traditionally, these methods calculate the depth of coverage

using a pileup-based approach (introduced in samtools [9] and
used in GATK [11]), which is ine�cient since it iterates through
each nucleotide position at every read in a Binary Alignment
Map (BAM) �le. An optimized, event-based approach has been
proposed in bedtools [10] and mosdepth [13]. These algorithms
use only speci�c ’events’, i.e. start and end of the alignment
blocks within each read (Figure 1A) instead of analyzing every
base of each read, which signi�cantly reduces the overall com-
putational complexity.
Samtools and bedtools depth of coverage modules do not
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Key Points

• SeQuiLa-cov allows for high-coverage (∼60x) genome-wide depth of coverage calculations in less than one minute.
• SeQuiLa-cov provides ANSI SQL compliant API for accessing and analyzing of aligned sequencing reads data.

Table 1. Comparison of leading coverage calculation software tools.
Functionality Implementation

tool approach bases blocks windows language Intel GKL parallelism type interface
samtools pileup yes no no C no none cmd line
bedtools events yes yes no C++ no none cmd line
GATK1 pileup yes no no Java yes distributed cmd line
sambamba pileup no yes yes D no multithreaded cmd line
mosdepth events no yes yes Nim no multithreaded 2 cmd line
SeQuiLa-cov events yes yes yes Scala yes distributed Scala, SQL

1GATK DepthOfCoverage has not yet been ported to the latest version, i.e. GATK 4.x2Only for BAM decompression

provide any support for multi-core environment. Mosdepth
implements parallel BAM decompression, but its main algo-
rithm remains sequential. Sambamba, on the other hand, pro-
motes itself as a highly parallel tool, implementing depth of
coverage calculations in a map-reduce fashion utilizing mul-
tiple threads on a single node. Regardless of parallelization
degree, all of the above mentioned tools share a common
bottleneck caused by using a single thread for returning re-
sults. Finally, GATK was the �rst genomic framework pro-
viding a support for distributed computations, however, the
DepthOfCoveragemethod has not been ported yet to the current
software release of the toolkit.
We present the �rst fully scalable, distributed, SQL-

oriented solution designated for the depth of coverage calcu-
lations. SeQuiLa-cov, an extension to the recently released Se-
QuiLa [14] platform, runs a redesigned event-based algorithm
for the distributed environment and provides convenient, SQL-
compliant interface. The tool can be easily integrated with
other applications implemented in Scala, R, or Python.

Algorithm and implementation

Algorithm
Consider input data set, read_set, of aligned sequencing reads
sorted by genomic position from a BAM �le partitioned into the
n data slices (read_set1, read_set2, ..., read_setn) (Figure 1B).In the most general case, the algorithm can be used in a
distributed environment where each cluster node computes the
coverage for the subset of data slices using the event-based
method. Speci�cally, for the i-th partition containing the set
of reads (read_seti), the set of eventsi,chr vectors (where chr isan index of genomic contig represented in read_set) is allocated
and updated, based on the items from read_seti. For all reads,the algorithm parses the CIGAR string and for each continuous
alignment block characterized by start position and length len
it increments by one the eventsi,chr(start) and decrements byone the value of eventsi,chr(start + len). To compute the partialcoverage vector for partition i and contig chr, a vector value at
the index j is calculated as follows:
partial_coveragei,chr(j) =

j∑
m=1 eventsi,chr(m).The result of this stage is a set of partial_coveragei,chr vec-tors distributed among the computation nodes. To calcu-

late the �nal coverage for the whole read_set, an additional
step of correction for overlaps between the partitions is re-
quired. An overlap overlapi,chr of length l between vectors
partial_coveragei,chr and partial_coveragei+1,chr may occur on

the partition boundaries where l tailing genomic positions of
partial_coveragei,chr are the same as l heading genomic posi-tions of partial_coveragei+1,chr (see Figure 1C).If an overlap is identi�ed then the coverage values from
the partial_coveragei,chr’s l-length tail are added into the
partial_coveragei+1,chr’s head and subsequently the last l ele-ments of partial_coveragei,chr are removed. Once this correc-tion step is completed, non-overlapping coveragei,chr vectorsare collected and yield the �nal coverage values for the whole
input read_set.
The main characteristic of the described algorithm is its

