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A Controlling Z as Covariates or as Exogenous variables

Consider the following two ways to control Z in TSLS:

(1) The 2SLS estimate of β1 (causal effect of X on Y), by adjusting Z as covariates, is obtained

from the regression models:

X = α1G+α2Z+u, (1a)

Y = β1X̂+β2Z+ v, (1b)

where X̂ is the fitted value from first stage regression (1a), i.e. X̂ = α̂1G+ α̂2Z. We will call this

estimate β̂1.

(2) The “2SLS exo” estimate of β1, by treating Z as exogenous variables, is obtained from the
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regression models:

(I−Pz)X = α
∗
1 (I−Pz)G+(I−Pz)u, (2a)

(I−Pz)Y = β
∗
1 X̂∗+ v1. (2b)

where Pz = Z>(Z>Z)−1Z and X̂∗ is the fitted value from first stage regression (2a), i.e. X̂∗ =

α̂∗1 (I−Pz)G. We will call this estimate β̂ ∗1 .

Now we prove β̂1 = β̂ ∗1 . Indeed, (1a) and (2a) imply α̂1 = α̂∗1 according to Frisch–Waugh–Lovell

theorem (Frisch and Waugh (1933), Lovell (2008)). Then we have X̂∗ = α̂∗1 (I−Pz)G =

α̂1(I−Pz)G = (I−Pz)X̂, and multiplying both sides of (1b) by (I−Pz), we finally have

(I−Pz)Y = (I−Pz)β1X̂+(I−Pz)v = β1X̂∗+(I−Pz)v. (3a)

Therefore, comparing (2b) and (3a) we obtain β̂1 = β̂ ∗1 .
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B Solution to the Constrained Instrumental Variable Problem

Let M = X(X>X)−1X>, then c>G>Xv = c>G>X(X>X)−1X>Xv = c>G>MXv,

max
c∈Rp,v∈Rr

c>G>Xv = max
c∈Rp,v∈Rr

c>G>MXv≤ ||c>G>M|| ||Xv||,

where ||Xv|| =
n
∑

i=1
|(Xv)i|2 denotes the norm of vector Xv in the inner product space Rp. The

equality holds if and only if Xv and MGc are collinear. Let w = (G>G)
1
2 c then the problem is

equivalent to

max
w∈Rp

w>Aw

subject to conditions:

w>w = 1

B>w = 0

where A = (G>G)−
1
2 G>MG(G>G)−

1
2 and B = (G>G)−

1
2 G>Z.

If we have rank(A) = p≥ rank(Z) = k (columns are uncorrelated), then there exists a solution

for w since this is a quadratic optimization problem with quadratic/linear constraints (Golub, 1973).

Consider the QR decomposition of B:

B = Q>

R S

0 0

 (4)

where R is a k by k upper triangular matrix with positive diagonal elements. Q is an orthogonal

matrix. S is a k by p−k matrix and represents the column permutation matrix (Gu and Eisenstat,

1996) to ensure that the diagonal elements of R are positive and non-increasing, i.e. R is invertible.

R is then unique under these conditions (Golub and Van Loan, 1996).
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Now we let w = Q>

 t

d

 where t ∈ Rk,d ∈ Rp−k and QAQ> =

A1,1 A1,2

A2,1 A2,2

.

The problem then becomes:

max
d∈R(p−k)

d>A>2,2d (5)

subject to conditions:

d>d = 1

We now know that the solution for d is any eigenvector corresponding to the largest eigenvalue of

A2,2. There are at most p− k of them.

In conclusion, when n > p the (unique) solution of the constrained instrumental variable

(CIV naive) is Gc = G(G>G)−
1
2 Q>

0

d

, where Q is an orthogonal matrix defined by (4) and

d is an eigenvector defined by (5).
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C Algorithm for obtaining approximately sparse constrained CIV solutions with L0

penalty

1. Initialization: For a given value of λ , start from an initial guess c̃ and initial L0 penalty

σmax = max j |c̃ j|, set σ = σmax.

2. While σ > σmin = 0.01 we do

i Calculate the gradient of function (6) d∈Rp, where d j =
λ c̃ j
σ2 exp(− c̃2

j
2σ2 )−2[c̃>G>MG] j, j∈

{1, ..., p} and M = X(X>X)−1X>.

ii Set c = (I−A−A)(c̃−µd) where A− is a generalized inverse of A = Z>G and µ is a

step-size parameter in gradient descent algorithm.

iii Set c∗ = c/
√

c>G>Gc as the updated solution.

iv Repeat (i) (ii) and (iii) (maximum T times) until it converges, i.e.

√
p
∑
j=1

(|c∗j |− |c j|)2/p<

10−10.

3. Update σ with σ = 0.5 σprev, where σprev is the previous value of σ used in step 2. If

σ > σmin repeat all items in step 2. If not, stop the algorithm and record the last iteration of

c as the final solution.

