Expanded View Figures

Figure EV1. Inhibition of CHK1 results in BCL2-regulated cell death involving BIM in MPP-like Hoxb8-FL cells.

- A Quantification and significant differences in the subG1 (left) and G1 fraction (right) of Hoxb8-FL cells of the indicated genotypes treated with CHK1i. The corresponding analysis of cell cycle distribution (subG1, G1, S, G2, polyploid) is shown in Fig 1A.
- B Hoxb8-FL cells of the indicated genotypes were treated for 24 h with the inhibitors PF-477736 (PF) or CHIR-124 (CHIR) and analyzed by Nicoletti staining.

C Quantification of subG1 cells as a surrogate for cell death induced by CHK1i in Hoxb8-FL cells of the indicated genotypes.

Data information: Bars represent means \pm s.e.m. (n = 3/per genotype). Asterisks indicate significant differences compared to control (DMSO): *P < 0.05, **P < 0.01, ***P < 0.001 using unpaired Student's *t*-test.

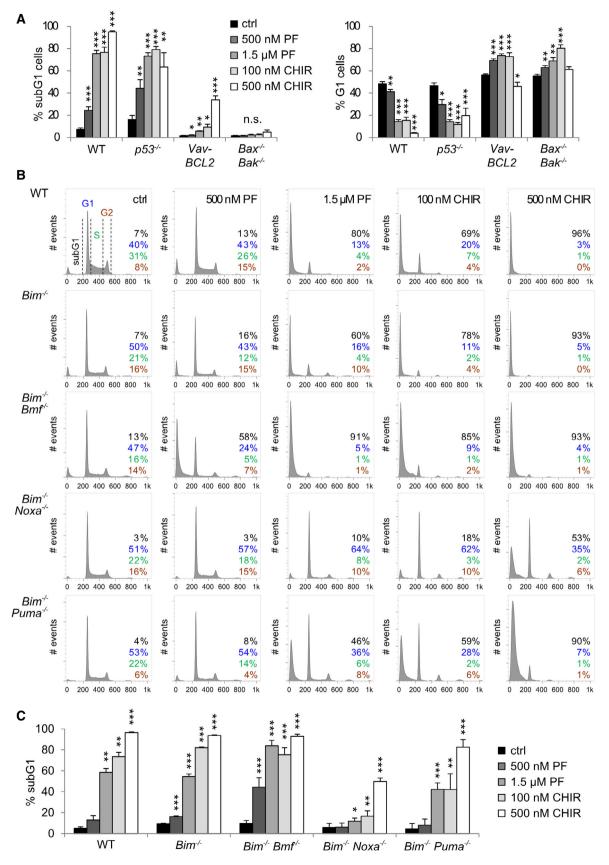
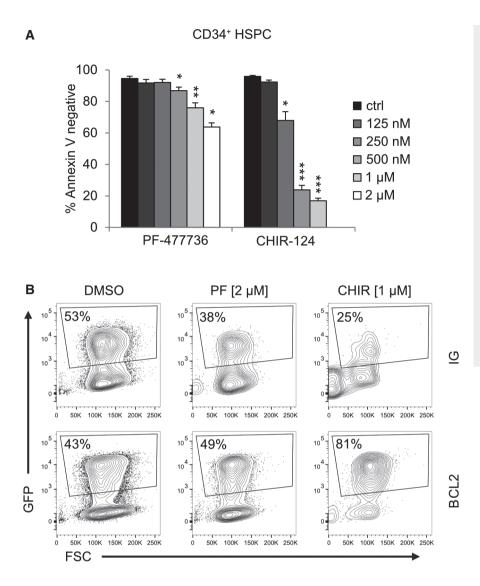



Figure EV1.

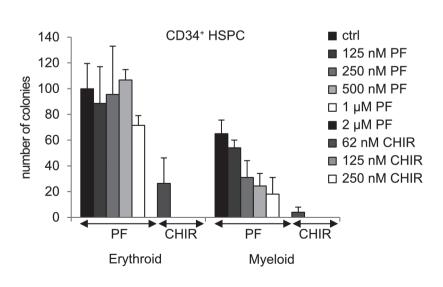


Figure EV2. Human CD34⁺ HSPCs undergo a BCL2-regulated apoptotic cell death in response to CHK1 inhibition.

