Electronic Supporting Information for

Small-molecule poly (ADP-ribose) polymerase (PARP) and PD-L1 inhibitor conjugates as dual-action anticancer agents

Samuel Ofori and Samuel G. Awuah*

Department of Chemistry, University of Kentucky, Lexington Kentucky 40506, United States Correspondence to: awuah@uky.edu

For Table of Contents Only

Figure S1. 1H NMR spectrum of 6 in CDCl ₃	S4
Figure S2. 13C NMR spectrum of 6 in CDCl ₃	S4
Figure S3. ¹ H NMR spectrum of 8 in DMSO- d_6	S5
Figure S4. ¹³ C NMR spectrum of 8 in DMSO- d_6	S5
Figure S5. ¹ H NMR spectrum of 11 in CDCl ₃	S6
Figure S6. ¹³ C NMR spectrum of 11 in CDCl ₃	S6
Figure S7. ¹ H NMR spectrum of 13 in CDCl ₃	S7
Figure S8. ¹³ C NMR spectrum of 13 in CDCl ₃	S7
Figure S9. ¹ H NMR spectrum of 1 in DMSO- d_6	
Figure S10. ¹³ C NMR spectrum of 1 in CDCl ₃	S8
Figure S11. ¹ H NMR spectrum of 2 in CDCl ₃	
Figure S12. ¹³ C NMR spectrum of 2 in CDCl ₃	S9
Figure S13. ¹ H NMR spectrum of 3 in CDCl ₃	.S10
Figure S14. ¹³ C NMR spectrum of 3 in CDCl ₃ Figure S15: HPLC Chromatogram of Compound 1	.S10 S11
Figure S16: HPLC Chromatogram of Compound 2	.S11
Figure S17: HPLC Chromatogram of Compound 3	S12
Figure S18: Dose-response curves of MDA-MB-231 cells in response to compounds	S13

Figure S19: Dose-response curves of A2780 cells in response to compoundsS13
Figure S20: Dose-response curves of OVCAR8 cells in response to compoundsS14
Figure S21: Dose-response curves of SKOV3 cells in response to compounds
Figure S22: Dose-response curves of H460 cells in response to compoundsS15
Figure S23: Dose-response curves of HCC1937 cells in response to compoundsS15
Figure S24: Combination Index values for olaparib-BMS001 combinations presented as function of fraction affected (Fa) for OVCAR8 cells
Figure S25: The combination Index values for olaparib-BMS001 combinations presented as function of fraction affected (Fa) for MDA-MB-231 cells
Figure S26: The combination Index values for olaparib-BMS001 combination presented as function of fraction affected (Fa) for HCC1937 cells
Figure S27: The combination Index values for olaparib-BMS001 combinations presented as afunction of fraction affected (Fa) for A2780 cells
Figure S28: The combination Index values for olaparib-BMS001 combinations presented as a function of fraction affected (Fa) for H460cells
Figure S29: Dose-Response curve of OVCAR8 cell lines for Olaparib or BMS given as a monotherapy, or in combination
Figure S30: Dose-Response curve of MDA-MB-231cell lines for Olaparib or BMS given as amonotherapy, or in combination
Figure S31: Dose-Response curve of HCC1937 cell lines for Olaparib or BMS given as a monotherapy, or in combination
Figure S32: Dose-Response curve of HCC1937 cell lines for Olaparib or BMS given as a monotherapy, or in combination
Figure S33: Dose-Response curve of H460 cell lines for Olaparib or BMS given as a monotherapy, or in combination
Figure S34: Apoptosis induced by olaparib in MDA-MB-231 cells
Figure S35: UV absorption profile of conjugate 2 in PBS
Figure S36: UV absorption profile of conjugate 3 in PBS
Figure S37: UV absorption profile of conjugate 2 in DMEMS24
Figure S38: UV absorption profile of conjugate 3 in DMEM
Figure S39: UV absorption profile of conjugate 1 in BSA
Figure S40: Mass spectra of an extract of Conjugate 1-BSA mix

Figure S41: UV absorption profile of conjugate 2 in BSA	S26
Figure S42: Mass spectra of an extract of Conjugate 2-BSA mix	S26
Figure S43: UV absorption profile of conjugate 3 in BSA	S27
Figure S44: Mass spectra of an extract of Conjugate 1-BSA mix	S27
Figure S45: UV absorption profile of conjugate 1 incubated with liver microsomes	S28
Figure S46: UV absorption profile of conjugate 2 incubated with liver microsomes	S28
Figure S47: UV absorption profile of conjugate 3 incubated with liver microsomes	S29
Figure S48: Mass spectra of an extract of Conjugate 3 -microsome mix after 45mins	S29

