Supplementary Information

Engineering of Gadolinium Decorated Graphene Oxide Nanosheets for Multimodal Bioimaging and Drug Delivery

 N itya Chawda¹, Mainak Basu^{2,4}, Dipanwita Majumdar³, Raju Poddar⁴, Santosh Kumar Mahapatra⁵, **and Indrani Banerjee1,***

School of Nano Sciences, Central University of Gujarat, Gandhinagar, India School of Basic and Applied Sciences, GD Goenka University, Gurgaon, Haryana, India Department of Chemistry, Chandernagore College, Chandannagar, Hooghly, WB-712136, India Department of Biotechnology, Birla Institute of Technology, Mesra, Ranchi, India School of Physical Sciences, Central University of Punjab, Bhatinda, India *Corresponding Author: Tel: +91 9470564719

1. UV-Visible analysis

Figure S1: Absorption spectra of synthesis steps of graphene oxide to Gd-rGONSs, graphene oxide (GO) , reduced graphene oxide-NH₂ ($rGO-NH_2$), reduced graphene oxide-gluconic acid (**rGO-GA**), reduced graphene oxide-diethylenetriaminepentaacetic acid (**rGO-DTPA**), reduced graphene oxide-gadolinium (**rGO-Gd**).

Fig. S1. Shows the absorption spectra of all the synthesis and functionalization steps involved from GO to Gd-GO. The absorbance maximum for GO was at ~232 nm whereas for rGO-NH₂, rGO-GA, rGO-DTPA, rGO-Gd are \sim 269.5 nm, \sim 262.5 nm, \sim 266.5 nm, and \sim 263.5 nm respectively. The red shift of the absorbance peak could be considered due to functionalization which would have caused reduction of GO and restoring sp² hybridization type of conjugation¹. The shift of the absorbance peak is due to conjugation of $-NH₂$ with a lone pair connected to a π bond. The reduction of GO and p- π conjugated effect takes place increasing motion of electrons which cause absorption band to move along higher wavelength².

2. FTIR analysis

The demonstrated FTIR spectra show difference in stretching frequency and their shift after each functionalization steps (Fig. S2). Stretching frequencies of GO to Gd-rGO at \sim 3117, 3118, 3151, 3081 and 3100 cm-1 is attributed to hydrogen-bonded-O-H stretching vibration.

800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 600 400 Wavenumber (cm^{-1})

Figure S2: Comparative FTIR spectra of graphene oxide (**GO-A**), reduced graphene oxide-NH2 (**rGO-NH2-B**), reduced graphene oxide-gluconic acid (**rGO-GA-C**), reduced graphene oxide-diethylenetriaminepentaacetic acid (**rGO-DTPA-D**), reduced graphene oxidegadolinium (**rGO-Gd-E**).

The obtained spectra of GA-rGO revealed changes over rGO surface after functionalization by organic molecules. This could be observed by stretching frequency at \sim 2922 and 2850 cm⁻¹ due to C-H sp³ stretching. The GO exhibit two minor peaks at \sim 1588 and 1109 cm⁻¹ for C=C and C-O-H stretching vibrations respectively. This stretching vibrations were shifted in case of rGO-NH₂ by 3 and 2 cm⁻¹ to \sim 1585 and 1107 cm⁻¹ revealing reduction of GO to rGO ³. Similar change was also observed for 1400 and 1401 cm⁻¹ for O-H bendings. After the functionalization of rGO-NH2 sample, N-H bending was prominently observed for rGO-GA, DTPA and Gd at 1573, 1578 and 1577 cm⁻¹ respectively. The functionalization of rGO has not brought any deformities over rGO surface as could be evident by slight shift of C-O stretching frequency obtained at 1035, 1037 and 1056 cm⁻¹ for rGO-GA, DTPA and Gd respectively. The similar observation is demonstrated by further functionalization with bulkier molecule like DTPA as two new peak were observed for C=N or C-O deformation vibration at 1398 cm-1 while C-N or C-O epoxide at 1203 cm-1 respectively for rGO-DTPA. There was slight shift of this stretching frequency to 1397 cm^{-1} and 1206 cm^{-1} after decoration with Gd^{3+} ions which were chelated by $DTPA⁴$. The FTIR signature of graphene basal plane is observed in range of $~600-900$ cm⁻¹ which is observed in all the FTIR spectra for samples⁵.