ability to distribute data and calculations (such as BAM de-
compression and main coverage procedure) among the avail-
able computation nodes. Moreover, instead of simply perform-
ing full data reduction stage of the partial coverage vectors,
our solution minimizes required data shu�ing among cluster
nodes by limiting it to the overlapping part of coverage vec-
tors. Importantly, SeQuiLa-cov computation model supports
�ne-grained parallelism at user-de�ned partition size in con-
trary to the traditional, coarse-grained parallelization strate-
gies that involve splitting input data at a contig level.
Implementation
We have implemented SeQuiLa-cov in Scala programming lan-
guage using the Apache Spark framework. To e�ciently access
the data from a BAM�le we have prepared a custom data source
using Data Source Application Programming Interface (API) ex-
posed by SparkSQL. Performance of the read operation bene�ts
from the Intel Genomics Kernel Library (GKL) [15] used for de-
compressing the BAM �les chunks and from predicate push-
down mechanism that �lters out data at the earliest stage.
The implementation of the core coverage calculation algo-

rithm aimed at minimizing, whenever possible memory foot-
print by using parsimonious data types, e.g. Short type in-
stead of Integer, and e�cient memory allocation strategy for
large data structures, e.g. favoring static Arrays over dynamic
size ArrayBu�ers. Additionally, to reduce the overhead of data
shu�ing between the worker nodes in the correction for the
overlaps stage we used Spark’s shared variables [16] accumu-
lators and broadcast variables (Figure 1C). Accumulator is used
to gather information about the worker nodes’ coverage vector
ranges and coverage vector tail values, that are subsequently
read and processed by the driver. This information is then
used to construct a broadcast variable distributed to the worker
nodes in order to perform adequate trimming and summing op-
erations on partial coverage vectors.
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Table 2. Benchmarking leading solutions against SeQuiLa-cov on WES/WGS data in performing blocks and windows calculations
data operation type cores samtools bedtools sambamba mosdepth SeQuiLa-cov

WGS
blocks

1 2h 14m 58s 1 10h 41m 27s 2h 44m 0s 1h 46m 27s 1h 47m 5s
5 2h 47m 53s 36m 13s 26m 59s
10 2h 50m 47s 34m 34s 13m 54s

�xed-length windows
1 1h 46m 50s 1h 22m 49s 1h 24m 8s
5 1h 41m 23s 20m 3s 18m 43s
10 1h 50m 35s 17m 49s 9m 14s

WES
blocks

1 12m 26s 1 23m 25s 25m 42s 6m 43s 6m 54s
5 25m 46s 2m 25s 1m 47s
10 25m 49s 2m 20s 1m 4s

�xed-length windows
1 14m 36s 6m 11s 6m 29s
5 14m 54s 2m 8s 1m 42s
10 14m 40s 2m 14s 1m 1s

Both samtools and bedtools calculate coverage using only a single thread, however, their results di�er signi�cantly, with samtools beingaround twice as fast. Sambamba positions itself as a multithreaded solution although our tests revealed that its execution time is nearlyconstant, regardless of the number of CPU cores used, and even twice as slow as samtools. Mosdepth achieved speedup against samtoolsin blocks coverage and against sambamba in windows coverage calculations, however, its scalability reaches limit at 5 CPU cores. Finally,SeQuiLa-cov, achieves nearly identical performance as mosdepth for the single core but the execution time decreases substantially forgreater number of available computing resources which makes this solution the fastest when run on multiple cores and nodes.1per-base results are treated as blocks output. Samtools lacks the functionality of blocks coverage calculations, however, we included this tool in our
benchmark for completeness, treating its per-base results as blocks outcome assuming that both result types require nearly the same resources.

