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A Extra Definitions

In Section 2.1, we sketched the definition of the set of allowed pseudoknot-free secondary structures

Y(x) =
{

y ∈ {.,(,)}|x| | balanced(y), valid(x, pairs(y))
}

Here we complete it. First we denote depth(y) =
∑

i

(

✶[yi = (] − ✶[yi = )]
)

to be the difference in counts between “(” and “)” in y, and then

balanced(y) is true iff.:

∀i, depth(y1...yi) ≥ 0; and depth(y) = 0.

We next define the set of pairs in y:

pairs(y) = {(i, j) | yi = (, yj = ), balanced(yi...yj)}

and valid(x, S) checks if all pairs in set S are valid for x, i.e., it returns true iff.:

∀(i, j) ∈ S, xixj ∈ {CG, GC, AU, UA, GU, UG}

We also define unpaired(y) = {i | yi = .} to be set of unpaired indices in y.

B Actual Scoring Functions

The actual scoring functions used by CONTRAfold, RNAfold, and our LinearFold decompose into individual loops:

scw(x,y) =
∑

(i,j)∈hairpin_loops(y)

sc
H
w
(x, i, j) +

∑

(i,j,k,l)∈single_loops(y)

sc
S
w
(x, i, j, k, l)

+
∑

m∈multi_loops(y)

sc
M
w
(x,m) +

∑

(i,j)∈external_loops(y)

sc
E
w
(x, i, j).

(3)

where sc
H
w
(x, ·, ·), scS

w
(x, ·, ·, ·, ·), scM

w
(x, ·), scE

w
(x, ·, ·) are scores of hairpin loop, single loop (including bulge and internal loop and stacking),

multiloop and external loop, respectively. Multiloop score can be further decomposed into each adjacent base pair (i, j) ∈ m:

sc
M
w
(x,m) = wmulti

base + wmulti
unpair · |unpaired(m)|+

∑

(i,j)∈m

wmulti
bp (x, i, j)

(4)

For example, if y =.(.(...)((...)))., then multi_loops(y) is a singleton-set containing m = ((2, 16), (4, 8), (9, 15)) with unpaired(m) =

{3}, hairpin_loops(y) = {(4, 8), (10, 14)}, single_loops(y) = {(9, 10, 14, 15)}, and external_loops(y) = {(0, 2), (16, 17)}.

The thermodynamic model in Vienna RNAfold scores each type of loop using several feature templates such as hairpin/bulge/internal loop lengths,

terminal mismatches, helix stacking, helix closing, etc. The machine-learned model in CONTRAfold replaces energies in the above framework with

model weights learned from data. Figure SI 6 implement LinearFold for this scoring function.

C Extra Results Tables and Figures

Tables SI 1 & SI 2 detail the accuracy results (PPV & Sensitivity) from Figure 4. We choose the ArchiveII dataset (Sloma and Mathews, 2016), a diverse

set of over 3,000 RNA sequences with known secondary structures. But since the current CONTRAfold machine-learned model (v2.02) is trained on

the S-Processed dataset (Andronescu et al., 2007) we removed those sequences that appeared in the S-Processed dataset. The resulting dataset we used

contains 2,889 sequences over 9 families, with an average length of 222.2 nt.

We sample RNAcentral dataset by evenly splitting the length range from 1, 000 to 244, 296 (the longest sequence) into 30 bins by log-scale, and for

each bin randomly select one sequence.

Due to the uncertainty of base-pair matches existing in comparative analysis and the fact that there is fluctuation in base pairing at equilibrium, we

consider a base pair to be correctly predicted if it is also displaced by one nucleotide on a strand (Sloma and Mathews, 2016). Generally, if a pair (i, j) is

in the predicted structure, we consider it a correct prediction if one of (i, j), (i− 1, j), (i+ 1, j), (i, j − 1), (i, j + 1) is in the ground truth structure.

