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SI-1 Symmetry condition on heterodimer concentrations

In Section 2.3 we have shown that the detailed balance condition implies that the hetero

equilibrium constants in the nucleation and elongation part must be related KA−B = σAK∗A−B

and KB−A = σBK∗B−A. Here we show that if the additional symmetry condition KA−B = KB−A

holds, the concentration of a copolymer and its reverse are equal.

Let P be an arbitrary copolymer with bottom A, that contains x monomers A, y monomers

B, p bonds A−A, q bonds B−B, r bonds A−B and s bonds B−A. The concentration of P

is then

[P ] = σAa
x byKp

∗A−AK
q
∗B−BK

r
∗A−BK

s
∗B−A .

Let PR be the reverse copolymer. Clearly PR contains the same number of A and B monomers

and the same number of A−A and B−B bonds. However the numbers of A−B and B−A

bonds are now interchanged. The concentration of PR is thus given by

[PR] = σax byKp
∗A−AK

q
∗B−BK

s
∗A−BK

r
∗B−A ,

where σ depends on the bottom element of PR, which is the top element of P . We consider

two cases: i) If P has top element A, then σ = σA. But in that case P has an A at its bottom

and at its top, which implies that r = s. Hence the concentrations of P and PR are equal.

ii) If P has top element B, then σ = σB. But in that case P has an A at its bottom and an B

at its top, which implies that r = s+ 1. The difference between the concentrations of P and

PR is now

[P ]− [PR] = ax byKp
∗A−AK

q
∗B−B

(
σAK

s+1
∗A−BK

s
∗B−A − σBK

s
∗A−BK

s+1
∗B−A

)
= ax byKp

∗A−AK
q
∗B−BK

s
∗A−BK

s
∗B−A (σAK∗A−B − σBK∗B−A) ,

which vanishes due to the symmetry condition. The case that P has a bottom element B can

be treated similarly.

The reverse property also holds. If for each copolymer its concentration equals the con-

centration of the reverse copolymer, then the symmetry condition must hold. That follows

immediately from [AB] = [BA].
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SI-2 Initial values recursive relations

Initial values for equivalent monomer and bond concentrations

In Section 2.5 the equivalent concentration of a part X of the copolymers is computed with

the iteration process in eq 22:

un+1 = M · un with M =

 Mc 0

MX Mc

 and un = (cA
n , c

B
n , f

A
n , f

B
n )T .

The matrix Mc is given in eq 15 and the matrix MX depends on the part X. Further cA
n and

cB
n are the concentrations of copolymers with length n and top A and B respectively and fA

n

and fB
n are the equivalent X concentrations in copolymers with length n and top A and B

respectively. In principle the iteration process must be started from n = 2. The step from

n = 1 to n = 2 is the nucleation step, but the iteration matrix M is derived for the elongation

phase. The initial values for the concentrations are easily found

cA
2 = [AA] + [BA] = KA−Aa

2 +KB−Aab , cB
2 = [AB] + [BB] = KA−Bab+KB−Bb

2 .

The initial values for fA
2 and fB

2 and the matrix MX are given in Table S1 for part X a

monomer (A or B) or a bond (A−A, B−A, A−B or B−B).

In fact the iteration process can also be started from n = 1, with cA
1 = σAa, cB

1 = σBb, fA
1

and fB
1 as given in Table S1. Then u2 = M · u1.

Initial values for block length computations

The computation of the lengths of A blocks was done with an iteration process for the variables

CA
n (k), CB

n (k) and OA
n (k). For the computation of B block lengths we use similar variables,

with an additional “hat” symbol, and for the computation of the alternating (AB) blocks the

variables have an additional “tilde”. The initial values for n = 2 are as follows:

A blocks: AB (= alternating) blocks:

OA
2 (1) = [BA] = KB−Aa b ÕA

2 (1) = [AA] = KA−Aa
2

OA
2 (2) = [AA] = KA−Aa

2 ÕA
2 (2) = [BA] = KB−Aa b

CB
2 (1) = [AB] = KA−Ba b ÕB

2 (1) = [BB] = KB−Bb
2

B blocks: ÕB
2 (2) = [AB] = KA−Ba b

ÔB
2 (1) = [AB] = KA−Ba b C̃A

2 (1) = [AA] = KA−Aa
2

ÔB
2 (2) = [BB] = KB−Bb

2 C̃B
2 (1) = [BB] = KB−Bb

2

ĈA
2 (1) = [BA] = KB−Aa b
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Table S1: Initial values and matrix MX for various X