Functionality

Supported coverage result types
SeQuiLa-cov features three distinct result types: per-base,
blocks, and �xed-length windows coverage (Figure 1A). For per-
base, the depth of coverage is calculated and returned for each
genomic position making it the most verbose output option.
The method producing block level coverage (blocks) involves
merging adjacent genomic positions with equal coverage val-
ues into genomic intervals. As a consequence, fewer records
than in case of per-base output type are generated with no infor-
mation loss. The �xed-length windows the algorithm generates
set of �xed length, tiling, non-overlapping genomic intervals
and returns arithmetic mean of coverage values over positions
within each window.
ANSI SQL compliance
SeQuiLa-cov solution promotes SQL as a data query and ma-
nipulation language in genomic analysis. Data �ows are per-
formed in SQL-like manner through the custom data source
supporting convenient Create Table as Select and Insert as
Select methods. SeQuiLa-cov provides a table abstraction
over existing BAM/CRAM �les, with no need of data conver-
sion, which can be further conveniently queried and manipu-
lated in a declarative way. The coverage calculation function
bdg_coverage, as described in Algorithm sub-section, has been
implemented as table-valued function(Figure 1D).

Benchmarking

We have benchmarked SeQuiLa-cov solution with leading soft-
ware for depth of coverage calculations, speci�cally samtools
depth, bedtools genomeCov, sambamba depth and mosdepth (re-
sults of DepthOfCOverage from outdated GATK version are avail-
able in supplementary data). The tests were performed on the
aligned WES and WGS reads from the NA12878 sample (see
Methods for details) and aimed at calculating blocks and win-
dow coverage. To compare the performance and scalability of
each solution, we have executed calculations for 1, 5, and 10
cores on a single computation node (see Table 2).
Samtools depth and bedtools genomeCov are both natively

non-scalable and were run on a single thread only. Exome-
wide calculations exceeded 10 minutes and genome-wide anal-
yses took over two hours in case of samtools, while bedtools’
performance was signi�cantly worse, i.e ∼1.9x for WES and

∼4.75x for WGS. Sambamba depth declares to take advantage of
fully parallelized data processing with the use of multithread-
ing. However, our results revealed that even when additional
threads were used, the total execution time of coverage calcu-
lations remained nearly constant and greater than samtools’s
result. Mosdepth shows signi�cant speedup (∼1.3x) against
samtools when using single thread. This performance gain in-
creases to ∼3.7x when using 5 decompression threads, however,
it does not bene�t from adding additional CPU power. In case
of �xed-length window coverage mosdepth achieves over ∼1.3
speedup against sambamba.
SeQuiLa-cov achieves performance similar to mosdepth

when run using a single core. However, SeQuiLa-cov is ∼1.3x
and ∼2.5x as fast as mosdepth when using 5 and 10 CPU cores,
respectively, demonstrates its better scalability. The simi-
lar performance characteristic is observed for both blocks and
�xed-length windows methods.
To fully assess the scalability pro�le of our solution, we have

performed additional tests in a cluster environment (see Meth-
ods for details). Our results show that when utilizing additional
resources (i.e. more than 10 CPU cores), SeQuiLa-cov is able to
reduce the total computation time to 15 seconds for WES and
less than one minute for WGS data (Figure 2). Scalability limit
is achieved for 200 and ∼500 CPU cores in case of WES and WGS
data, respectively.
To evaluate the impact of Intel GKL library on de�ate op-

eration (BAM bzgf block decompression), we have performed
blocks coverage calculations on WES data on 50 CPU cores. The
results showed on average ∼1.18x speedup when running with
Intel GKL de�ate implementation.
Finally, our comprehensive functional unit testing showed

that results calculated by SeQuiLa-cov and samtools depth are
identical.