We also report the accuracy using exact base pair matching instead of this method, in Table SI 2. Both sensitivity and PPV are reported. Generally, if ŷ is

the predicted structure and y
∗ is the ground truth, we have Sensitivity =

|pairs(ŷ)∩pairs(y∗)|
|pairs(y∗)|

, and PPV =
|pairs(ŷ)∩pairs(y∗)|

|pairs(ŷ)|
.

The following Figure details the impact of beam size on the number of pairs predicted. Figure SI 2A plots the number of pairs predicted (per nucleotide)

with varying beam size, compared with ground truth (both with and without the pseudoknotted pairs). It shows that (a) there are on average 0.2776 pairs

per nucleotide in this dataset (meaning about 55.5% of all nucleotides are paired) and 7.6% pairs are pseudoknotted; (b) ViennaRNA tends to overpredict,

while CONTRAfold tends to underpredict; (c) our algorithm predicts more pairs with larger beam size; and (d) with the default beam size, it predicts

almost the same amounts of pairs as the baselines (only 0.0002 and 0.0012 pairs less per nucleotide, respectively). This is also confirmed by Fig. SI 2B–C.
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# of seqs avg. CONTRAfold ♣ LinearFold-C ♣ CONTRAfold LinearFold-C Vienna RNAfold LinearFold-V

Family total used length PPV sens ∆PPV ∆sens PPV sens ∆PPV ∆sens PPV sens ∆PPV ∆sens

tRNA 557 74 77.3 68.89 70.54 +0.00 +0.00 69.05 70.54 +0.00 +0.00 63.51 72.92 +0.24 +0.19

5S rRNA 1,283 1,125 118.8 73.66 73.74 +0.00 +0.00 75.52 75.61 +0.00 +0.00 59.55 65.96 +0.03 +0.04

SRP 928 886 186.1 62.73 62.41 -0.07 -0.07 63.27 62.84 -0.04 -0.04 59.91 65.42 †+0.35 +0.27

RNaseP 454 182 344.1 48.91 47.90 -0.22 †-0.54 48.96 47.67 -0.11 -0.14 47.28 55.15 +0.12 -0.07

tmRNA 462 462 366 44.88 38.61 †-0.74 ‡-0.93 45.74 39.05 †-0.67 ‡-0.82 41.47 46.86 ‡-0.95 ‡-1.02

Group I Intron 98 96 424.9 52.62 50.93 +0.84 †+0.80 52.36 50.64 +0.87 +0.80 46.81 57.68 ‡+0.86 †+1.02

telomerase RNA 37 37 444.6 45.39 59.19 -0.05 -0.11 45.62 59.30 -0.05 -0.11 41.47 58.20 +0.05 -0.05

16S rRNA 22 22 1,547.90 41.08 41.77 †+3.56 †+3.09 40.20 41.21 †+3.76 †+3.26 37.23 44.13 †+1.51 +1.59

23S rRNA 5 5 2,927.40 52.47 53.18 †+8.65 †+5.66 48.05 49.61 †+14.03 †+9.86 54.79 62.32 +0.33 +0.16

Overall 3,846 2,889 222.2 54.51 55.36 +1.33 +0.88 54.31 55.16 +1.98 +1.42 50.22 58.74 +0.28 +0.24

Table SI 1. Detailed prediction accuracies in percent, allowing one nucleotide in a pair to be displaced by one position, on the ArchiveII dataset using CONTRAfold

MFE, LinearFold-C, Vienna RNAfold and LinearFold-V. This slipping method (Sloma and Mathews, 2016) considers a base pair to be correct if it is slipped by

one nucleotide on a strand. ♣ denotes using sharpturn enabled mode (default in CONTRAfold). Statistical significance are marked by †(0.01 ≤ p < 0.05) and
‡(p < 0.01). Overall, LinearFold-C outperforms CONTRAfold MFE by +1.33/+0.88 in PPV/sensitivity with sharpturn and by +1.98/+ 1.42 in PPV/sensitivity

without sharpturn, and LinearFold-V outperforms Vienna RNAfold by +0.28/+0.24 in PPV/sensitivity. Among the nine families, LinearFold-C is significantly

better on three (Group I Intron, 16S and 23S rRNAs), and LinearFold-V is significantly better on three (SRP, Group I Intron, and 16S rRNAs). We also report the

accuracies using exact base pair match in the next Table.