The maximization problem of Equation (8) is solved by repeatedly taking gradient descent

steps (i), and then projecting the possible solution back into constrained set ((ii),(iii)). The step

(ii) restricts the solution to be on the constrained set (7b) and step (iii) restricts it to the boundary

of the constrained set (7a). The unconstrained gradient descent step followed by projection to the

feasible set is equivalent to a direct gradient descent step on the feasible set (Cui et al., 2010). The

parameters for step-size (µ) and number of iterations (T ) should be carefully chosen to achieve

balance between computation cost and precision. That is, the states discovered by this algorithm

may not achieve the global maximum value of Equation (6) even with a large number of iterations
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if we use a step size that is too large. The decreasing list of values for σ is chosen to ensure that

the approximation accuracy will gradually increase.

D Non-unique Solutions to the CIV smooth Problem

There may be multiple local solutions to the smoothed problem (Eq 8), which is not a convex

optimization problem. Note that the maximization of a convex function over a convex set is not

necessarily a convex problem. As a result, a local maximum solution of c may not be the global

maximum solution, and numerical optimization techniques may get trapped into a local maximum.

Therefore, we start from multiple (e.g. 100) initial points randomly sampled from a multivariate

normal distribution N(0, Ip), and let the smoothed L0 algorithm converge to a set of solutions, pos-

sibly arriving at multiple local modes. After examining correlations between all pairs of solutions,

highly correlated solutions (≥ 0.9) are removed. The remaining solutions are combined into a ma-

trix c∗ (of p rows). Finally, we construct new instruments Gc∗ and refer to them as the CIV smooth

instruments.

An example of this potential multi-modal problem is shown in Figure S1, where one simu-

lated dataset from Series II was analyzed. The hierarchical cluster dendrogram shows the solution

space for this simulation, demonstrating that there exist multiple different CIV smooth solutions.

However, a principal component analysis of the solutions shows that in most simulations only 1

unique solution stands out. So although multiple distinct solutions do occur, they tend to be similar

to each other. To obtain our CIV smooth estimator, we sample possible solutions by starting our

converging iterations from multiple initial points, and combining all distinct solutions into a matrix

c∗. This approach provides a set of the potential instruments with strong association with X and

low correlation with Z.
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Figure S1: Cluster dendrogram (a) and principal component analysis (b) from a one-sample set-up,
with X→ Z and αx = αz = 0.1 across 200 simulations.

(a) Cluster dendrogram of all (100) converged
CIV smooth solutions in one simulation. Red
block denotes the identified hierarchical clusters
using the number of clusters determined by the
silhouette coefficient (Rousseeuw, 1987).
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(b) Top: The proportion of the top eigenvalue
(among all values) of all CIV smooth solutions,
across 200 simulations. Bottom: The total num-
ber of principal components (with eigenvalue ≥
0.8), across 200 simulations.
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E Choice of the Tuning Parameter λ

The tuning parameter λ controls the amount of regularization, and each value of it corresponds

to a specific fitted model. In general, the value of tuning parameter in regularization is chosen to

achieve (i) prediction accuracy and (ii) recovering the valid model. The first goal is straightfor-

ward and can be easily attained by optimizing the prediction error Y−Xβ ∗. The latter is more

important for our approach in the existence of pleiotropy because pleiotropic genotypes could be

“informative” for a prediction model, but render the whole MR analysis invalid. Thus we choose

the projected prediction error (Kang et al., 2016), ||PG∗(Y−Xβ ∗)||, instead of the prediction error,

Y−Xβ ∗, as the measure to obtain optimal tuning parameter value λ . Moreover, 10-fold cross-

validation is employed to estimate the target projected prediction error on a given dataset, in order

to obtain consistent choice of λ .

We demonstrate the advantage of choosing λ according to minimized projected prediction

error in CIV smooth with a simple simulation. The simulated data contains 9 invalid SNPs and 1

valid SNP, and CIV smooth is implemented on this data to obtain coefficient u j for each SNP j on
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different values of λ . The regularization path of CIV smooth (the solution values of coefficient c

with respect to λ ), is demonstrated in Figure S2. Notice that the coefficient of invalid SNPs could

grow with increasing levels of regularization at the beginning of the path ( 0→ 0.1). Moreover, λ̂2,

the tuning parameter value corresponding to minimized projected prediction error leads to a more

sparse solution c than λ̂1, which corresponds to minimized prediction error.
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Figure S2: Illustration of regularization path for CIV smooth on simulated data with 10 genotypes
(p = 10), in which only one genotype is a valid instrument. Blue lines: the coefficient paths of 9
invalid instruments. Red line: the coefficient path of the only valid instrument. X axis: increasing
values of λ corresponding to increasing levels of regularization. Y axis: coefficient value u j for
each SNP j. λ̂1 vertical line: the choice of λ that minimizes the prediction error. λ̂2 vertical line:
the choice of λ that minimizes the projected prediction error.
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F Sensitivity analysis:

Z Contains Only Part of Pleiotropic Phenotypes

The purpose of this section is to evaluate the performance of CIV smooth method and its competi-

tors, as we vary the proportions of observed pleiotropic phenotypes included in Z. Our simulation

design follows the structure equations in Section 4.1, including both Series I (γxz = γzx = 0) and

series II (γzx 6= 0). Also, the association parameters αZ were varied to study the impact of strong

(αz = 1) or weak (αz = 0.1) pleiotropic effects on performance. In each of the 2×2 = 4 scenarios

described above, the number (pz = 20 or 50) of genotypes associated with Z and the proportion

(0.1, 0.4, 0.6, 0.9) of pleiotropic phenotypes observed were varied to assess CIV smooth perfor-

mance. We adopt one-sample set-up, as described in Section 2.5, in all simulations.

Specifically, we simulated a set of independent genotypes G in the same way as Section 4.1.

(X, Z Y) were simulated using the following equations:

Simulation Series I : Standard Pleiotropy

xi = αx

p

∑
j=1

Gi j +ui + εx,i,

z∗ik = αzGik +ui + εz,k,i, k = 1, ..., pz,

yi = xi +
pz

∑
k=1

z∗ik +ui + εy,i,

Sz ⊂ (1, ..., pz), Zi = {z∗ik},k ∈ Sz,

(6)

where εx,i,εz,k,i,εy,i,ui ∼ N(0,1). Z∗i = (z∗i1, ...,z
∗
ipz
) is the set of all pleiotropic phenotypes for

ith sample. Sz is a randomly selected subset of (1, ..., pz) corresponding to a proportion of all

pleiotropic phenotypes (|Sz|/pz ∈ {0.1,0.4,0.6,0.9}). Zi contains the correspondingly observed

pleiotropic phenotypes with respect to Sz. See Table 2 for details about the rest parameters

(αx,αz,n, p, pz).
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Simulation Series II : Z→ X

z∗ik = αzGik +ui + εz,k,i, k = 1, ..., pz,

xi = αx

p

∑
j=1

Gi j +
pz

∑
k=1

z∗ik +ui + εx,i,

yi = xi +
pz

∑
k=1

z∗ik +ui + εy,i,

Sz ⊂ (1, ..., pz), Zi = {z∗ik},k ∈ Sz,

(7)

where εx,i,εz,k,i,εy,i,ui ∼ N(0,1).

We conducted one-sample simulations for each scenario from series I or II, with varying values

of αz, pz and proportions of pleiotropic phenotypes observed. In each simulation we compared the

bias of causal effect estimators across all the methods (used in the Section 4), and show the results

in Figures S3 - S6. The graphs demonstrate that sisVIVE and sisVIVE exo methods yield the

best causal effect estimation among all competitors in most scenarios. However, if αz = 0.1 and

proportion of observed pleiotropic phenotypes are more than 50% , then CIV smooth can provide

better causal effect estimation than sisVIVE methods and Allele methods.
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pz = 20 pz = 50
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Figure S3: Sensitivity analysis results for proportion of pleiotropic phenotypes observed. Boxplots
of the bias of the causal effect estimates, β̂ − 1, are shown using the same parameter settings as
in simulation Series I, in the scenario of weak pleiotropy (αx = 1,αz = 0.1). The rows display
results corresponding to different values of the proportion of observed pleiotropic phenotypes. the
columns show the number of genotypes associated with Z out of 100 genotypes associated with X.
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Figure S4: Sensitivity analysis results for proportion of pleiotropic phenotypes observed. Boxplots
of the bias of the causal effect estimates, β̂ − 1, are shown using the same parameter settings as
in simulation Series I, in the scenario of strong pleiotropy (αx = 1,αz = 1). The rows display
results corresponding to different values of the proportion of observed pleiotropic phenotypes. the
columns show the number of genotypes associated with Z out of 100 genotypes associated with X.
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Figure S5: Sensitivity analysis results for proportion of pleiotropic phenotypes observed. Boxplots
of the bias of the causal effect estimates, β̂ − 1, are shown using the same parameter settings as
in simulation Series II, in the scenario of weak pleiotropy (αx = 1,αz = 0.1). The rows display
results corresponding to different values of the proportion of observed pleiotropic phenotypes. the
columns show the number of genotypes associated with Z out of 100 genotypes associated with X.
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Figure S6: Sensitivity analysis results for proportion of pleiotropic phenotypes observed. Boxplots
of the bias of the causal effect estimates, β̂ − 1, are shown using the same parameter settings as
in simulation Series II, in the scenario of strong pleiotropy (αx = 1,αz = 1). The rows display
results corresponding to different values of the proportion of observed pleiotropic phenotypes. the
columns show the number of genotypes associated with Z out of 100 genotypes associated with X.
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