Conclusions

The application of the recent advancements in big data tech-
nologies and distributed computing can contribute to both
speeding up genomic data processing and management. Anal-
ysis of large genomic data sets require e�cient, accurate, and
scalable algorithms to perform calculations utilizing the com-
puting power of multiple cluster nodes. In this work, we show
that with su�ciently large cluster genome-wide coverage cal-
culations may last less than a minute and at the same time
being over 100x faster than the best single-threaded solution.
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SeQuiLa-cov is one of the building blocks of SeQuiLa [14] ecosystem, which initiated the move towards e�cient,
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Figure 1. SeQuiLa-cov: functionality, algorithm and implementation
Panel A shows the general concept of events-based algorithm for depth of coverage calculation. Given a genomic chromosome and a set of aligned sequencing
reads, the algorithm allocates events vector. Subsequently, it iterates the list of reads and increments/decrements by one the values of the events vector at the
indexes corresponding to start/end positions of each read. The depth of coverage for a genomic locus is calculated using the cumulative sum of all elements in
the events vector preceding speci�ed position. The algorithm may produce three typically used coverage types: (i) per-base coverage, which includes the coverage
value for each genomic position separately, (ii) blocks which lists adjacent positions with equal coverage values are merged into single interval, and (iii) �xed-length
windows coverage that generates set of equal-size, non-overlapping and tiling genomic ranges and outputs arithmetic mean of base coverage values for each
region.
Panel B presents the provided SQL API to interact with NGS data. The �rst statement creates a relational table read_set over compressed BAM �les using the
provided custom Data Source, whereas the second statement demonstrates the use of bdg_coverage function to calculate depth of coverage for a speci�ed sample.
The presented call for coverage method takes sample identi�er (sample1) and result type (blocks) as input parameters. bdg_coverage is implemented as a table-
valued function. Therefore, it outputs a table as a result allowing for customizing a query using Data Manipulation Language e.g. in the SELECT or WHERE clause.
For the purpose of this example, we assume that BAM �le for sample1 contains only reads from chr3.
Panel C shows the concept of distributed version of events-based algorithm. Assuming that we run our calculations in a distributed environment, the computation
nodes do not work on the whole input data set (table read_set) but on n smaller data partitions (slice1, slice2, .. ,slicen), each containing subset of input aligned
reads. First the algorithm calculates partial events vector for available data slices and subsequently produces corresponding partial partial_coverage vector. Due to
the possibility of overlapping of ranges between two consecutive data slices, additional correction step needs to be performed. When an overlap is identi�ed, the
corresponding coverage values from the preceding vector’s tail are cut and added to the head values of the subsequent vector. On the �gure two overlaps were
shown, one of them situated between partial_coverage1 and partial_coverage2 (overlap12 of length 4) encompassing positions chr3:101-104. The coverage values
from partial_coverage1 for overlap12 are removed from partial_coverage1 and added to the head of partial_coverage2. As a result, a set of non-overlapping coverage
vectors are calculated, which is further integrated into the depth of coverage for the whole input data set.
Panel D presents the implementation details of SeQuiLa-cov. We have used the Apache Spark environment, where a single driver node runs the high-level driver
program, which schedules tasks for multiple worker nodes. On each worker node, a set of data partitions are accessed and manipulated in order to generate events
and partial_coverage vectors. To gather data about partial_coverage vectors’ ranges along with tailing coverage values, and to distribute data needed for rearranging
coverage vector values and ranges, we have used Spark’s shared variables accumulator and broadcast, respectively.
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distributed processing of genomic data and providing SQL-
oriented API for convenient and elastic querying. We foresee
that following this direction will enable the evolution of ge-
nomic data analysis from the �le-oriented to table-oriented
processing.

Methods

Test data

We have tested our solution using reads from NA12878 sample
which were aligned to hg18 genome. WES data containing over
161 million of reads weights 17 GB and WGS data include over
2,6 billion of reads taking 272 GB of disk space. Both BAM �les
were compressed at the default BAM’s compression level (5).

Testing environment

To perform comprehensive performance evaluation, we have
setup a test cluster consisting of 28 Hadoop nodes (1 edge node,
3 master nodes and 24 data nodes) with Hortonworks Data
Platform 3.0.1 installed. Each data node has 28 cores (56 with
hyper-threading) and 512 GB of RAM, Yet Another Resource Ne-
gotiator (YARN) resource pool has been con�gured with 2640
virtual cores and 9671 GB RAM.

Investigated solutions

In our benchmark we have used the most recent versions of
the investigated tools i.e. samtools version 1.9, bedtools 2.27.0,
sambamba 0.6.8, mosdepth version 0.2.3 and SeQuiLa-cov ver-
sion 0.5.1.