X matrix MX init values n = 2 init values n = 1

A MA =

(
K∗A−A a K∗B−A a

0 0

)
fA

2 = [BA] + 2[AA] = KB−Aab+ 2KA−Aa
2

fB
2 = [AB] = KA−Bab

fA
1 = σAa

fB
1 = 0

B MB =

(
0 0

K∗A−B b K∗B−B b

)
fA

2 = [BA] = KB−Aab

fB
2 = [AB] + 2[BB] = KA−Bab+ 2KB−Bb

2

fA
1 = 0

fB
1 = σBb

A−A MA−A =

(
K∗A−Aa 0

0 0

)
fA

2 = [AA] = KA−Aa
2

fB
2 = 0

fA
1 = 0

fB
1 = 0

B−A MB−A =

(
0 K∗B−Aa

0 0

)
fA

2 = [BA] = KB−Aab

fB
2 = 0

fA
1 = 0

fB
1 = 0

A−B MA−B =

(
0 0

K∗A−Bb 0

)
fA

2 = 0

fB
2 = [AB] = KA−Bab

fA
1 = 0

fB
1 = 0

B−B MB−B =

(
0 0

0 KB−Bb

)
fA

2 = 0

fB
2 = [BB] = KB−Bb

2

fA
1 = 0

fB
1 = 0

Not all tables have already elements for n = 2. For instance, in a copolymer of length n and

top A the maximal length of a closed A block is n−2, so the table CA
2 needs no initialization.

SI-3 More examples of allowed regions

Here some more examples of allowed regions for a system with one copolymer type are given.

Consider the homopolymer system with monomer A and reactions given in eq 1 and 2 in

the paper. For the concentration cA
n the recurrent relation cA

n+1 = K∗A−Aac
A
n holds. That

means that in a chemical system always K∗A−Aa < 1, otherwise cA
n+1 ≥ cA

n , which implies

that the equivalent A concentration in the system would be infinite. Hence the free monomer

concentration a must always lie in the “allowed interval” 0 ≤ a < 1/K∗A−A. In that case

the equivalent A concentration in all polymers can be computed with a summation formula,

which leads to the standard one component mass-balance equation given in eq S4. Although
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the mathematical equation S4 may have solutions with a ≥ 1/K∗A−A, these solutions are not

chemically relevant, i.e., they do not correspond with existing polymer systems.

Next consider two homopolymer systems, for a monomer type A and a similar system for a

monomer type B. Then the free monomer concentrations a must lie in the interval 0 ≤ a <

1/K∗A−A and the free monomer concentration b must lie in the interval 0 ≤ b < 1/K∗B−B.

Now consider these two systems together as a copolymerization system, that has accidentally

no hetero interaction, i.e., K∗A−B = K∗B−A = 0. Then the free monomer point (a, b) must

be in the allowed region, which is in this case the rectangle given by 0 ≤ a < 1/K∗A−A and

0 ≤ b < 1/K∗B−B, see the orange lines in Figure S1.

If the copolymerization system does have hetero interaction, i.e., K∗A−B > 0 and K∗B−A > 0,

the allowed region becomes smaller. The addition of hetero interaction means that, for the

same free monomer concentrations a and b, more material occurs in (co)polymers. Hence the

allowed a and b values to keep the system finite, will be smaller. Mathematically the allowed

region is bounded by the critical curve, i.e., the curve where the largest eigenvalue of iteration

matrix Mc (see eq 15) equals 1. The shape of the allowed region is, for fixed K∗A−A and K∗B−B,

determined by the product K∗A−BK∗B−A of the hetero interaction constants. Larger values of

K∗A−BK∗B−A, i.e., smaller values of D = K∗A−AK∗B−B−K∗A−BK∗B−A, lead to a smaller allowed

region. In Figure S1 the allowed region is shown for four values of the dimensionless parameter

d = D/(K∗A−AK∗B−B).

d = 1
d = 0.85
d = 0
d = -3

Figure S1: Allowed regions (below/left of the colored lines) for the monomer concentrations
a, b, for four values of d = D/(K∗A−AK∗B−B). If d = 1 there is no hetero interaction and the
allowed region is a rectangle. The case d = 0.85 corresponds with the weak hetero interaction
as shown in Figure 2a. If d = 0 then K∗A−BK∗B−A = K∗A−AK∗B−B, the critical curve is a
straight line (the pink line) and the allowed region ia triangle. Finally d = −3 corresponds
with the strong hetero interaction as shown in Figure 2b.
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SI-4 Computing mass weighted copolymer lengths

The average concentration weighted copolymer length was given in eq 32 as

〈n〉 =

∑∞
n=2 n(cA

n + cB
n )∑∞

n=2(cA
n + cB

n )
=
Ptot

Ctot
.

The average mass weighted copolymer length is given by

〈n〉mw =

∑∞
n=2 n

2(cA
n + cB

n )∑∞
n=2 n(cA

n + cB
n )

=
Qtot

Ptot
.

