SUPPLEMENTARY MATERIALS

Rationale on the high radical scavenging capacity of betalains
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Supplementary methods

Solutions and buffers

Britton-Robinson (BR) universal buffers[1] (40 mmol L™!, pH 3 - 7) were prepared by mixing
aqueous solutions of H3BOs (40 mmol L"), H3PO4 (40 mmol L), and H;CCO-H (40
mmol L") and adjusting the pH to the desired value with aqueous NaOH solution (0.2 mol
L") at 25 °C.

Molar absorption coefficient (€)

Since the direct weighting of betalains is difficult due to limited amount of substance and
high hygroscopicity, the molar absorption coefficient (¢) of the pBeets and the mepBeets was
determined using an endpoint method[2] (Figure S11). Briefly, the alkaline hydrolysis of
betalains in BR buffer (pH 7 or 11, 40 mmol L") was spectrophotometrically monitored. The
initial pigment concentration and ¢ of all betalains were determined by comparing the
absorption of the resulting betalamic acid solution (¢*2*™™ = 27,000 L mol~! cm™)[3] with that
of betanin solutions of known concentrations. The betalamic acid solutions were stable under
the experimental conditions, and no appreciable change in the spectral properties could be
detected after 30 min.

Fluorescence quantum yields (®r.)

Fluorescence quantum yields (®rr) were determined using rhodamine B as the secondary
fluorescence standard (ethanol solution; np = 1.3616; ®r = 0.5)[4]. Fluorescence spectra of
the standard and the betalains were taken under identical spectrometer conditions (excitation
(EX) at 490 nm, emission (EM) wavelength range: 510 — 800 nm, slits 20 nm (EX and EM),

photomultiplier power 600 V, 25 + 1 °C) on a Varian Eclipse spectrofluorimeter equipped
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with a thermostatized cell holder. Plots of the integrated fluorescence intensity vs. absorbance
were submitted to linear regression analysis and the slopes ax and as were used to calculate
the ®rr using Eq. S1.
2

DY =5, (Z_j)(z_’;) (Eq. S1)
where n is the refractive index of the solvent and ®rr are the absolute quantum yields; X
refers to the sample and S to the standard.
Cyclic Voltammetry
Measurements were carried out in a Autolab PGSTAT101 potentiostat/galvanostat controlled
with NOVA software and equipped with a 10 mL conventional electrochemical cell at room
temperature. A glassy carbon working electrode (diameter of electrode disk = 2 mm), a
platinum wire auxiliary electrode and and a Ag|AgCl (KCIl, sat.) reference electrode were
used; scan rate: 50 mV s~', potential range: —1.0 to 1.0 V or —1.0 to 1.25 V; [betalain] = 0.1
mmol L' (in BR buffer). Before each experiment, the working electrode was polished with
0.05 pum sized aluminum oxide particles (60 cycles) and washed with water under ultrasound
irradiation for 1 min. The number of proton lost/gained by electron ratio (v/n) was calculated
from the Nernst plot (Figure 2); Nernst limit of =59 mV/pH (v/n = 1).
NMR spectroscopy
The 'H NMR spectra of betalains were recorded using a Bruker Avance III 500 (11.7 T)
spectrometer, operating at 500 MHz, using a 5S-mm triple resonance probe (TXI) with inverse
detection, at 293 K, and the zg30 pulse program (30° flip angle). Baseline correction was
performed using the Whittaker smoother algorithm as implemented in the MestReNova

software (v.8.1.4, 2013, Mestrelab Res.). Samples were prepared in CD3;OD (700 pL)
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immediately before spectral acquisition at a concentration of 4.0 mg mL~'. Chemical shifts
are reported as 0 values (ppm) referenced to sodium trimethylsilyl propionate-ds (TSP)
signal, ou (TSP, 5) = 0 ppm. Multiplicities were given as s (singlet); brs (broad singlet); d
(doublet); # (triplet); m (multiplet) and, dd (double of doublets). Due to limited solubility and
low persistence of these betalains in D>O and in other polar solvents, '3C NMR data could
not be obtained.