# of seqs avg. CONTRAfold ♣ LinearFold-C ♣ CONTRAfold LinearFold-C Vienna RNAfold LinearFold-V

Family total used length PPV sens ∆PPV ∆sens PPV sens ∆PPV ∆sens PPV sens ∆PPV ∆sens

tRNA 557 74 77.3 67.61 69.12 +0.00 +0.00 67.73 69.12 +0.00 +0.00 61.75 70.98 +0.04 -0.07

5S rRNA 1,283 1,125 118.8 70.68 70.70 +0.00 +0.00 72.60 72.59 +0.00 +0.00 57.28 63.35 -0.14 -0.11

SRP 928 886 186.1 59.14 58.61 -0.05 -0.07 59.67 59.02 -0.04 -0.03 56.58 61.55 -0.09 -0.20

RNaseP 454 182 344.1 47.45 46.39 -0.25 †-0.55 47.49 46.15 -0.13 -0.15 45.76 53.28 +0.15 +0.04

tmRNA 462 462 366 42.96 36.94 †-0.81 ‡-0.99 43.83 37.38 †-0.72 ‡-0.85 39.75 44.90 ‡-1.09 ‡-1.17

Group I Intron 98 96 424.9 51.21 49.56 +0.80 †+0.75 51.03 49.35 +0.82 +0.74 45.49 56.06 ‡+0.81 †+0.97

telomerase RNA 37 37 444.6 43.40 56.58 +0.03 +0.00 43.66 56.72 +0.04 +0.00 39.53 55.40 -0.05 -0.19

16S rRNA 22 22 1,547.90 39.84 40.49 †+3.47 †+2.99 39.01 39.97 †+3.62 †+3.13 35.65 42.26 †+1.33 +1.39

23S rRNA 5 5 2,927.40 50.56 51.24 †+8.51 †+5.60 46.46 47.97 †+13.54 †+9.47 53.20 60.50 +0.07 -0.12

Overall 3,846 2,889 222.2 52.54 53.29 +1.30 +0.86 52.39 53.14 +1.90 +1.37 48.33 56.48 +0.11 +0.06

Table SI 2. The prediction accuracies using exact base-pair matching. Statistical significance are marked by †(0.01 ≤ p < 0.05) and ‡(p < 0.01). Overall,

LinearFold-C outperforms CONTRAfold MFE by +1.30/+0.86 in PPV/sensitivity with sharpturn and by +1.90/+ 1.37 in PPV/sensitivity without sharpturn, and

LinearFold-V outperforms Vienna RNAfold by +0.11 PPV and +0.06 sensitivity. Among the nine families, LinearFold-C is significantly better on three (Group I

Intron, 16S and 23S rRNAs), and LinearFold-V is significantly better on two (Group I Intron and 16S rRNAs).
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Fig. SI 1. Comparison of LinearFold-V with Vienna RNAfold and its local folding mode in terms of PPV/Sensitivity of base pairs in certain distance ranges across all sequences. LinearFold-V

is more accurate in long-range base pairs (500+nt) in both PPV and Sensitivity. See Fig. 4C for the corresponding results for LinearFold-C.



