Supporting Information

A Unified Approach towards Syntheses of Juglomycins and Their Derivatives

Kai Yoshioka,^{†,} Shogo Kamo,^{†,‡,} Keisuke Hosaka,[‡] Ryohei Sato,[‡] Yuma Miikeda,[‡] Yuri Manabe,[†] Shusuke Tomoshige,[‡] Kazunori Tsubaki,[†] Kouji Kuramochi^{‡,*}

[†]Graduate School for Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Shimogamo Hangi-cho, Sakyo-ku, Kyoto 606-8522, Japan

[‡]Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan

*Corresponding author.

K.Y. and S.K. contributed equally.

Index

Table S1. NMR Spectroscopic Data for Natural and Synthetic Juglomycin Z (7)page S3Table S2. NMR Spectroscopic Data for Compound 19 Derived from Natural and Synthetic 7page S4Table S3. NMR Spectroscopic Data for Compound 19 Derived from Natural Juglomycin Z andpage S5

NMR Spectra of New Compounds

Figure S1. ¹ H NMR spectrum (400 MHz, CDCl ₃ , TMS) of compound 17.	page S6
Figure S2. ${}^{13}C{}^{1}H$ NMR spectrum (100 MHz, CDCl ₃) of compound 17.	page S7
Figure S3. ¹ H NMR spectrum (400 MHz, CDCl ₃ , TMS) of compound 10.	page S8
Figure S4. ¹³ C{ ¹ H} NMR spectrum (100 MHz, CDCl ₃) of compound 10.	page S9
Figure S5. ¹ H NMR spectrum (400 MHz, CDCl ₃ , TMS) of compound 11.	page S10
Figure S6. ¹³ C{ ¹ H} NMR spectrum (100 MHz, CDCl ₃) of compound 11.	page S11
Figure S7. ¹ H NMR spectrum (400 MHz, CDCl ₃ , TMS) of compound 12.	page S12
Figure S8. ${}^{13}C{}^{1}H$ NMR spectrum (100 MHz, CDCl ₃) of compound 12.	page S13
Figure S9. ¹ H NMR spectrum (400 MHz, acetone-d ₆) of compound 1.	page S14
Figure S10. ${}^{13}C{}^{1}H$ NMR spectrum (100 MHz, acetone-d ₆) of compound 1.	page S15
Figure S11. ¹ H NMR spectrum (400 MHz, acetone-d ₆ , TMS) of compound 2 .	page S16
Figure S12. ¹³ C{ ¹ H} NMR spectrum (100 MHz, acetone- d_6) of compound 2.	page S17
Figure S13. ¹ H NMR spectrum (400 MHz, CD ₂ Cl ₂) of compound 8.	page S18
Figure S14. ${}^{13}C{}^{1}H$ NMR spectrum (100 MHz, CD_2Cl_2) of compound 8.	page S19
Figure S15. ¹ H NMR spectrum (400 MHz, CD ₂ Cl ₂) of compound 4- <i>epi</i> -8.	page S20