The computation of Ptot and Ctot was described in Section 2.5 of the paper, in particular

eqs 26-28. In a similar way Qtot can be computed. Since Ptot and Ctot are computed while

solving the mass-balance equations, the value of 〈n〉 can be found as side effect of the mass

balance solver. Here we describe how Ctot, Ptot and Qtot can also be found using the iteration

process for the concentration of the copolymers alone, as given in eq 14: cn+1 = Mc · cn,

where cn = (cA
n , c

B
n )T. Then using the identities

∞∑
n=2

cn =

∞∑
n=2

Mn−1
c v1 = (I −Mc)

−1 ·Mc · c1

∞∑
n=2

ncn =
∞∑
n=2

nMn−1
c v1 =

(
(I −Mc)

−2 + (I −Mc)
−1
)
·Mc · c1

∞∑
n=2

n2cn =

∞∑
n=2

n2Mn−1
c v1 =

(
2(I −Mc)

−3 + (I −Mc)
−2 + (I −Mc)

−1
)
·Mc · c1 ,

with c1 = (cA
1 , c

B
1 )T = (σAa, σBb)

T, the values of Ctot, Ptot and Qtot can be computed.

If the mass weighted copolymer length is known, also the polydispersity index, defined as

〈n〉mw/〈n〉 can be computed. The Matlab function ComputeBonds, described in Section SI-8

also computes the average mass weighted copolymer length.
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SI-5 Derivation analytical expressions special cases

General notions

The expressions for the equivalent monomer and bond concentrations (PX in eq 26) and

the total copolymer concentration (Ctot in eq 28) are in terms of vectors and matrices. By

computing the individual matrix elements explicit expressions for these notions can be found.

These explicit expressions are the starting point for the analysis of the special cases in Section 4

of the paper and will be given here. We use the following abbreviations:

y1 = 1−K∗B−B b+K∗A−B b ,

y2 = 1−K∗A−A a+K∗B−A a ,

z1 = σA a(1−K∗B−B b) + σBK∗B−A a b ,

z2 = σAK∗A−B a b+ σB b (1−K∗A−A a) ,

w1 = σAK∗A−A a
2 + σBK∗B−A a b ,

w2 = σAK∗A−B a b+ σBK∗B−B b
2 ,

δ = 1−K∗A−Aa−K∗B−Bb+Da b (D = K∗A−AK∗B−B −K∗A−BK∗B−A) . (S1)

The equivalent bond concentrations are then given by

PA−A = y1K∗A−A a z1/δ
2 ,

PB−B = y2K∗B−B b z2/δ
2 ,

PA−B = y2K∗A−B b z1/δ
2 ,

PB−A = y1K∗B−A a z2/δ
2 . (S2)

A simple computation shows that always

PA−BPB−A

PA−APB−B
=
K∗A−BK∗B−A

K∗A−AK∗B−B
,

which turns out to be a useful relation. Moreover, if the symmetry condition KA−B = KB−A

(i.e., σAK∗A−B = σBK∗B−A) holds, then

PA−B = PB−A .

Introducing CA and CB as the total concentration of copolymers with top A and B respectively

yields the following identities

CA = ((1−K∗B−B b)w1 +K∗B−A aw2)/δ ,

CB = (K∗A−B bw1 + (1−K∗A−A a)w2)/δ .
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Since each copolymer has either top A or top B the total copolymer concentration Ctot is

given by

Ctot = CA + CB .

As the equivalent concentration of A monomers in all copolymers (PA) is the sum of the

equivalent concentration of all A’s followed by an A, the equivalent concentration of all A’s

followed by a B, and the concentration of polymers with an A at the top, we can also write

the identities:

PA = PA−A + PA−B + CA , (S3)

PB = PB−B + PB−A + CB .

The total amount of monomers occurring in copolymers is then given by

Ptot = PA + PB

and the degree of copolymerization is

φ =
Ptot

atot + btot
.

One-component model

In the case that K∗A−B = 0 and K∗B−A = 0 we obtain:

y1 = 1−K∗B−B b ,

y2 = 1−K∗A−A a ,

z1 = σA a (1−K∗B−B b) ,

z2 = σB b (1−K∗A−A a) ,

w1 = σAK∗A−A a
2 ,

w2 = σBK∗B−B b
2 ,

δ = (1−K∗A−Aa)(1−K∗B−Bb) .
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The equivalent bond concentrations are then given by

PA−A = σAK∗A−A a
2/(1−K∗A−Aa)2 ,

PB−B = σBK∗B−B b
2/(1−K∗B−Bb)

2 ,

PA−B = 0 ,

PB−A = 0 ,

CA = σAK∗A−Aa
2/(1−K∗A−Aa) ,

CB = σBK∗B−Bb
2/(1−K∗B−Bb) ,

PA = σAK∗A−A a
2/(1−K∗A−Aa)2 + σAK∗A−Aa

2/(1−K∗A−Aa) = σAK∗A−A a
2 2−K∗A−Aa

(1−K∗A−Aa)2
,

PB = σBK∗B−B b
2/(1−K∗B−Bb)

2 + σBK∗B−Bb
2/(1−K∗B−Bb) = σBK∗B−B b

2 2−K∗B−Bb

(1−K∗A−Aa)2
.