“Huang.32” — 2019/3/27 — 10:44 — page 3 — #12
✐

✐

✐

✐

✐

✐

✐

✐

LinearFold: Linear-Time Approximate RNA Folding 3

A B C

 0.24

 0.26

 0.28

 0.3

 0.32

 20  100  200  300 #
 o

f 
b

a
s
e

 p
a

ir
s
 p

re
d

ic
te

d
 p

e
r 

n
u

c

beam size

 
Vienna RNAfold

LinearFold-V
Ground Truth, all pairs

CONTRAfold MFE
LinearFold-C

Ground Truth, no pseudoknots

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

50 100 200 300 400 500 500+
#
 o

f 
b
a
s
e
 p

a
ir
s
 p

re
d
ic

te
d
 p

e
r 

n
u
c

predicted base pair distance (16S/23S only)

Ground Truth
CONTRAfold MFE

LinearFold-C b=100

 0

 0.05

 0.1

 0.15

 0.2

50 100 200 300 400 500 500+

#
 o

f 
b
a
s
e
 p

a
ir
s
 p

re
d
ic

te
d
 p

e
r 

n
u
c

predicted base pair distance (16S/23S only)

Ground Truth
Vienna RNAfold

Vienna RNAfold (local) L=150

LinearFold-V b=100

Fig. SI 2. A: The number of pairs predicted per nucleotide with varying beam size, comparing these methods and the ground truth (with and without pseudoknots (PK)); B and C: Length

distributions of the predicted base pairs using different methods, on the 16S/23S rRNAs in the ArchiveII dataset. Here we plot the number of both predicted and ground truth base pairs

(including pseudoknots) in each of the following ranges: (0, 50], (50, 100], ... (400, 500), [500,∞). This figure shows that LinearFold-C produces almost the same length distributions

with the ground truth, while CONTRAfold severely overpredicts base pairs longer than 500nt apart. Both ViennaRNA and LinearFold-V overpredict in that range, but LinearFold-V is less

severe. In C, we also reconfirm the limitation of local folding which does not output any long-range pairs.
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Fig. SI 3. Close-ups for Fig. 5 (search error against sequence length) for for short sequences. A: LinearFold-C vs. CONTRAfold MFE; B: LinearFold-V vs. Vienna RNAfold. Again, tmRNA

is the outlier with disproportionally severe search errors, which can explain the slightly worse accuracies of LinearFold on tmRNA in Fig. 4A. Sequences of 250nt or less have no search

errors (i.e., LinearFold with b = 100 is exact for n ≤ 250).
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Fig. SI 4. PPV/Sensitivity for all pairs (i, j) as a function of j/n where n is the sequence length, i.e., the “proportional distance” of a pair’s right nucleotide to the 5’-end. We bin j/n by

(0, 0.1], (0.1, 0.2],..., (0.9, 1.0]. In general, LinearFold performs very similarly to the baselines, and even though it scans 5’-to-3’, the accuracy does not degrade towards the 3’-end.
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Fig. SI 5. Comparing 5’-to-3’ and 3’-to-5’ versions of LinearFold. The physical model (B) seems to prefer the default 5’-to-3’ order.
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D Deductive System for the Actual Systems

The following Figure sketches the deductive system for the actual LinearFold system based on the real scoring functions in Section B. For more

implementation details, we refer the readers to our released source code at https://github.com/LinearFold/LinearFold.

