Evaluation of *VIPER* and *TATE* similar sequences outside Kinetoplastida.

Using blasp searches against the nr database of NCBI, we found some significant hits that suggested similarities between *VIPER* and *TATE* Reverse Transcriptase/RNase H (RT/RH) and Tyrosine Recombinase (YR) and some proteins from *Oceabacter sp.* (RT - PHR97723.1, PHR97648.1, PHR97720.1, PHR97545.1; YR - PHR97649.1, PHR97720.1, PHR97545.1, PHR97880.1, PHR94983.1) and *Candidatus Handelsmanbacteria* (RT - OGG55579.1; YR - OGG55578.1). The reciprocal blast searches show Kinetoplastid sequences from the second hit.

Although unexpected, this similarity was quite interesting, since it could represent the outcome of horizontal transfer. Thus, the sequences were included in the RT phylogeny. Nevertheless, the resultant tree evidenced a scattered distribution of these sequences inside the *VIPER-like* clade (Figure 1, below).

Trying to understand if the sequences are in fact part of *Oceabacter sp.* and *Candidatus Handelsmanbacteria* bacterium genomes, we retrieved their genome assemblies from NCBI:

- Oceanobacter sp. (g-proteobacteria); GCA_002733645.1; submitter: University of Southern California; date: 2017/10/26; metagenome-source: marine metagenome.
- Candidatus Handelsmanbacteria bacterium; GCA_001781055.1; submitter: Banfield Lab, University of California, Berkeley; date: 2016/10/19; metagenome-source: subsurface metagenome.

We observed in the tblastn results that the sequences similar to *VIPER* and *TATE* from these species are located mainly in the extremities of short contigs (Tables 1 and 2, below), so it is not possible to support that these sequences are actually part of these genomes. Moreover, additional searches performed with other species closely related to *Oceanobacter sp.* (*Oceanobacter kriegii* DSM 6294, GCA_000422845.1; *Oleibacter marinus*, GCA_900156675.1; *Thalassolituus oleivorans* MIL-1, GCA_000355675.1) and with a different genome assembly of *Candidatus Handelsmanbacteria* bacterium (GCA_003562965.1) did not result in significant hits. The sequences, however, are clearly DIRS retrotransposons since they present RT and YR domains.

Although we do not discard other explanations, taking all the considerations into account, we have not strong evidence that *Oceanobacter sp* and *Candidatus Handelsmanbacteria* possess sequences similar to *VIPER* and *TATE*. It is possible that

the results represent contamination on genome sequence databases. The distribution of sequences in the phylogeny could suggest the sequences are from a kinetoplastida species that was not sequenced yet, probably a free-living species which may have been sampled in the metagenomes in question.

Another unexpected significant hit encompassed sequence WP_106215579.1 that shows similarity to *VIPER* YR and is annotated as an integrase, from a bacterium, *Kineococcus rhizosphaerae*. We found homologous sequences of this gene in other two *Kineococcus* species, *Kineococcus xinjiangensis*, and *Kineococcus radiotolerans*.

Trying to understand these sequences, we retrieved their genome assemblies from NCBI:

- Kineococcus radiotolerans SRS30216; GCA_000017305.1; submitter: US DOE Joint Genome Institute; date: 2008/08/14.
- 2) *Kineococcus xinjiangensis;* GCA_002934625.1; submitter: DOE Joint *Genome Institute; date: 2018/02/21.*
- 3) *Kineococcus rhizosphaerae*; GCA_003002055.1; submitter: DOE Joint Genome Institute; date: 2018/03/15.