Hence the mass-balance equation for the case of one copolymer type, without hetero interac-

tion, become

a+ σAK∗A−A a
2 2−K∗A−Aa

(1−K∗A−Aa)2
= atot , (S4)

b+ σBK∗B−B b
2 2−K∗B−Bb

(1−K∗B−Bb)2
= btot . (S5)

Note that this are indeed the uncoupled one-component mass balance equations for the A

and B homopolymers, respectively.

Mixing in a small amount of B monomers

We derive eq 40 of the paper. Since in the “mixing in” case we assume that K∗B−B = 0,

also PB−B = 0. Hence in case of a small value of btot and a high degree of polymerization,

PB ≈ PB−A, since only Bs at the top of the long copolymers are not taken into account. In

eq S2 for PB−A the abbreviation z2 occurs, that can be rewritten as

z2 = σAK∗A−B a b+ σB b (1−K∗A−A a) ≈ σAK∗A−B a b+ σB bK∗A−BK∗B−Aa b = K∗A−B b z1 ,

where we used that in case of high degree of polymerization δ ≈ 0, which in this case means

that 1−K∗A−Aa ≈ K∗A−BK∗B−Aa b. Using this approximation for z2 in eq S2 gives

PB ≈ PB−A ≈ y1K∗B−A a z2/δ
2 ≈ y1K∗B−A aK∗A−B b z1/δ

2 =
K∗A−BK∗B−Ab

K∗A−A
PA−A .
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The proof is completed by noting that, for long copolymers and small amounts of btot the

value of PA−A is almost equal1 to PA, hence in the considered case

PB ≈
K∗A−BK∗B−Ab

K∗A−A
PA. (S6)

The equilibrium monomer concentrations for small values of btot can now be approximated

as follows. Rewriting eq S6 in terms of a and b gives

btot − b =
K∗A−BK∗B−Ab

K∗A−A
(atot − a) . (S7)

Since we consider a highly polymerized case (with K∗B−B = 0), also the relation δ = 1 −
K∗A−Aa−K∗A−BK∗B−Aab ≈ 0 holds. Substitution of

a = 1/(K∗A−A +K∗A−BK∗B−Ab) (S8)

in eq S7 leads to a quadratic equation in b. The only positive solution is for small btot given

by

b =
K2
∗A−A

K2
∗A−A +K∗A−BK∗B−A(K∗A−Aatot − 1)

btot . (S9)

The corresponding approximation for the free monomer concentration a can now be obtained

from eq S8.

We now study the effect of the addition of B monomers to a pure A system on the degree of

polymerization φ and the average copolymer length 〈n〉. We first introduce the dimensionless

parameters α, β and γ by setting

α = K∗A−A atot ,

β =
K∗A−B

K∗A−A
,

γ =
btot

atot
.

Keeping all other parameters fixed, we consider all (equivalent) concentrations, the average

copolymer length 〈n〉 and the degree of polymerization φ as function of γ. The derivatives

of these notions with respect to γ in γ = 0 indicate what happens if B monomers are added

to a pure A homopolymer solution. The derivatives will be written with a prime, like a′, b′,

P ′tot, φ
′ and can be computed with the standard calculus rules, starting from eqs S8 and S9.

Some care must be taken in computing δ and δ′. Since eq (S8) was derived from the approx-

1Using the better approximation PA−A = PA − PB−A leads in first order in btot to the same result.
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imation δ = 0, it cannot be used to compute δ. However δ and δ′ can still be obtained from

eq (S3), with PA = atot − a. After some calculus we finally end up with

φ′ =

σA
σB
β2 (2α− 1) + 1− α

α
(

1 + σA
σB
β2(α− 1)

) .

Since we assume a high degree of polymerization of the A homopolymers, α >> 1. Hence, for

small β, i.e. small K∗A−B/K∗A−A, the value of φ′ is negative, for large values of β it is positive.

The turning point β̃ is given by

β̃ =

√
σB

σA

√
α− 1

2α− 1
.

For the derivative of the average copolymer length in γ = 0 we find

〈n〉′ = β α√
σA(α− 1)

(
β
σA

σB
(3

2 α− 1)− α+ 1

)
.

Also 〈n〉′ is negative for small values of β and positive for larger values of β, with turning

point

β̂ =
σB

σA

α− 1
3
2α− 1

.