Figure S2. ¹³C NMR spectrum of 6 (400 MHz, CDCl₃)

Figure S3. ¹H NMR spectrum of 8 (400 MHz, DMSO-*d*₆)

Figure S4. ¹³C NMR spectrum of 8 (400 MHz, DMSO-*d*₆)

Figure S5. ¹H NMR spectrum of 11 (400 MHz, CDCl₃)

Figure S6. ¹³C NMR spectrum of 11 (400 MHz, CDCl₃)

Figure S7. ¹H NMR spectrum of 13 (400 MHz, CDCl₃)

Figure S8. ¹³C NMR spectrum of 13 (400 MHz, CDCl₃)

Figure S10. ¹³C NMR spectrum of 1 (400 MHz, CDCl₃)

Figure S11. ¹H NMR spectrum of 2 (400 MHz, CDCl₃)

Figure S12. ¹³C NMR spectrum of 2 (400 MHz, CDCl₃)

Figure S13. ¹H NMR spectrum of 3 (400 MHz, CDCl₃)

Figure S14. ¹³C NMR spectrum of 3 (400 MHz, CDCl₃)

Figure S15: HPLC Chromatogram of Compound 1; RT: 11.250 min, 99.98% Purity

Figure S16: HPLC Chromatogram of Compound 2; RT: 9.308 min, 95.06% Purity

Figure S17: HPLC Chromatogram of Compound 3; RT: 10.841min, 99.10%

Figure S18: Dose-response curves of MDA-MB-231 cells in response to compounds

Figure S19: Dose-response curves of A2780 cells in response to compounds

Figure S20: Dose-response curves of OVCAR8 cells in response to compounds

Figure S21: Dose-response curves of SKOV3 cells in response to compounds

Figure S22: Dose-response curves of H460 cells in response to compounds

Figure S23: Dose-response curves of HCC1937 cells in response to compounds

Figure S24: Combination Index values for olaparib-BMS001 combinations presented as a function of fraction affected (Fa) for OVCAR8 cells Fa= 0.9 indicates 90% cell death. Each data point is presented as mean \mp SD obtained from three independent biological experiments. Ratios of combination of Olaparib to BMS001 are indicated (legend).

Figure S25: The combination Index values for olaparib-BMS001 combinations presented as a function of fraction affected (Fa) for MDA-MB-231 cells. Fa= 0.9 indicates 90% cell death. Each data point is presented as mean \pm SD obtained from three independent biological experiments. Ratios of combination of Olaparib to BMS001 are indicated (legend).

Figure S26: The combination Index values for olaparib-BMS001 combinations presented as a function of fraction affected (Fa) for HCC1937 cells. Fa= 0.9 indicates 90% cell death. Each data point is presented as mean \pm SD obtained from three independent biological experiments. Ratios of combination of Olaparib to BMS001 are indicated (legend).

Figure S27: The combination Index values for olaparib-BMS001 combinations presented as a function of fraction affected (Fa) for A2780 cells. Fa= 0.9 indicates 90% cell death. Each data point is presented as mean \pm SD obtained from three independent biological experiments. Ratios of combination of Olaparib to BMS001 are indicated (legend).

Figure S28: The combination Index values for olaparib-BMS001 combinations presented as a function of fraction affected (Fa) for H460cells. Fa= 0.9 indicates 90% cell death. Each data point is presented as mean \pm SD obtained from three independent biological experiments. Ratios of combination of Olaparib to BMS001 are indicated (legend).

Figure S29: Dose-Response curve of OVCAR8 cell lines for Olaparib or BMS given as a monotherapy, or in combination. For both monotherapy and combination, cells were treated with three-fold serial dilution of Olaparib/BMS (maximum concentration was 1.25mM, minimum concentration = 12.5μ M, same multiples were used for 100:1, 33:1, 11:1 and the reverse, eg. , 100:1 = 1.25mM Ola + 12.5μ M BMS001). For 1:1 - the Olaparib: BMS001 concentration were set at 100μ M: 100μ M, the same multiples were used for 1:2, 2:1, 1:4, 4:1). Each data point is presented as mean ±SD obtained from three independent biological experiments.