In this case, there is no strong evidence for sequence contamination, and we believe these sequences are, in fact, part of the genomes. Nevertheless, we did not find any evidence that these sequences are *DIRS* retrotransposons or DNA transposons. They are not repetitive, and they have no repeats like TIRs or TSDs. Trying to understand the relationship of these sequences with *VIPER-like* elements, we performed a BlastP search of WP_106215579.1 protein, and we retrieve the first 250 sequences (e-value range from 0.0 - 1e-55). These sequences were aligned in Muscle[1], and a neighbor-joining tree was obtained on MEGA 7 [2]. Only one sequence from each well-supported clade was maintained, totaling 23 sequences that were used in the final YR tree showed in the main text.

Figure 1: Phylogenetic relationships recovered through Bayesian analysis of retroelements RT domain showing the sequences from *Oceanobacter sp* (blue boxes) scattered into the *VIPER-like* clade (red box). Posterior probabilities are shown near nodes.

Protein	Contig/Scaffold	Size	Identity	Align	Start	End	Start	End	e-value
/Eleme	C	Contig/	2	length	query	query	subject	subject	
nt		Scaffold		-			-	-	
VIPER	NVWL01000035.1_cds	1665	25.85	468	483	909	1662	304	2,00E-
RT	_PHR97723.1_314								24
VIPER	NVWL01000085.1_cds	4032	24.55	440	504	910	1452	196	6,00E-
RT	_PHR94983.1_1960								14
VIPER	NVWL01000036.1_cds	5646	25.00	388	559	909	2639	1545	5,00E-
RT	_PHR97720.1_324								11
VIPER	NVWL01000041.1_cds	4026	28.57	217	503	710	1528	926	1,00E-
RT	_PHR97545.1_543								09
VIPER	NVWL01000032.1_cds	1578	24.00	375	481	836	10714	9644	2,00E-
RT	_PHR97879.1_3428								09
TATE	NVWL01000037.1_cds	1671	35.64	811	163	941	4754	2502	6,00E-
RT	_PHR97648.1_491								111
TATE	NVWL01000036.1_cds	5646	26.83	615	343	940	3065	1464	5,00E-
RT	_PHR97720.1_324								28
TATE	NVWL01000032.1_cds	1578	28.64	426	339	752	10903	9734	3,00E-
RT	_PHR97879.1_3428								18
TATE	NVWL01000085.1_cds	4032	24.91	542	399	914	1548	190	2,00E-
RT	_PHR94983.1_1960								10
TATE	NVWL01000041.1_cds	4026	26.62	417	391	770	1633	497	4,00E-
RT	_PHR97545.1_543								10
TATE	NVWL01000037.1_cds	2517	37.81	320	659	973	5320	4385	6,00E-
YR	_PHR97649.1_492								47
TATE	NVWL01000036.1_cds	5646	31.83	311	657	960	4166	3279	3,00E-
YR	_PHR97720.1_324								28
TATE	NVWL01000032.1_cds	1479	30.05	203	764	964	11583	11011	8,00E-
YR	_PHR97880.1_3429								12
TATE	NVWL01000041.1_cds	4026	28.62	283	683	960	3001	2192	1,00E-
YR	_PHR97545.1_543								11
TATE	NVWL01000085.1_cds	4032	31.63	215	763	966	2583	1999	3,00E-
YR	_PHR94983.1_1960								11

Table 1: Summary of tblastn results of *VIPER* and *TATE* Reverse transcriptase (RT) and Tyrosine recombinase (YR) coding sequences in *Oceanobacter sp.* genome.

Table 2: Summary of tblastn results of *VIPER* Reverse transcriptase (RT) and Tyrosine recombinase (YR) coding sequences in the *Candidatus Handelsmanbacteria bacterium* genome.

Protein /Flomont	Contig/Scaffold	Size	Identity	Align	Start	End	Start	End	e-value
/ Element		Contrag/		lengui	query	query	subject	subject	
		Scaffold							
VIPER	MFKF01000070.1	5402	28.87	284	63	318	2426	3268	8e-018
YR									
VIPER	MFKF01000070.1	5402	29.81	416	519	911	3952	5166	2e-042
RT									

References

1. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.

2. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol. 2016;33:1870–4.