SI-6 Computing elongation temperatures

Consider an A, B mixture with concentrations atot and btot. Suppose that the dimensionless

(elongation) equilibrium constants are described by an enthalpy and entropy term:

K̂∗A−A = exp
(
−∆HA−A

RT +
∆SA−A
R

)
K̂∗B−B = exp

(
−∆HB−B

RT +
∆SB−B
R

)
K̂∗A−B = exp

(
−∆HA−B

RT +
∆SA−B
R

)
K̂∗B−A = exp

(
−∆HB−A

RT +
∆SB−A
R

)
,

where R is the gas constant and T the absolute temperature. The enthalpy and entropy

changes are computed in a reference state, for which we take the hypothetical state with all

concentrations equal to c0 = 1 M. The original equilibrium constants like K∗A−A are related

to their dimensionless version K̂∗A−A by K̂∗A−A = K∗A−Ac0, which means that K̂∗A−A has the

numerical value of K∗A−A when this equilibrium constant is written in M units. In the sequel

we shall omit the hat symbol and use the same notation for both versions. We assume that

all enthalpy changes are negative, which is the usual situation.
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The elongation temperature Te is defined as the temperature such that the point (atot, btot)

is a critical concentration pair, i.e.

δ(atot, btot) = 1−K∗A−A atot −K∗B−B btot +Datot btot = 0 , (S10)

where D = K∗A−AK∗B−B −K∗A−BK∗B−A. If btot = 0, this reduces to the well known condition

K∗A−A atot = 1. This gives the standard formula of the elongation temperature of a one

component model:

Te,A =
∆HA−A

R ln(atot) + ∆SA−A
.

Since ∆HA−A < 0, also the denominator of this quotient must be negative for Te,A to exist.

In the extreme situation that R ln(atot) + ∆SA−A > 0, then even for very large temperatures

K∗A−Aatot > 1, which means that the material is polymerized even for T → ∞. Then an

elongation temperature for the A homopolymers does not exist. The same approach can be

used for the B homopolymers.

To study the solution of eq S10 in the copolymerization case, write this equation as f1(T ) =

f2(T ), with
f1(T ) = (1−K∗A−A atot) (1−K∗B−B btot)

f2(T ) = K∗A−BK∗B−A atot btot .

Let Tm be the maximum of the homopolymer elongation temperatures Te,A and Te,B. Then

f1(Tm) = 0 and for T > Tm the function f1(T ) is an increasing function of T , with limit L1 =

(1− exp(∆SA−A/R) atot) (1− exp(∆SB−B/R) btot) for T →∞. Moreover f2(T ) is a decreasing

function of T , with limit L2 = exp((∆SA−B + ∆SB−A)/R) atot btot for T → ∞. Usually

L1 > L2, which means that there is one unique elongation temperature for copolymerization

Te where f1(Te) = f2(Te). Clearly Te > Te,A and Te > Te,B. Unfortunately a simple formula

for Te cannot be found. In the Section SI-8 of this Supplementary Information the Matlab

function ComputeTe for a numerical computation of Te is given. If L1 ≤ L2 then the material

is copolymerized, even for T → ∞, and an elongation temperature for the copolymers does

not exist.

SI-7 Additional data on solvent-dependent copolymerizations

Materials and Methods

All solvents were obtained from Biosolve, Acros or Aldrich and used as received. Molecules

used, 6,6,6-Nitrilotris(N-(3,7-dimethyloctyl)nicotinamide) (S-1= A), and

4,4,4-nitrilotris(N-((S)-3,7-dimethyloctyl)benzamide) (S-2= B), were synthesized as previ-

ously reportedS1 and vacuum-oven dried before use.
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UV/Vis and circular dichroism (CD) measurements were performed on a Jasco J-815 spec-

tropolarimeter, for which the sensitivity, time constants and scan rates were chosen appro-

priately. Corresponding temperature-dependent measurements were performed with a Jasco

PFD-425S/15 Peltier-type temperature controller with a temperature range of 263-393 K and

adjustable temperature slope. In all experiments the linear dichroism was also measured and

in all cases no linear dichroism was observed. For spectroscopic measurements spectroscopic

grade solvents were employed and sealable quartz cuvette with optic path of 1 cm × 1 cm

was used.

Sample preparation

Supramolecular copolymerizations were performed with tri-5-carboxamide tri(pyrid-2-yl)amine

tricarboxyamide (S-1) and tri-p-carboxamide triphenylamine (S-2),S1,S2 see Figure S2.