- A MACS-purified CD34⁺ human cord blood-derived HSPCs were treated for 48 h with graded doses of PF-477736 or CHIR-124. Cell death was assessed using Annexin V/7-AAD staining and flow cytometry. *N* = 4/genotype.
- B Related to Fig 3C: CD34⁺ cells were transduced with a lentiviral empty vector (IG) or a vector encoding BCL2, along with IRES-GFP, followed by CHK1i application for 48 h. Shown here are the percentages of GFP⁺ cells within living cells.
- C CD34⁺ HSPCs was assessed for their colony formation capacity in methyl cellulose assays in the presence of graded doses of CHK1i. Colonies were counted 10 days postseeding of 1,000 CD34⁺ cells. "Myeloid colonies" include granulocyte/monocyte, monocyte, granulocyte, and GEMM (granulocyte, erythroid, monocyte/macrophage, and megakaryocyte) colonies. N = 3–6 donors.

Data information: Bars represent means \pm s.e.m. Asterisks indicate significant differences: *P < 0.05, **P < 0.01, ***P < 0.001 using unpaired Student's *t*-test.

Figure EV3. Deletion of Chk1 in HSC prevents fetal erythropoiesis.

A Related to Fig 4E: Representative dot-plots used to quantify different erythroid cell populations in the fetal liver at E13.5 of the different genotypes. B Quantification of the relative distribution of the cell population shown in (A). Large "EryA" erythroblasts (CD71^{high} Ter119^{high} FSC^{high}), smaller, more mature "EryB" erythroblasts (CD71^{high} Ter119^{high} FSC^{low}); most mature erythroblast subset is EryC (CD71^{low} Ter119^{high} FSC^{low}). Bars represent means \pm s.e.m. ctrl N = 5 (N = 4 $Chk1^{fl/+}$ and N = 1 $Chk1^{fl/+}$ Vav-Cre), N = 3 for $Chk1^{fl/-}$ Vav-Cre. Asterisks indicate significant differences: *P < 0.05, **P < 0.01, ***P < 0.001 using unpaired Student's t-test.

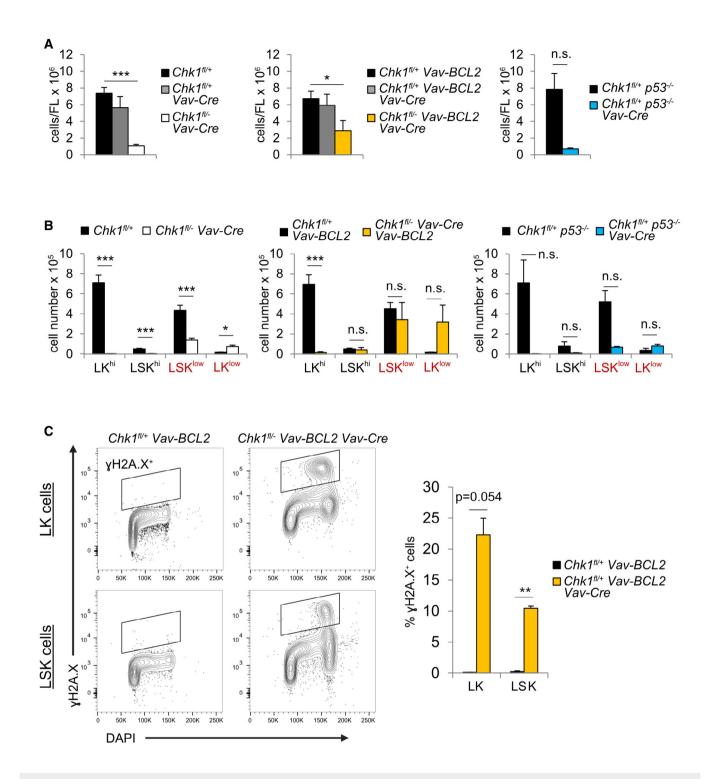



Figure EV3.

Figure EV4. BCL2 overexpression does not prevent DNA damage nor stem cell loss upon CHK1 deletion.