Figure S16. ¹³ C{ ¹ H} NMR spectrum (100 MHz, CD_2Cl_2) of compound 4- <i>epi</i> -8.	page S21
Figure S17. ¹ H NMR spectrum (400 MHz, acetone-d ₆ , TMS) of compound 3 .	page S22
Figure S18. ${}^{13}C{}^{1}H$ NMR spectrum (100 MHz, acetone-d ₆) of compound 3.	page S23
Figure S19. ¹ H NMR spectrum (400 MHz, acetone-d ₆) of compound 6.	page S24
Figure S20. ${}^{13}C{}^{1}H$ NMR spectrum (100 MHz, acetone-d ₆) of compound 6.	page S25
Figure S21. ¹ H NMR spectrum (400 MHz, CDCl _{3,} TMS) of compound 15.	page S26
Figure S22. ${}^{13}C{}^{1}H$ NMR spectrum (100 MHz, CDCl ₃) of compound 15.	page S27
Figure S23. ¹ H NMR spectrum (400 MHz, CD ₃ OD, TMS) of compound 5.	page S28
Figure S24. ${}^{13}C{}^{1}H$ NMR spectrum (100 MHz, CD ₃ OD) of compound 5.	page S29
Figure S25. ¹ H NMR spectrum (400 MHz, CDCl ₃ , TMS) of compound 16.	page S30
Figure S26. ${}^{13}C{}^{1}H$ NMR spectrum (100 MHz, CDCl ₃) of compound 16.	page S31
Figure S27. ¹ H NMR spectrum (400 MHz, $CDCl_3/CD_3OD = 9/1$, TMS) of compound 7.	page S32
Figure S28. ${}^{13}C{}^{1}H}$ NMR spectrum (100 MHz, CDCl ₃) of compound 7.	page S33
Figure S29. ¹ H NMR spectrum (400 MHz, CDCl ₃ , TMS) of compound 19.	page S34
Figure S30. ${}^{13}C{}^{1}H$ NMR spectrum (100 MHz, CDCl ₃) of compound 19.	page S35
Figure S31. ¹ H NMR spectrum (400 MHz, CDCl ₃ , TMS) of compound 24.	page S36
Figure S32. ${}^{13}C{}^{1}H$ NMR spectrum (100 MHz, CDCl ₃) of compound 24.	page S37
Figure S33. ¹ H NMR spectrum (400 MHz, CDCl ₃) of compound 26.	page S38
Figure S34. ${}^{13}C{}^{1}H$ NMR spectrum (100 MHz, CDCl ₃) of compound 26.	page S39
Figure S35. ¹ H NMR spectrum (400 MHz, CDCl ₃) of compound 27.	page S40
Figure S36. ${}^{13}C{}^{1}H$ NMR spectrum (100 MHz, CDCl ₃) of compound 27.	page S41
Figure S37. ¹ H NMR spectrum (400 MHz, CDCl ₃ , TMS) of compound 28.	page S42
Figure S38. ${}^{13}C{}^{1}H$ NMR spectrum (100 MHz, CDCl ₃) of compound 28.	page S43
Figure S39. ¹ H NMR spectrum (400 MHz, CDCl ₃ , TMS) of compound 29.	page S44
Figure S40. ${}^{13}C{}^{1}H$ NMR spectrum (100 MHz, CDCl ₃) of compound 29.	page S45
Figure S41. ¹ H NMR spectrum (400 MHz, acetone-d ₆) of compound 20.	page S46
Figure S42. ¹³ C{ ¹ H} NMR spectrum (100 MHz, acetone- d_6) of compound 20.	page S47
Figure S43. ¹ H NMR spectrum (400 MHz, CDCl ₃ , TMS) of compound 21.	page S48
Figure S44. ${}^{13}C{}^{1}H$ NMR spectrum (100 MHz, CDCl ₃) of compound 21.	page S49

Reference

page S50

	natural 7 ^b			synthetic 7 ^c		
position ^a	δ_{C}	$\delta_{\rm H} (J \text{ in Hz})$	δ _C	$\delta_{\rm H} (J \text{ in Hz})$	$\Delta\delta_{\rm C}$ (ppm)	$\Delta\delta_{\rm H}(\rm ppm)$
1	174.7		176.2		-1.5	
2	42.0	2.56, m, 2H	41.2	2.57, m, 2H	+0.8	-0.01
3	67.9	4.28, m	67.5	4.23, m	+0.4	+0.05
4	36.8	3.09, dd (12.6, 7.5)	34.0	2.89, d (6.6), 2H	+2.8	+0.20
		3.27, dd (12.6, 4.0)				+0.38
1'	182.2		184.8		-2.6	
2' or 3'	148.4		144.2		+4.2	
3' or 2'	149.6		145.9		+3.7	
3'-Me	18.5	2.67, s	12.8	2.26, s	+5.7	+0.41
4'	186.6		190.1		-3.5	
4'a	115.8		114.9		+0.9	
5'	161.6		161.2		+0.4	
6'	124.1	7.25, dd (8.0, 2.0)	124.1	7.24, dd (7.0, 2.6)	0	+0.01
7'	136.7	7.64, m	136.1	7.60, m	+0.6	+0.04
8'	119.8	7.63, m	119.2	7.61, m	+0.6	+0.02
8'a	132.3		131.9		+0.4	

Juglomycin Z (7)

^aCarbon atoms have been labeled using the IUPAC numbering system.

