Supporting Information

On-demand Oil-Water Separation by Environmentally-responsive Cotton Fabrics

Meina Xiao, Yinghui Huang, Anli Xu, Tongtong Zhang, Chengdong Zhan and Liangzhi Hong*

Department of Polymer Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.

To whom correspondence should be addressed.

*E-mail: mslzhong@scut.edu.cn

Figure S1. ¹H NMR spectra of epoxide-terminated PDMS in CDCl₃.

Figure S2. ¹H NMR spectra of azide-functionalized PDMS [PDMS-(OH, N₃)] (1) in CDCl₃.

Figure S3. ¹H NMR spectra of propargyl 2-bromoisobutyrate (PBiB) in CDCl₃.

Figure S4. ¹H NMR spectra of α -alkynyl- ω -bromo-poly(*N*,*N*-dimethylaminoethyl methacrylate) (alkynyl-PDMAEMA₄₂-Br) in CDCl₃.

Figure S5. ¹H NMR spectra of poly(dimethylsiloxane)-(OH)-*b*-poly(*N*,*N*-dimethylaminoethyl methacrylate) (PDMS₆₄-(OH)-*b*-PDMAMEA₄₂) in CDCl₃.

Figure S6. ¹H NMR spectra of μ -PDMS₆₄-*b*-PDMAEMA₄₂-*b*-PIPSMA₂₂ (P1) in CDCl₃.

Figure S7. ¹H NMR spectra of α -alkynyl- ω -bromo-poly(*N*,*N*-dimethylaminoethyl methacrylate) (alkynyl-PDMAEMA₁₂₁-Br) in CDCl₃.

Figure S8. ¹H NMR spectra of poly(dimethylsiloxane)-(OH)-*b*-poly(*N*,*N*-dimethylaminoethyl methacrylate) (PDMS₆₄-(OH)-*b*-PDMAMEA₁₂₁) (**3**) in CDCl₃.

Figure S9. ¹H NMR spectra of α -alkynyl- ω -bromo-poly(*N*,*N*-dimethylaminoethyl methacrylate) (alkynyl-PDMAEMA₁₄₈-Br) in CDCl₃.

Figure S10. ¹H NMR spectra of poly(dimethylsiloxane)-(OH)-*b*-poly(*N*,*N*-dimethylaminoethyl methacrylate) (PDMS₆₄-(OH)-*b*-PDMAMEA₁₄₈) in CDCl₃.

Figure S11. ¹H NMR spectra of μ -PDMS₆₄-*b*-PDMAEMA₁₄₈-*b*-PIPSMA₂₅ (P3) in CDCl₃.

Figure S12. GPC curves of μ -PDMS-*b*-PDMAEMA-*b*-PIPSMA ABC miktoarm star terpolymers.

Sample	M _n ^{<i>a</i>} (Kg mol ⁻¹)	$(M_w/M_n)^b$	$f_{\rm PDMS}{}^{\rm c}$	$f_{\rm PDMAEMA}{}^{ m c}$	$f_{ m PIPSMA}{}^{ m c}$
PDMS ₆₄ -OH	5.0	1.13	-		
α-alkynyl-PDMAEMA ₄₂ -N(Et) ₂	6.8	1.14	-		
μ-PDMS ₆₄ -b-PDMAEMA ₄₂ -b-PIPSMA ₂₂ (P1)	19.2	1.30	26.4	34.9	38.7
α-alkynyl-PDMAEMA ₁₂₁ -N(Et) ₂	19.2	1.13	-		
μ -PDMS ₆₄ - b -PDMAEMA ₁₂₁ - b -PIPSMA ₂₄ (P2)	32.3	1.29	15.6	59.5	24.9
α-alkynyl-PDMAEMA ₁₄₈ -N(Et) ₂	23.4	1.14	-		
μ -PDMS ₆₄ - b -PDMAEMA ₁₄₈ - b -PIPSMA ₂₅ (P3)	36.8	1.26	13.7	63.6	22.7

Table S1. Characteristics of synthesized polymers.

^{*a*} Determined by ¹H NMR in CDCl₃. ^{*b*} Determined by GPC with calibrated PS standards at 35 °C. ^{*c*} The weight fractions (wt%) were determined by ¹H NMR.

Figure S13. SEM image of the fabric used. The scale bar is $200 \,\mu\text{m}$.

Figure S14. TGA traces of pristine cotton fabrics and functionalized cotton fabrics with P1, P2 and P3.

	w_0 / g	w_1 / g	x / %
P1@CF	0.1908	0.2124	11.3
P2@CF	0.1855	0.2035	9.7
P3@CF	0.1864	0.1994	7.0

Table S2. Mass fraction of grafted block copolymer in the functionalized cotton fabrics.

w₀: weights of the pristine cotton fabrics before dip-coating; w₁: weights of the functionalized cotton fabrics. Mass fraction of grafted block copolymer x is determined by the following equation: $x = (w_1-w_0)/w_0 \times 100\%$

Figure S15. XPS spectra of pristine cotton fabrics and functionalized cotton fabrics with P1, P2, and P3.

Figure S16. Underoil water contact angle of P1@CF and P2@CF, the oil is dichloroethane (DCE). And underwater oil contact angle of P1@CF and P2@CF. The oil is hexane.

Figure S17. Oil/water separation efficiency versus recycle numbers. The oil is dichloroethane and the membrane used is P1@CF. The separation efficiency was determined by comparing the weight of dichloroethane before and after separation.

Figure S18. Oil/water separation efficiency versus recycle numbers. The oil is hexane and the membrane used is P1@CF. The separation efficiency was determined by comparing the weight of water before and after separation.

Figure S19. Relationship between breakthrough pressure (P_{bt}) and contact angle θ' given by the equation: $P_{bt} = \frac{2R\gamma_{12} - 1 - \cos(\theta')}{D^2 - 1 + 2(R/D)\sin(\theta')}$, here R is the cylinder radius, D is the half of the inter-cylinder spacing, γ_{12} is the interfacial tension between the wetting phase and non-wetting phase, and θ' is the contact angle of the non-wetting liquid droplet on the fabric surface in the wetting phase. For the fabrics used, R and D are 100 and 30 microns, respectively. $\gamma_{water-hexane}$ is 51.1 mN/m, $\gamma_{dichloroethane-water} =$ 30.5 mN/m.