- A Quantification of the total cell number found in the E13.5 fetal liver of the indicated genotypes.
- B Calculation of the LK^{hi}/LK^{low} and LSK^{hi}/LSK^{low}-cell number per fetal liver at E13.5 of the indicated genotypes.
- C LK and LSK cells of the indicated genotypes were sorted from E13.5 fetal livers and immediately fixed in 70% EtoH. Fixed cell suspensions were stained for γ H2AX and DAPI intracellularly. Shown here are representative dot-plots (left) and quantification (right) of N = 2 animals per genotype; means \pm s.d.

Data information: For (A) and (B): $Chk1^{fl/+}$ (n = 21 embryos from 5 litters, 21/5), $Chk1^{fl/+}$ Vau-Cre (n = 5/5), $Chk1^{fl/-}$ Vau-Cre (n = 5/3), $Chk1^{fl/+}$ Vau-BCL2 (n = 16/5), $Chk1^{fl/+}$ Vau-Cre Vau-BCL2 (n = 7/3), $Chk1^{fl/-}$ Vau-Cre Vau-BCL2 (n = 5/3), $Chk1^{fl/+}$ p53^{-/-} (n = 2/1), and $Chk1^{fl/-}$ Vau-Cre p53^{-/-} (n = 4/2). Data information for (A–C): Asterisks indicate significant differences: *P < 0.05, **P < 0.01, ***P < 0.001 using unpaired Student's t-test.

Figure EV5. Blood cell analysis after tamoxifen administration.

Quantification of cellular parameters of peripheral blood cells sampled from *Vav-Cre^{ERT2} mT/mG* (ctrl) and *Vav-Cre^{ERT2} mT/mG* Ctrl) in *Vav-Cre^{ERT2} mT/mG* (ctrl) and *Vav-Cre^{ERT2} mT/mG* (ctrl) in *Vav-Cre^{ERT2} mT/mG* (ctrl) in *Vav-Cre^{ERT2} mT/mG* (ctrl) in *Vav-Cre^{ERT2} mT/mG* (ctrl) in *Vav-Cre^{ERT2} mT/mG* (ctrl) and *Vav-Cre^{ERT2} mT/mG* (ctrl) in *Vav-Cre^{ERT2} mT/mG* (ctrl) in *Vav-Cre^{ERT2} mT/mG* (ctrl) and *Vav-Cre^{ERT2} mT/mG* (ctrl) in *Vav-Cre^{ERT2*}

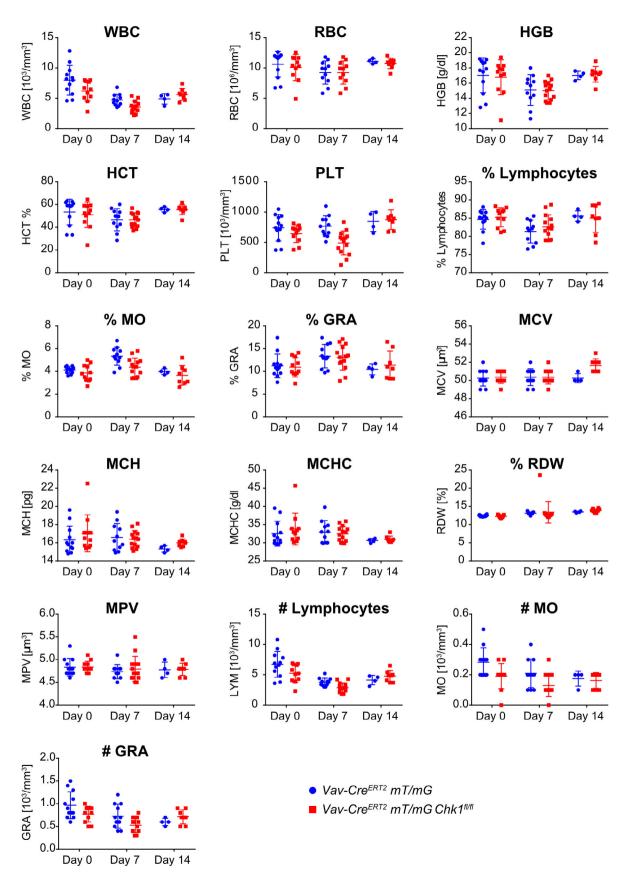


Figure EV5.