^{b1}H NMR (200 MHz, CDCl₃/CD₃OD) and ¹³C NMR (50.3 MHz, CDCl₃).^{S1}

 c1 H NMR (400 MHz, CDCl₃/CD₃OD = 9/1, TMS) and 13 C NMR (100 MHz, CDCl₃).

Table S2. NMR Spectroscopic Data for Compound 19 Derived from Natural and Synthetic 7^[S1]

	19 derived from natural 7 ^b		19 deriv	red from synthetic 7 ^c		
position ^a	$\delta_{\rm C}$	$\delta_{\rm H} (J \text{ in Hz})$	$\delta_{\rm C}$	$\delta_{\rm H} (J \text{ in Hz})$	$\Delta\delta_{\rm C}$ (ppm)	$\Delta\delta_{\rm H}(ppm)$
1	172.6		172.8	_	-0.2	
2	41.2	2.58, dd (15.5, 7.5)	41.3	2.58, dd (16.6, 7.8)	-0.1	0
		2.63, dd (15.5, 5.5)		2.65, dd (16.6, 4.2)		-0.02
3	67.7	4.28, m	67.7	4.24, m	0	+0.04
		_		_		
4	36.0	3.09, dd (12.6, 7.5)	34.0	2.87, m, 2H	+2.0	+0.22
		3.27, dd (12.6, 4.5)				+0.40
1'	182.0		184.6		-2.6	
2' or 3'	147.9		144.4		+3.5	
3' or 2'	149.2		145.7		+3.5	
3'-Me	18.4	2.65, s	12.7	2.25	+5.7	+0.40
4'	186.3		190.2		-3.9	
4'a	115.4		115.0		+0.4	
5'	161.6		161.2		+0.4	
6'	124.0	7.25, dd (8.0, 2.0)	124.0	7.23, dd (7.8, 1.8)	0	+0.02
7'	136.3	7.63, dd (8.0, 7.8)	136.0	7.57, dd (7.8, 7.6)	+0.3	+0.06
8'	119.5	7.61, dd (7.8, 2.0)	119.1	7.61, dd (7.4, 1.8)	+0.4	0
8'a	131.8		132.0		-0.2	
OMe	51.8	3.72, s	51.9	3.72, s	-0.1	0
ОН		11.9		12.13		-0.23

^aCarbon atoms have been labeled using the IUPAC numbering system.

^{b1}H NMR (200 MHz, CDCl₃) and ¹³C NMR (50.3 MHz, CDCl₃).^{S1}

^{c1}H NMR (400 MHz, CDCl₃, TMS) and ¹³C NMR (100 MHz, CDCl₃).

Table S3. NMR Spectroscopic Data for Compound 19 Derived from Natural Juglomycin $Z^{[S1]}$ and Compound 21

