Title: Rubrofusarin as a Dual Protein Tyrosine Phosphate 1B and Human Monoamine Oxidase-A Inhibitor: An In Vitro and In Silico Study

Authors: Pradeep Paudel¹, Su Hui Seong¹, Hyun Ah Jung^{2, *} and Jae Sue Choi^{1, *}

Affiliation:

¹ Department of Food and Life Science, Pukyong National University, Busan 48513, Republic of Korea

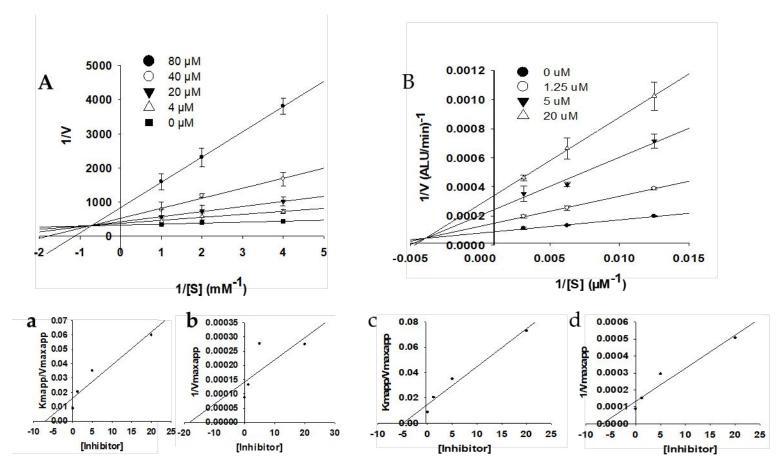
² Department of Food Science and Human Nutrition, Chonbuk National University, Jeonju 54896, Republic of Korea

* Correspondence: jungha@jbnu.ac.kr (H.A.J.); choijs@pknu.ac.kr (J.S.C.); Tel.: +82-63-270-4882 (H.A.J.); +82-51-629-5845 (J.S.C.).

Supplementary Table 1. Drug-likeness and ADME characteristics as determined by PreADMET.

	drug-lik	eness	ADME characteristics					
compounds	MDDR-like rule	Lipinski's rule	Log P _{o/w} a	PPB ^b	HIA c	in vitro Caco2 permeability (nm/sec) ^d	in vitro MDCK cell permeability (nm/s) ^e	in vivo BBB penetration ([brain]/[blood]) f
rubrofusarin	mid-structure	suitable	2.89	85.78%	93.22%	19.31	45.39	0.64
2	drug-like	violated	-0.85	34.48%	13.23%	9.89	0.32	0.03

^a The log of the coefficient of solvent partitioning between 1-octanol and water.


^b Plasma protein binding (PPB) (< 90% represents weak binding and > 90% represents strong binding).

^c Human intestinal absorption (HIA) (0-20% is poorly absorbed, 20-70% is moderately absorbed and 70-100% is well-absorbed).

^d 0-10 nm/sec is low permeability, 10-100 nm/sec is medium permeability and > 100 nm/sec is high permeability.

^e Permeability across MDCK cells.

f < 0.1 is low absorption by the central nervous system, 0.1-2.0 is middle absorption and > 2.0 is high absorption.

Figure S1. Lineweaver-Burk plots for PTP1B (**A**) and *h*MAO-A (**B**) inhibition by rubrofusarin. PTP1B inhibition was tested in the presence of 0.25 mM, 0.5 mM and 1 mM concentrations of substrate, *p*NPP. *h*MAO-A inhibition was tested with 80, 160 and 320 μM *h*MAO substrate. Graphs below Lineweaver-Burk plots represent secondary plots for PTP1B (**a** and **b**) and *h*MAO-A (**c** and **d**) inhibition by rubrofusarin.