HPLC-DAD-ESI(+)-MS/MS analyses

Experiments were carried out on an Bruker Daltonics Esquire HCT ion trap mass
spectrometer equipped with an electrospray source and coupled to a Shimadzu Prominence
LC-20AD liquid chromatograph equipped with a Kinetex EVO C18 column (150 mm x 4.6
mm, 5 pm, Phenomenex) maintained at 25 °C, and a PDA SPD-M20A detector. Nitrogen
was used as nebulizing (45 psi) and drying gas (6 L min~!, 325 °C) and helium as buffer gas
(4 x 10°° mbar). The capillary high voltage was set to 4 kV. To avoid space-charge effects,
smart ion charge control (ICC) was set to the arbitrary value of 50,000. LC analysis
conditions: linear gradient from 5% to 20% B in 8 min and 20 to 50% B from 8 to 10 min, at
25 °C; solvent systems, A: water with formic acid (0.05% v/v); B: 0.05% v/v formic acid in

MeCN/water (60/40); flow rate: 0.3 mL min~!, injection volume: 10 uL.
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Supplementary Figures and Table
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Figure S1. '"H NMR spectrum (500 MHz, CD;OD) of pBeet. The interval between 4.6 — 4.8 ppm

(residual water signal) is not shown for clarity. The multiplicity of poorly-resolved peaks were

inferred by using non-linear data fitting (blue curves).
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Figure S2. ESI(+)-MS spectrum of pBeet (exact mass: 287.1026 amu) and MS/MS spectrum of the

precursor ion m/z 287.1.
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Figure S3. 'H NMR spectrum (500 MHz, CD;OD) of mepBeet. The interval between 4.6 — 4.8 ppm
(residual water signal) is not shown for clarity. The multiplicity of poorly-resolved peaks were

inferred by using non-linear data fitting (blue curves).
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Figure S4. ESI(+)-MS spectrum of mepBeet (exact mass: 301.1183 amu) and MS/MS spectrum of

the precursor ion m/z 301.1.
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Figure S5. '"H NMR spectrum (500 MHz, CD;0D) of m-OH-pBeet. The interval between 4.6 — 4.8

ppm (residual water signal) is not shown for clarity. The multiplicity of poorly-resolved peaks were

inferred by using non-linear data fitting (blue curves).
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Figure S6. ESI(+)-MS spectrum of m-OH-pBeet (exact mass: 303.0975 amu) and MS/MS spectrum

of the precursor ion m/z 303.1.
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Figure S7. 'H NMR spectrum (500 MHz, CD;OD) of m-OH-mepBeet. The interval between 4.6 —
4.8 ppm (residual water signal) is not shown for clarity. The multiplicity of poorly-resolved peaks

were inferred by using non-linear data fitting (blue curves).
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Figure S8. ESI(+)-MS spectrum of m-OH-mepBeet (exact mass: 317.1132 amu) and MS/MS

spectrum of the precursor ion m/z 317.2
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Figure S9. Normalized absorption spectra of pBeets, mepBeets and ABTS™ in water.
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Figure S10. Cyclic voltammograms of pBeets and mepBeets in BR buffer at pH ranging from 3 to 7.
Glassy carbon electrode; Ag|/AgCl (KCl sat.); scan rate: 50 mV s, potential range: —1.0 to 1.0 V or
—1.0 to 1.25 V; [betalain] = 0.1 mmol L™
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Figure S11. Hydrolysis of pBeet, mepBeet, m-OH-pBeet and m-OH-mepBeet. (a) Absorption spectra
of betalains in BR buffer (pH 7 or 11, 40 mmol L™). (b) Kinetics of betalain hydrolysis and betalamic
acid formation, as inferred from changes in absorption at roughly 500 nm and 424 nm, respectively.
The observed rate constants (kobs) were calculated by non-linear curve fitting of the experimental data

to a monoexponential function.
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Table S1. TEAC values =+ sd of the pBeets and the mepBeets measured after 6 — 120 min of reaction.

pH m-OH-pBeet m-OH-mepBeet pBeet mepBeet

3 2.5+0.2 -0.9+0.1 1.5+0.1 —-09+0.1

5 2.6+£0.2 -0.4+0.1 3102 —04+0.1

7 3.8+£0.2 1.1+£0.1 20+0.1 12+0.1

3 3.6+£0.3 1.2+£0.2 23+0.1 -0.2+0.1

5 42+0.2 1.4+£0.1 3701 1.0+0.1

7 54+02 1.7+£0.1 30+£0.1 22+0.1

3 3.6+£0.2 23+£0.2 24+0.1 09+0.1

5 4.8+0.2 1.8+£0.1 40+02 19+0.1

7 5.6+0.2 1.8+£0.1 32+0.1 24+0.1

3 43=+0.2 23+£0.2 25+0.1 1.7+0.2

5 4.8+0.2 1.9+0.1 3702 22+0.1

7 5.1+£0.2 2.0+£0.1 3102 2.7+0.1
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