Figure S2: Chemical structures. Tri-5-carboxamide tri(pyrid-2-yl)amines (with (S)-
dimethyloctyl chain (S-TPyA, S-1)) tri-p-carboxamide triphenylamines (with (S)-
dimethyloctyl chain (S-TPA, S-2))

Supramolecular copolymerization between S-1 and S-2 was performed by slow cooling of

monomers: a 1:1 mixture of S-1 and S-2 was heated to 100◦ C (373 K) and cooled down to

40◦C (313 K) (cool rate: 15◦C h−1) affording to poly[(S-1)-co-(S-2)]. The copolymerization

was monitored by Circular Dichroism (CD) following the evolution of selected wavelengths

over temperature and compared with the related homopolymerizations S-1→ poly(S-1) and

S-2→ poly(S-2).

The copolymerization was investigated in different solvent conditions: pure methylcyclohex-

ane (MCH), pure decalin, mixture v/v 97:3 decalin:1,2-dichloroethane (DCE). Stock solutions

of S-1 and S-2 (c = 30 µM) were prepared by weighing the necessary amount of compound for

the given concentration and dissolved with a weighted amount of solvent based on its density.

The stock solutions were heated up, sonicated till complete dissolution and slowly cooled down

to room temperature every time before use unless otherwise specified. Copolymers solutions
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were then prepared by mixing 1:1 the stock solution of S-1 and S-2. Homopolymers solution

(c = 15 µM) were obtained by diluting the stock solution by half. All the spectroscopic mea-

surement were performed with freshly prepared solutions (max. 1 week after the preparation

of the stock solution).
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Figure S3: Decalin solvent: (a) fit of CD data of S-1 homopolymers, (b) fit of CD data of
S-2 homopolymers
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Figure S4: Decalin/DCE solvent: (a) fit of CD data of S-1 homopolymers, (b) fit of CD data
of S-2 homopolymers

Additional note on the polymerization

As previously reported, both the homopolymers are subject to pathway complexity. Both

S-1 and S-2 display the formation of 2 assembled states with opposite handedness.S1,S3 State

I, with positive CD signal, is formed at high temperatures from a molecularly dissolved

solution via a nucleation-elongation mechanism. State II is formed below room temperature

through a sharp transition from the first assembled State I. Recent discovery indicates that
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the temperature where the transition I→ II occurs is dominated by the concentration of

water dissolved in aliphatic solvents. It has been reported that water can interact with the

supramolecular polymer chains resulting in State II.S3

Although the transition I → II, in standard humidity condition (≈ 25 ppm in MCH) occurs

below 25◦ C (298 K), deviation from classic nucleation-elongation model can be observed

starting from 35◦ C (308 K).S1 Thus, in order to perform all the copolymerization under

thermodynamic control in State I, the cooling curves were performed till 40◦ C (313 K).

The solutions were prepared in ambient conditions and stored in sealable vials or cuvettes to

maintain constant humidity through-out all the experiments.

Fitting of the homopolymers

CD data of cooling curves of S-1 and S-2 homopolymers in the three solvents are fitted with

the one-component model software given in Ref. S4. In each case two cooling curves with

different concentrations have been fitted. As mentioned above, only temperatures above 40◦C

have been used in the fitting process. Moreover, to improve the fit quality around the elon-

gation temperature of the homopolymers the differences between CD data and model results

have been given a larger weight factor around the elongation temperature. The fit results per

homopolymer and solvent are: i) the enthalpy change ∆H and entropy change ∆S at an elon-

gation step, such that the equilibrium constant at elongation K = exp(−∆H/RT+∆S/R), ii)

the nucleation penalty NP, such that the cooperativity factor is σ = exp(NP/RT ) and finally

iii) the normalization factor N (in mdeg/M), which gives the linear relation between model

computed material (= equivalent concentration) in copolymers (in M) and experimental CD

data (in mdeg). The fit results of the homopolymers are summarized in Table S2, graphs of

the CD data and the model results are shown in Figures S3, S4 and S5.
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Figure S5: MCH solvent: (a) fit of CD data of S-1 homopolymers, (b) fit of CD data of S-2
homopolymers
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Table S2: Thermodynamic parameters for triarylamine triamide based homopolymers in three
distinct solvents.

monomer/solvent ∆H [kJ/mol] ∆S [kJ/mol K] NP [kJ/mol] N [mdeg/M]

S-1(A) in decalin -85.4 -0.1520 -25.05 1.009 ∗ 106

S-2(B) in decalin -71.3 -0.127 -17.6 1.707 ∗ 106

S-1(A) in decalin/DCE -81.8 -0.148 -20.0 8.196 ∗ 105

S-2(B) in decalin/DCE -58.2 -0.0931 -15.4 1.558 ∗ 106

S-1(A) in MCH -92.0 -0.168 -29.5 1.253 ∗ 106

S-2(B) in MCH -87.5 -0.173 -14.0 9.842 ∗ 105

Fitting of the copolymers

Once the homopolymer parameters are known, the only remaining parameters for the copoly-

merization are the thermodynamical parameters for the hetero elongation constantsK∗A−B and