input x1 . . . xn

states E 〈0, j〉 : 〈α, s〉 prefix structure

P 〈i, j〉 : 〈(α) , s〉 pair

H 〈i, j〉 : 〈(... , s〉 hairpin candidate

M1 〈i, j〉 : 〈(α)β , s〉 one or more pairs

M2 〈i, j〉 : 〈(α)β(γ) , s〉 two or more pairs

M 〈i, j〉 : 〈(...(α)β(γ)... , s〉 multiloop candidate

axiom E 〈0, 1〉 : 〈 , 0〉 goal E 〈0, n+1〉 : 〈α, _〉

push
E〈0, j〉 : 〈α, s〉

H〈j, next(j, j)〉 : 〈(.. , 0〉
next(i, j) , min{k | k > j, (xi, xk) match}

Hjump
H〈i, j〉 : 〈(... , s〉

H〈i, next(i, j)〉 : 〈(..... , s〉

skip
E〈0, j〉 : 〈α, s〉

E〈0, j+1〉 : 〈α. , s+sc
E
w
(x, j, j + 1)〉

M1〈i, j〉 : 〈(α)β , s〉

M1〈i, j+1〉 : 〈(α)β. , s+wmulti
unpair〉

reduce
M1〈k, i〉 : 〈(α)β , s′〉 P〈i, j〉 : 〈(γ) , s〉

M2〈k, j〉 : 〈(α)β(γ) , s′+s+wmulti
bp (x, i, j)〉

combine
E〈0, i〉 : 〈α, s′〉 P〈i, j〉 : 〈(β) , s〉

E〈0, j〉 : 〈α(β) , s′+s+scE
w
(x, i, j)〉

XtoM1

P〈i, j〉 : 〈(α) , s〉

M1〈i, j〉 : 〈(α) , s+wmulti
bp (x, i, j)〉

M2〈i, j〉 : 〈(α)β(γ) , s〉

M1〈i, j〉 : 〈(α)β(γ) , s〉

Mleft
M2〈i, j〉 : 〈(α)β(γ) , s〉

M〈k, next(k, j)〉 : 〈(...(α)β(γ).. , s+u · wmulti
unpair〉

u = (next(k, j)−j)+(i−k−1),

i−k−1 ≤ 30

Mjump
M〈i, j〉 : 〈(...(α)β(γ)... , s〉

M〈i, next(i, j)〉 : 〈(...(α)β(γ)..... , s+u · wmulti
unpair〉

u = next(i, j)−j

hairpin
H〈i, j〉 : 〈(... , s〉

P〈i, j+1〉 : 〈(...) , s+sc
H
w
(x, i, j)〉

singleloop
P〈i, j〉 : 〈(α) , s〉

P〈k, l〉 : 〈(...(α)...) , s+sc
S
w
(x, i, j, k, l)〉

(xk, xl−1) match, (l−j−1)+(i−k−1) ≤ 30

multiloop
M〈i, j〉 : 〈(...(α)β(γ)... , s〉

P〈i, j+1〉 : 〈(...(α)β(γ)...) , s+wmulti
base +wmulti

bp (x, i, j)〉

Fig. SI 6. The actual deductive system implemented in LinearFold. Shaded substrings are balanced in brackets. Here sc
E
w

(x, ·, ·), wmulti
base , wmulti

bp (x, ·, ·), wmulti
unpair , sc

S
w

(x, ·, ·, ·, ·),

sc
H
w

(x, ·, ·) are the various energy or scoring parameters (E stands for external loop, multi for multiloop, S for single loop, and H for hairpin loop). The next(i, j) returns the next

position after xj that can pair with xi; this is the “jumping” trick used in CONTRAfold and ViennaRNA. Our final two rules also use this jumping trick in the righthand side loop. The only

cubic-time rule is reduce (intermediate step in multiloop), again inspired by CONTRAfold source code.
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E Connections between Context-Free Parsing and RNA Folding

CKY parsing: O(n3)

Kasami (1965)

Younger (1967)

natural language parsing

LR parsing: O(n)

Knuth (1965)

programming language parsing

Generalized LR: O(n3)

Tomita (1988)

Approximate DP: O(n)

Huang and Sagae (2010)

classical RNA folding: O(n3)

Nussinov et al. (1978)

Zuker and Stiegler (1981)

RNA folding

LinearFold: Idea 2

exact O(n3)

LinearFold: Idea 3

approx. O(n)

Fig. SI 7. Our work is inspired by incremental parsing algorithms in both programming language theory and computational linguistics. Italic denotes left-to-right algorithms; others are

bottom-up. The classical bottom-up O(n3) algorithms are isomorphic between natural language parsing and RNA folding. Knuth’s O(n) LR algorithm works only for a small subset of

context-free grammars (CFGs), and Tomita generalizes it to arbitrary CFGs, achieving the alternative, left-to-right, O(n3) algorithm, which inspires LinearFold Idea 2. Our previous work

(Huang and Sagae) modernize and generalize Tomita’s algorithm, combining it with beam search to achieve linear runtime, which inspires LinearFold Idea 3.