19 derived from natural 7 ^b					21		
position ^a	$\delta_{\rm C}$	$\delta_{\rm H} (J \text{ in Hz})$	position ^a	$\delta_{\rm C}$	$\delta_{\rm H} (J \text{ in Hz})$	$\Delta\delta_{\rm C}$ (ppm)	$\Delta\delta_{\rm H} (\rm ppm)$
1	172.6		1	172.9		-0.3	
2	41.2	2.58, dd (15.5, 7.5)	2	41.1	2.59, dd (16.6, 8.0)	-0.1	-0.01
		2.63, dd (15.5, 5.5)			2.66, dd (16.6, 4.0)		-0.03
3	67.7	4.28, m	3	67.6	4.27, m	-0.1	+0.01
		—					
4	36.0	3.09, dd (12.6, 7.5)	4	34.0	2.89, m, 2H	+2.0	+0.20
		3.27, dd (12.6, 4.5)					+0.38
1'	182.0		4'	184.2		-2.2	
2' or 3'	147.9		3' or 2'	142.9		+5.0	
3' or 2'	149.2		2' or 3'	147.2		+2.0	
3'-Me	18.4	2.65, s	3'-Me	13.5	2.25	+4.9	+0.40
4'	186.3		1'	190.3		-4.0	
4'a	115.4		8'a	114.8		+0.6	
5'	161.6		8'	161.2		+0.4	
6'	124.0	7.25, dd (8.0, 2.0)	7'	123.9	7.22, dd (8.0, 1.6)	-0.1	+0.03
7'	136.3	7.63, dd (8.0, 7.8)	6'	136.1	7.59, dd (8.0, 7.5)	+0.2	+0.04
8'	119.5	7.61, dd (7.8, 2.0)	5'	119.1	7.61, dd (7.5, 1.6)	+0.4	0
8'a	131.8		4'a	132.0		-0.2	
OMe	51.8	3.72, s		51.9	3.73, s	-0.1	-0.01
OH		11.9			12.11		-0.21

^aCarbon atoms have been labeled using the IUPAC numbering system.

^{b1}H NMR (200 MHz, CDCl₃) and ¹³C NMR (50.3 MHz, CDCl₃).^{S1}

^{c1}H NMR (400 MHz, CDCl₃, TMS) and ¹³C NMR (100 MHz, CDCl₃).

Figure S1. ¹H NMR spectrum (400 MHz, CDCl₃, TMS) of compound 17.

Figure S2. ¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound 17.

Figure S3. ¹H NMR spectrum (400 MHz, CDCl₃, TMS) of compound 10.

Figure S5. ¹H NMR spectrum (400 MHz, CDCl₃, TMS) of compound 11.

Figure S6. ¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound 11.

Figure S9. ¹H NMR spectrum (400 MHz, acetone-d₆) of compound 1.

Figure S11. ¹H NMR spectrum (400 MHz, acetone-d₆, TMS) of compound 2.

Figure S15. ¹H NMR spectrum (400 MHz, CD₂Cl₂) of compound 4-*epi*-8.

Figure S17. ¹H NMR spectrum (400 MHz, acetone-d₆, TMS) of compound **3**.

CO₂H

Figure S19. ¹H NMR spectrum (400 MHz, acetone-d₆) of compound 6.

Figure S21. ¹H NMR spectrum (400 MHz, CDCl₃, TMS) of compound 15.

Figure S23. ¹H NMR spectrum (400 MHz, CD₃OD, TMS) of compound 5.

Figure S24. ${}^{13}C{}^{1}H$ NMR spectrum (100 MHz, CD₃OD) of compound 5.

Figure S25. ¹H NMR spectrum (400 MHz, CDCl₃, TMS) of compound 16.

Figure S27. ¹H NMR spectrum (400 MHz, $CDCl_3/CD_3OD = 9/1$, TMS) of compound 7.

Figure S29. ¹H NMR spectrum (400 MHz, CDCl₃, TMS) of compound 19.

Figure S31. ¹H NMR spectrum (400 MHz, CDCl₃, TMS) of compound 24.

Figure S32. ${}^{13}C{}^{1}H$ NMR spectrum (100 MHz, CDCl₃) of compound 24.

Figure S33. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 26.

Figure S34. ${}^{13}C{}^{1}H$ NMR spectrum (100 MHz, CDCl₃) of compound 26.

Figure S35. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 27.

Figure S39. ¹H NMR spectrum (400 MHz, CDCl₃, TMS) of compound 29.

Figure S41. ¹H NMR spectrum (400 MHz, acetone-d₆) of compound 20.

Figure S42. ${}^{13}C{}^{1}H$ NMR spectrum (100 MHz, acetone-d₆) of compound 20.

Reference

(S1) Fiedler, H. P.; Kulik, A.; Schüz, T. C.; Volkmann, C.; Zeeck, A. Biosynthetic capacities of Actinomycetes. 2. Juglomycin Z, a new naphthoquinone antibiotic from *Streptomyces tendae*. J. Antibiot. **1994**, 47, 1116–1122.