K∗B−A. To reduce the number of parameters, we assume the symmetry condition (σAK∗A−B =

σBK∗B−A), hence only K∗A−B remains. We introduce ∆HA−B and ∆SA−B as the correspond-

ing enthalpy and entropy changes, i.e., K∗A−B = exp(−∆HA−B/RT + ∆SA−B/T ). To find

the values of ∆HA−B and ∆SA−B we fitted a cooling curve of a S-1-S-2 mixture, each with

concentration 15 µM, against the results of the copolymerization model. As the normal-

ization factors N given in Table S2 are for each solvent quite different between A and B

homopolymers, it is not wise to fit the experimental data against Ptot = PA + PB, as then

the contribution of A and B monomers is equal. Therefore we fitted the experimental CD

data against Ncopol(NAPA +NBPB), where NA and NB are the normalization factors for S-1

and S-2 from Table S2 and Ncopol is an additional normalization constant. In this way the

contribution of S-1 and S-2 in the copolymers to the CD signal is in line with their behaviour

in the homopolymers. This procedure has been done for all three solvents, resulting in the

thermodynamical parameters in Table 2 of the paper. In Figure 7a of the paper the CD data

and the model results are shown for decalin solvent. The results for the decalin/DCE and

MCH solvents are shown in Figure S6. Besides the experimental CD data (for T > 40◦ C)

and the results of the copolymerization model these Figures also contain a “no interaction”

graph, which shows the model results in the case that no mixing of the two monomer types

occurs, i.e. K∗A−B = K∗B−A = 0. For all three solvents the copolymerization model gives a

good description of the CD data. In the paper the computed equivalent bond concentrations

and block lengths for the three solvents are given. Additionally we give in Figure S7 the

block lengths in combination with the (concentration averaged) copolymer lengths for the

three solvents.
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Figure S6: Fit of CD data with results of the copolymerization model and a “no interaction”
model result. (a) for decalin/DCE solvent. (b) for MCH solvent.
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Figure S7: Average block lengths and copolymer lengths. (a) for decalin solvent. (b) for
decalin/DCE solvent. (c) for MCH solvent.
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SI-8 Description of Matlab scripts

In the attached zip file the following Matlab functions can be found:

SolveMassBal General solver for mass-balance systems, 2 monomer types, arbitrary polymer types

ComputeBonds Computes equivalent bond concentration and mass/conc. weighted copolymer lengths

ComputeBlocks Computes block lengths

ComputeTe Computes elongation temperature of copolymers (requires optimization toolbox)

Description of mass balance solver

SolveMassBal is the general solver for mass-balance equations with two monomer types and

an arbitrary number (p) of copolymer types. This Matlab function can be used by:

[c_eq,res_ab,Pout,Lout] = SolveMassBal(c_tot,sigmatable,Ktable);

The parameter c_tot is a 1×2 vector with the total concentrations of the A and B monomers.

The parameters sigmatable and Ktable give the (2p) cooperativity parameters and the (4p)

equilibrium constants (for elongation) for all p copolymer types. For the case of one copolymer

type (p = 1) these variables must be defined as

Ktable= [K1AA, K1BA;

K1AB, K1BB];

sigmatable=[ sigma1A;

sigma1B] ;

where K1AA,..., K1BB are the elongation equilibrium constants and sigma1A, sigma1B the

cooperativity factors of the copolymers.

For the case of two copolymer types (p = 2) these variables must be defined as

Ktable= [K1AA, K1BA, K2AA, K2BA;

K1AB, K1BB, K2AB, K2BB];

sigmatable=[ sigma1A, sigma2A;

sigma1B, sigma2B];

where K1AA,..., K1BB are the elongation equilibrium constants of the first aggregate type and

K2AA,..., K2BB are the elongation equilibrium constants of the second aggregate type. Further

sigma1A, sigma1B are the cooperativity factors of the first copolymer type and sigma2A,

sigma2B are the cooperativity factors of the second copolymer type. For more than two

aggregate types more columns must be added to these tables.

The result of the mass-balance solver are: c_eq,res_ab,Pout and Lout. c_eq is a 1×2 column

vector with the equilibrium monomer concentration a and b. The 2× p matrix Pout gives on
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the first row the equivalent A concentrations of the p copolymer types and on the second row

the equivalent B concentrations, so Pout(1,i) contains PA,i and Pout(2,i) contains PB,i (for

i = 1, . . . p). Furthermore Lout(i) gives the average concentration weighted length of the ith

copolymer type (for i = 1, . . . , p). Finally, column vector res_ab gives the two residues of

the numerically solved mass balance equations. This allows to check whether the numerical

error is small enough in comparison with the various (equivalent) concentrations.

