Supplementary information

FABRICATION OF POROUS HYDROGENATION CATALYSTS BY SELECTIVE LASER SINTERING ${}_{3}$ D PRINTING TECHNIQUE

Elmeri Lahtinen, Lotta Turunen, Mikko M. Hänninen, Kalle Kolari, Heikki M. Tuononen, Matti Haukka*

Department of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland. e-mail: * matti.o.haukka@jyu.fi

Figure S1. X-ray tomography image of an SLS 3D printed PdSiO₂/PP catalyst. SiO2 can be seen as the white particles in the image.

Figure S2. Spectral imaging results from SEM-EDS analysis received for the SLS 3D printed PdSiO₂/PP catalyst. The bottom image shows the overlaid images of the sample, Si and Pd. Figures S2-S4 are replicated taked from different PdSiO₂/PP samples to show the even distribution between different samples.

Figure S3. Spectral imaging results from SEM-EDS analysis received for the SLS 3D printed $PdSiO_2/PP$ catalyst. The bottom image shows the overlaid images of the sample, Si and Pd. Figures S2-S4 are replicated taken from different $PdSiO_2/PP$ samples to show the even distribution between different samples.

Figure S4. Spectral imaging results from SEM-EDS analysis received for the SLS 3D printed $PdSiO_2/PP$ catalyst. The bottom image shows the overlaid images of the sample, Si and Pd. Figures S2-S4 are replicated taken from different $PdSiO_2/PP$ samples to show the even distribution between different samples.

Figure S5. TG/DTA curve for SLS 3D printed PdSiO₂/PP catalyst. The measurement was done by increasing temperature from RT to 700 °C at the speed of 10 °C per minute.

Figure S6. Powder X-ray diffraction pattern of the PdSiO₂/PP powder sample. Characteristic peaks of polypropylene phase are marked by "**", and metallic palladium by "Pd".

 $\textbf{Figure S7.} \ \textbf{FTIR} \ \textbf{spectrum of an unused polypropylene powder}.$

Figure S8. FTIR spectrum of a used polypropylene powder.

Figure S9. FTIR spectrum of a SLS 3D printed object that was made out of polypropylene powder.

Table S1. Determined palladium concentration in the SLS 3D printed stir bar sleeve samples. Done using microwave-assisted leaching followed by ICP-OES analysis.

	Pd concentration (w-%)	
Sample 1	0.490	
Sample 2	0.492	
Sample 3	0.460	
Sample 4	0.474	
Sample 5	0.482	
Sample 6	0.500	
Sample 7	0.490	
Sample 8	0.505	

Table S2. SEM-EDS results of C, O, Si, Pd and Au of three different SLS 3D stir bar sleeve samples. Gold is derived from the 6 nm layer that was sputtered onto the samples for the imaging. Image resolution of 1024 by 768 with a pixel size of 1.63 μ m was used. Acceleration voltage was 15 kV.

	Concentration	Concentration	Concentration
	(w-%)	(w-%)	(w-%)
	Sample 1	Sample 2	Sample 3
С	60.28	61.81	62.29
0	12.85	13.7	14.78
Si	4.3	4.13	3.98
Pd	0.76	0.41	0.54
Au	21.81	19.95	18.51