Figure S30: Dose-Response curve of MDA-MB-231cell lines for Olaparib or BMS given as a monotherapy, or in combination. For both monotherapy and combination, cells were treated with three-fold serial dilution of Olaparib/BMS (maximum concentration was 1.25mM, minimum concentration = 12.5μ M, same multiples were used for 100:1, 33:1, 11:1 and the reverse, e.g. 100:1 = 1.25mM Ola + 12.5μ M BMS001).For 1:1 - the Olaparib: BMS001 concentration were set at 100μ M: 100μ M, the same multiples were used for 1:2, 2:1, 1:4, 4:1). Each data point is presented as mean ±SD obtained from three independent biological experiments.

Figure S31: Dose-Response curve of HCC1937 cell lines for Olaparib or BMS given as a monotherapy, or in combination. For both monotherapy and combination, cells were treated with three-fold serial dilution of Olaparib/BMS (maximum concentration was 1.25mM, minimum concentration = 12.5μ M, same multiples were used for 100:1, 33:1, 11:1 and the reverse, eg. , 100:1 = 1.25mM Ola + 12.5μ M BMS001 stock).. For 1:1 - the Olaparib: BMS001 concentration were set at 100μ M: 100μ M, the same multiples were used for 1:2, 2:1, 1:4, 4:1). Each data point is presented as mean ±SD obtained from three independent biological experiments.

Figure S32: Dose-Response curve of HCC1937 cell lines for Olaparib or BMS given as a monotherapy, or in combination. For both monotherapy and combination, cells were treated with three-fold serial dilution of Olaparib/BMS (maximum concentration was 1.25mM, minimum concentration = 12.5μ M, same multiples were used for 100:1, 33:1, 11:1 and the reverse, eg. , 100:1 = 1.25mM Ola + 12.5μ M BMS001).For 1:1 - the Olaparib: BMS001 concentration were set at 100μ M: 100μ M, the same multiples were used for 1:2, 2:1, 1:4, 4:1). Each data point is presented as mean ±SD obtained from three independent biological experiments.

Figure S33: Dose-Response curve of H460 cell lines for Olaparib or BMS given as a monotherapy, or in combination. For both monotherapy and combination, cells were treated with three-fold serial dilution of Olaparib/BMS (maximum concentration was 1.25mM, minimum concentration = 12.5μ M, same multiples were used for 100:1, 33:1, 11:1 and the reverse, eg. , 100:1 = 1.25mM Ola + 12.5μ M BMS001).For 1:1 - the Olaparib: BMS001 concentration were set at 100μ M: 100μ M, the same multiples were used for 1:2, 2:1, 1:4, 4:1). Each data point is presented as mean ±SD obtained from three independent biological experiments.

Figure S34: Apoptosis induced by olaparib in MDA-MB-231 cells with respective controls.

Figure S35: UV absorption profile of conjugate 2 in PBS

Figure S36: UV absorption profile of conjugate 3 in PBS

STABILITY OF 2 in DMEM

Figure S37: UV absorption profile of conjugate 2 in DMEM

STABILITY OF 3 in DMEM

Figure S38: UV absorption profile of conjugate 3 in DMEM

Figure S39: UV absorption profile of conjugate 1 in BSA after time points (in hours)

Figure S40: Mass spectra of an extract of Conjugate 1-BSA mix after 72 h

Figure S41: UV absorption profile of conjugate 2 in BSA after time points (in hours)

Figure S42: Mass spectra of an extract of Conjugate 2-BSA mix after 72 h

Figure S43: UV absorption profile of conjugate 3 in BSA after time points (in hours)

Figure S44: Mass spectra of an extract of Conjugate 3-BSA mix after 72 h

Figure S45: UV absorption profile of conjugate 1 incubated with liver microsomes at time points: 0, 5, 10, 15, 30, 45 minutes.

Figure S46: UV absorption profile of conjugate **2** incubated with liver microsomes at time points: 0, 5, 10, 15, 30 45minutes.

Figure S47: UV absorption profile of conjugate **3** incubated with liver microsomes at time points: 0, 5, 10, 15, 30 45minutes.

Figure S48: Mass spectra of an extract of Conjugate **3**-microsome mix after 45minute incubation.