Availability of source code and requirements

• Project name: SeQuiLa-cov
• Project home page: http://biodatageeks.org/sequila/
• Source code repository: https://github.com/ZSI-Bio/

bdg-sequila
• Operating system: Platform independent
• Programming language: Scala
• Other requirements: Docker
• License: Apache License 2.0

Availability of supporting data and materials

The Docker image is available at https://hub.docker.com/r/
biodatageeks/. Supplementary information on benchmark-
ing procedure as well as test data is publicly accessible at
http://biodatageeks.org/sequila/benchmarking/benchmarking.
html#depth-of-coverage.
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Figure 2. Performance and scalability comparison of samtools, mosdepth and SeQuiLa-cov
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and maximum execution time, respectively. The best pileup-based solution is de�nitely slower (two times for WGS calculations) than both event-based solutions
what clearly shows the superiority of the latter one. Mosdepth execution time scales up to 5 cores, afterwards it shows no furthe gain in performance. SeQuiLa-cov
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Borowiak M, Okoniewski M, et al. SeQuiLa: An elastic,
fast and scalable SQL-oriented solution for processing and
querying genomic intervals. Bioinformatics 2018 11;https:
//academic.oup.com/bioinformatics/advance-article/doi/
10.1093/bioinformatics/bty940/5182295.

15. James Guilford A, Powley G, Tucker G, Vaidya P, Bergel-
son L, Lichtenstein L, et al. Accelerating the Com-
pression and Decompression of Genomics Data using
GKL Provided by Intel; 2017, https://www.intel.com/
content/dam/www/public/us/en/documents/white-papers/
accelerating-genomics-data-gkl-white-paper.pdf.

16. Zaharia M, Chowdhury M, J Franklin M, Shenker S, Stoica
I. Spark: Cluster Computing with Working Sets. Proceed-
ings of the 2nd USENIX conference on Hot topics in cloud
computing 2010 12;10:10. https://www.usenix.org/legacy/
event/hotcloud10/tech/full_papers/Zaharia.pdf.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkw852
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkw852
https://omictools.com/depth-of-coverage-category
https://omictools.com/depth-of-coverage-category
http://www.ncbi.nlm.nih.gov/pubmed/20110278 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2832824
http://www.ncbi.nlm.nih.gov/pubmed/20110278 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2832824
http://www.ncbi.nlm.nih.gov/pubmed/20110278 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2832824
http://www.ncbi.nlm.nih.gov/pubmed/20644199 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2928508
http://www.ncbi.nlm.nih.gov/pubmed/20644199 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2928508
http://www.ncbi.nlm.nih.gov/pubmed/20644199 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2928508
http://www.ncbi.nlm.nih.gov/pubmed/25697820 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4765878
http://www.ncbi.nlm.nih.gov/pubmed/25697820 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4765878
http://www.ncbi.nlm.nih.gov/pubmed/25697820 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4765878
http://www.ncbi.nlm.nih.gov/pubmed/29096012 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC6030888 https://academic.oup.com/bioinformatics/article/34/5/867/4583630
http://www.ncbi.nlm.nih.gov/pubmed/29096012 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC6030888 https://academic.oup.com/bioinformatics/article/34/5/867/4583630
http://www.ncbi.nlm.nih.gov/pubmed/29096012 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC6030888 https://academic.oup.com/bioinformatics/article/34/5/867/4583630
http://www.ncbi.nlm.nih.gov/pubmed/29096012 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC6030888 https://academic.oup.com/bioinformatics/article/34/5/867/4583630
https://academic.oup.com/bioinformatics/advance-article/doi/10.1093/bioinformatics/bty940/5182295
https://academic.oup.com/bioinformatics/advance-article/doi/10.1093/bioinformatics/bty940/5182295
https://academic.oup.com/bioinformatics/advance-article/doi/10.1093/bioinformatics/bty940/5182295
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/accelerating-genomics-data-gkl-white-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/accelerating-genomics-data-gkl-white-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/accelerating-genomics-data-gkl-white-paper.pdf
https://www.usenix.org/legacy/event/hotcloud10/tech/full_papers/Zaharia.pdf
https://www.usenix.org/legacy/event/hotcloud10/tech/full_papers/Zaharia.pdf