3. FESEM Imaging

Fig. S3, shows the FESEM images of GO to Gd-rGO, GO showed clear composed structure with only few defects and less wrinkles.

Figure S3: FESEM images of synthesis step of graphene oxide to Gd-rGONSs, graphene oxide $(GO-A)$, reduced graphene oxide-NH₂ $(rGO-NH₂-B)$, reduced graphene oxidegluconic acid (**rGO-GA-C**), reduced graphene oxide-diethylenetriaminepentaacetic acid (**rGO-DTPA-D**), reduced graphene oxide-gadolinium (**rGO-Gd-E**).

Fig. S2-B, showed different morphology of increased defects which can be found as rich in wrinkles and fluctuation resulted by reduction of the GO surface while changing to rGO-NH₂. The further functionalization with D-gluconic acid (GA) resulted in fluffy and more transparent morphology. The wrinkles were also reduced which enhanced water dispersity of the rGO-GA sample. Next step of functionalization with DTPA changed morphology by inducing aggregation of the rGO surface and increasing active surface sites (Fig. S3-D). The activated surface was later used for decorating Gd3+ ions to increase effective surface area and composing surface towards continuous and uniform sheets by reducing fluctuations which is evident from Fig. S3-E.

4. UV-vis spectral of leached Gd3+ ions in presence of xylenol orange

Figure S4. UV-vis spectral of leached Gd³⁺ ions in presence of xylenol orange in acetate buffer (pH 5.8) from Gd-rGONSs and compared with blank.

5. Cell viability of H1299 cells incubated with GO and Gd-rGONSs

Concentration (g/mL)

Figure S5. Cell viability of H1299 cells incubated with GO and Gd-rGONSs at various concentrations for 24 h. Bars represent means \pm SEM, n = 3. * p < 0.05 - **p < 0.01.

Abbreviations: GO, **Graphene oxide**; **Gd-GONSs**, Gadolinium-**Graphene oxide nanosheets**; **ALG,** Sodium alginate**; CNT, Carbon nanotube; NPs**, Nanoparticles; **rGO**, reduced graphene oxide; **AuNCs**, gold nanocages; **SE**, spinach extract; **PVA**, polyvinyl alcohol; **CS**, chitosan; **SPIONs**, superparamagnetic iron oxide nanoparticles; **PBS**, phosphate-buffered saline; **QDs**, Quantum dots; **NA**, Not Available.

7. Comparative r1 relaxivity studies

Table S2. Comparative r₁ relaxivity studies of Graphene-based MR contrast agent and GdrGONSs

Abbreviations: GO, Graphene oxide; **Gd-GONSs**, Gadolinium**-**Graphene oxide nanosheets; **DOTA,** tetraxetan**; NGO,** nanographene oxide; **GQDs,** quantum dots.

