SUPPORTING INFORMATION

Sustained Release of Vascular Endothelial Growth Factor (VEGF) from Poly(ε-caprolactone-PEG-ε-caprolactone)-*b*poly(L-lactide) Multi-block Copolymer Microspheres

Karina C. Scheiner¹, Roel F. Maas-Bakker¹, Thanh T. Nguyen², Ana M. Duarte², Gert Hendriks², Lídia Sequeira², Garry P. Duffy³, Rob Steendam², Wim E. Hennink¹, Robbert J. Kok^{1,*}

¹ Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands

² InnoCore Pharmaceuticals B.V., L.J. Zielstraweg 1, 9713 GX Groningen, the Netherlands

³ Discipline of Anatomy, School of Medicine, National University of Ireland Galway, University Road, Galway, Ireland

AUTHOR INFORMATION

^{*}Corresponding Author: Dr. R.J. Kok, Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands. Phone: + 31 620275995, Fax: + 31 30 251789. Email: <u>r.j.kok@uu.nl</u>

Figure S1: GPC chromatograms of multi-block copolymers A and B ("polymer A" and "polymer B"), and of (placebo) microspheres prepared with a 50:50 blend of polymer A and B (MSPs: microspheres).

Table S1: Molecular weights of multi-block copolymers A and B and placebo microspheres.

	M _n [kDa]	M _w [kDa]	M _p [kDa]	PDI [M _w / M _n]
polymer A	21.7	53.7	52.4	2.59
polymer B	13.7	31.6	30.5	2.31
placebo microspheres (50:50 blend)	17.2	45.6	39.1	2.64

Polymer A: multi-block copolymer A, Polymer B: multi-block copolymer B. Placebo microspheres (50:50 blend): Microspheres prepared with a 50:50 blend of polymer A and B. Molecular weights are based on GPC measurements (as shown in figure S1).

Table S2: Size characteristics of VEGF-loaded microspheres (0.2 wt% target loading) prepared with various polymer A and B blends.

blend ratio polymer A : polymer B	average size [µm] ; CV [%]
100:0	45;14
90:10	n.d.*
80:20	46 ; 28
70:30	51;12
60:40	42;16
50:50	48;21
0:100	43 ; 28

*not determined.

Figure S2: SEM images of VEGF-loaded microspheres (0.2 wt% target loading). The blend ratio of polymer A and B used for each batch is indicated on the bar above each image. Black scale bar represents $30 \mu m$.

Figure S3: GPC chromatograms of (placebo) microsphere degradation samples. The time of incubation in IVR buffer (PBS pH 7.4, supplemented with 0.025% Tween 20 and 0.02% NaN₃) at 37 °C is indicated in the legend (d: days). The GPC chromatrogram of freshly prepared microspheres is shown in black ("0 d").

Figure S4: ¹H-NMR spectra of freeze-dried placebo microspheres directly after preparation (A). Figure B: After addition of shift reagent TAIC a small additional peak at $\sim \delta$ 4.5 is visible.

S5

Figure S5: ¹H-NMR spectra of freeze-dried placebo microspheres after incubation in IVR buffer (PBS pH 7.4, 0.025% Tween 20, 0.02% NaN₃) at 37 °C for 28 days (figure A). Figure B: After addition of shift reagent TAIC a small additional peak at $\sim \delta$ 4.5 is visible.

Figure S6: Size distribution plots, measured by Coulter Counter, of 3 microsphere batches prepared with 50:50 blend ratio of polymer A and B, 1 wt% target VEGF loading.

Figure S7: Cumulative release of VEGF from three microsphere batches (50:50 blend ratio polymer A and B) prepared with a target VEGF loading of 1wt%. The release was performed at 37 °C in IVR buffer (PBS pH 7.4, supplemented with 0.025% Tween 20 and 0.02% NaN₃). Released VEGF was quantified by SE-UPLC.

theoretical VEGF	measured VEGF concentration [µg/ml]		
concentration [µg/m]	SE-UPLC	ELISA	
6	6 ± 0	4 ± 0	
16	60 ± 1	44 ± 2	
160	158 ± 0	92 ± 3	

Table S3: VEGF quantification by SE-UPLC and ELISA.

Theoretical concentrations $[\mu g/ml]$ are based on the amount of lyophilized VEGF per vial, as received by the supplier. The content of a vial (1 mg lyophilized VEGF) was reconstituted in 1 ml IVR buffer, resulting in a 1 mg/ml VEGF solution. This solution was further diluted to the concentrations stated in this table.

IVR sample	VEGF spike [µg/ml] –	measured VEGF concentration [µg/ml]	
		SE-UPLC	ELISA
Day 1	0	18 ± 0	5 ± 1
	50	70 ± 1	45 ± 4
Day 11	0	8 ± 0	3 ± 0
	50	57 ± 0	32 ± 1
Day 18	0	5 ± 0	2 ± 0
	50	55 ± 1	38 ± 9
_	50	52 ± 1	31 ± 1

Table S4: Quantification of released and freshly spiked VEGF by SE-UPLC and ELISA.

Figure S8: Cumulative release of VEGF [%] from freeze-dried microspheres. A: after repeated freezing and storage -20 °C, B: after long-term storage at -20 °C for 1, 2, 3, 6 months compared to directly after freeze-drying (t=0). The release was performed at 37 °C in PBS pH 7.4, supplemented with 0.025% Tween 20 and 0.02% NaN₃. Released VEGF was quantified by SE-UPLC.

Table S5: Similarity factor f_2 of VEGF release curves from microspheres after 1 to 5 times of freezing to and storage at -20 °C compared to VEGF release curve from microspheres after preparation and freeze-drying.

2	74
3	74
4	74
5	75

Table S6: Similarity factor f_2 of VEGF release curves from microspheres after various months of storage at -20 °C and VEGF release curves from microspheres after preparation and freezedrying (batch 3).

storage time	f_2
1 month	63
2 months	68
3 months	59
6 months	73
9 months	65

Figure S9: Normalized cumulative release profiles of VEGF from microspheres. Release was performed at 37 °C in bioactivity IVR buffer (PBS pH 7.4, supplemented with 0.5% BSA, 30 μ g/ml and 15 ng/ml amphotericin). Korsmeyer-Peppas model fitting (orange dotted line): correlation coefficient (R^2): 0.98, Diffusional exponent (n): 0.36 ± 0.05, 95% confidence interval: 0.22 – 0.55.

Figure S10: Representative SE-UPLC chromatogram for VEGF quantification. Peaks at 3.5 minutes, 6 minutes and 6.5 minutes have not been identified.