The mass-balance solver consists of two nested bisection (binary search) methods. The in-

nermost method computes for given b value the a(b) value such that the first mass balance

equation is satisfied. The outermost method then computes the b value that the pair (a(b), b)

also satisfies the second mass balance equation. The mass-balance solver can also be used for

one component systems, with one or more polymer types, by setting btot = 0.

In the case of a one component systems with one copolymer type, the mass-balance equation

can be reduced to a single cubic equation, which can be solved by Cardano’s formula. In Ref.

S4 we have given Matlab software for one component systems with one copolymer type, that

uses this method. This software is faster than the solver described here, but it is restricted

to one component one polymer type systems, while the mass-balance solver given here can

handle copolymer systems with two monomer types and an arbitrary number of copolymer

types.

Matlab functions for bonds, block lengths and elongation temperatures

The equivalent bond concentrations and the average mass weighted and concentration weighted

copolymer length for a specific copolymer type can be found by:

[PAA,PBB,PAB,PBA,Lmw,Lcw] = ComputeBonds(c_eq,sigma,K);

The parameter c_eq must contain the equilibrium concentrations a and b. sigma and K must

contain the cooperativity parameters and equilibrium constants for elongation of the consid-

ered copolymer type, in the same order as in SolveMassBal for the case of one copolymer

type. The results are the equivalent bond concentrations and the average mass weighted (Lmw)

and concentrated weighted (Lcw) copolymer lengths. Note that this function works for one

copolymer type. In case of multiple copolymer types the function may be used repeatedly,

with the sigma and K of the considered copolymer type.

The average block lengths for a specific copolymer type can be found by:

[Abl,Bbl,Cbl,nstop] = ComputeBlockLengths(c_eq,sigma,K,eps,verbose);

The parameters c_eq, sigma and K are the same as for the function ComputeBonds. The

computation of block lengths uses an iteration process over the length of the copolymers.

The parameter eps is the allowed fraction of missing material, if the fraction missing material

is below eps the iteration process is terminated. In the examples we always used 0.005 for the

value of eps. The parameter verbose determines the amount of output during this process,
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i.e., with verbose=true intermediate results during the iteration process are shown and with

verbose=false no additional output is generated. The results are the average A block length

Abl, the average B block length Bbl and the average AB (alternating) block length Cbl. Note

that also the length of an alternating block is given as the number of monomers in the block.

The number of performed iterations (until all material up to a fraction eps is considered) is

nstop.

The elongation temperature of a copolymer type can only be found if the dependence of

the equilibrium constants on the temperature is given. Assuming the general relation K =

exp(−∆H/RT + ∆S/R) means that an enthalpy difference ∆H and an entropy difference

∆S must be given for each of the four equilibrium constants (see also Section SI-6). Also the

total concentrations c_tot of the A and B monomers is needed. Then:

[Te,Te_A,Te_B] = ComputeTe(c_tot,DeltaHAA,DeltaSAA,DeltaHBB,DeltaSBB,DeltaHAB,

DeltaSAB,DeltaHBA,DeltaSBA);

with the ∆H in kJ/mol and the ∆S in kJ/mol/K results in the elongation temperature Te

of the copolymers, the elongation temperature Te_A of the A homopolymers (based on their

own concentration) and the elongation temperature Te_B of the B homopolymers (also based

on their own concentration). If the elongation temperatures do not exist (see Section SI-6), a

negative value is given. Note that the computation of elongation temperatures is only useful

for systems with one copolymer type. The computation assumes that all monomers are avail-

able for forming the considered copolymer type. For a system with two or more copolymer

types that may only hold for the copolymer type with the highest elongation temperature

(if the second highest elongation temperature is sufficiently lower). In the case of multiple

copolymer types the elongation temperatures of all copolymer types can better be found by

computing a cool curve for the whole system.

Examples

The zip file contains the following examples:

Example_OneComponent One monomer type and one polymer type,

isodesmic and (anti-)cooperative cases

Example_NatureComm2011 Majority Rules case, two monomer types and two

copolymer types

Example_SergSold Sergeants and Soldiers case, two monomer types and

two copolymer types

Example_JACS2013 One monomer type and four polymer types

Example_JACS2017 Two monomer types and three copolymer types

Example_JACS2018 General copolymerization, two monomer types,

one copolymer type
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These examples show that almost all mass-balance systems previously published by the au-

thors of this paper can also be solved with the general copolymerization software presented

here. Moreover, it also allows to compute equivalent bond concentrations and average block

lengths, which gives more insight in the structure of the copolymers. The first example

Example_OneComponent shows how to treat systems with one component, for the isodesmic,

cooperative and anti-cooperative case. The computation of elongation temperatures for

copolymers is shown in Example_JACS2018. The most extensive example, including the com-

putation of equivalent bond concentrations and block lengths, for two copolymer types, is

Example_SergSold. This script also generates Figures 4b and 5 presented in the main text.
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