References

- (1) Dadosh, T.; Gordin, Y.; Krahne, R.; Khivrich, I.; Mahalu, D.; Frydman, V.; Sperling, J.; Yacoby, A.; Bar-Joseph, I. Measurement of the Conductance of Single Conjugated Molecules. *Nature* **2005**, *436* (7051), 677–680.
- (2) Peng, T.; Sun, H.; Peng, T.; Liu, B.; Zhao, X. Structural Regulation and Electroconductivity Change of Nitrogen-Doping Reduced Graphene Oxide Prepared Using p-Phenylene Diamine as Modifier. *Nanomaterials* **2017**, *7* (10), 292.
- (3) Jung, I.; Rhyee, J.-S.; Son, J. Y.; Ruoff, R. S.; Rhee, K.-Y. Colors of Graphene and Graphene-Oxide Multilayers on Various Substrates. *Nanotechnology* **2012**, *23* (2), 025708.
- (4) Lu, J.; Li, Y.; Li, S.; Jiang, S. P. Self-Assembled Platinum Nanoparticles on Sulfonic Acid-Grafted Graphene as Effective Electrocatalysts for Methanol Oxidation in Direct Methanol Fuel Cells. *Sci. Rep.* **2016**, *6* (1), 21530.
- (5) Verma, S.; Dutta, R. K. A Facile Method of Synthesizing Ammonia Modified Graphene Oxide for Efficient Removal of Uranyl Ions from Aqueous Medium. *RSC Adv.* **2015**, *5* (94), 77192–77203.
- (6) Rana, V. K.; Choi, M.; Kong, J.; Kim, G. Y.; Kim, M. J.; Kim, S.; Mishra, S.; Singh, R. P.; Ha, C. Synthesis and Drug-Delivery Behavior of Chitosan-Functionalized Graphene Oxide Hybrid Nanosheets. *Macromol. Mater. Eng.* **2011**, *296* (2), 131–140.
- (7) Zhang, B.; Yan, Y.; Shen, Q.; Ma, D.; Huang, L.; Cai, X.; Tan, S. A Colon Targeted Drug Delivery System Based on Alginate Modi Fi Cated Graphene Oxide for Colorectal Liver Metastasis. *Mater. Sci. Eng. C* **2017**, *79*, 185–190.
- (8) Wang, G.; Chen, G.; Wei, Z.; Dong, X.; Qi, M. Multifunctional $Fe₃O₄/Graphene Oxide$ Nanocomposites for Magnetic Resonance Imaging and Drug Delivery. *Mater. Chem. Phys.* **2013**, *141* (2–3), 997–1004.
- (9) Fan, X.; Jiao, G.; Gao, L.; Jin, P.; Li, X. The Preparation and Drug Delivery of a Graphene–carbon Nanotube–Fe3O4 Nanoparticle Hybrid. *J. Mater. Chem. B* **2013**, *1* (20), 2658.
- (10) Ou, J.; Wang, F.; Huang, Y.; Li, D.; Jiang, Y.; Qin, Q.; Stachurski, Z. H.; Tricoli, A.; Zhang, T. Fabrication and Cyto-Compatibility of $Fe₃O₄/SiO₂/Graphene–CdTe ODs/CS$ Nanocomposites for Drug Delivery. *Colloids Surfaces B Biointerfaces* **2014**, *117*, 466– 472.
- (11) Chang, G.; Li, S.; Huang, F.; Zhang, X.; Shen, Y.; Xie, A. Multifunctional Reduced Graphene Oxide Hydrogel as Drug Carrier for Localized and Synergic Photothermal/ Photodynamics/Chemo Therapy School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Modern. *J. Mater. Sci. Technol.* **2016**.
- (12) Aliabadi, M.; Shagholani, H.; Yunessnia, A. International Journal of Biological Macromolecules Synthesis of a Novel Biocompatible Nanocomposite of Graphene Oxide and Magnetic Nanoparticles for Drug Delivery. *Int. J. Biol. Macromol.* **2017**, *98*, 287–291.
- (13) Wang, J.; Fang, J.; Fang, P.; Li, X.; Wu, S.; Zhang, W. Preparation of Hollow Core/ Shell Fe₃O₄@Graphene Oxide Composites as Magnetic Targeting Drug Nanocarriers. *J. Biomater. Sci. Polym. Ed.* **2017**, *5063*, 0.
- (14) Zhang, M.; Liu, X.; Huang, J.; Wang, L.; Shen, H.; Luo, Y.; Li, Z.; Zhang, H.; Deng, Z.; Zhang, Z. Ultrasmall Graphene Oxide Based T_1 MRI Contrast Agent for in Vitro and in Vivo Labeling of Human Mesenchymal Stem Cells. *Nanomedicine Nanotechnology, Biol. Med.* **2017**, 1–9.
- (15) Yang, H.; Huang, C.-Y.; Lin, C.; Liu, H.; Huang, C.; Liao, S.; Chen, P.; Lu, Y.; Wei, K.; Ma, C. M. Gadolinium-Functionalized Nanographene Oxide for Combined Drug and MicroRNA Delivery and Magnetic Resonance Imaging. *Biomaterials* **2014**, *35* (24), 6534–6542.
- (16) Huang, C.-L.; Huang, C.; Mai, F.; Yen, C.; Tzing, S.; Hsieh, H.; Ling, Y.; Chang, J. Application of Paramagnetic Graphene Quantum Dots as a Platform for Simultaneous Dual-Modality Bioimaging and Tumor-Targeted Drug Delivery. *J. Mater. Chem. B* **2015**, *3* (4), 651–664.