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Transparent Methods
Assessing diagnostic utility of novel k-mers
We expect that a de novo mutation will result in numerous novel k-mers, given a sufficiently large value of k. We
also expect that these novel k-mers will be present in high abundance, given sufficiently deep sampling of the proband
genome. Intuitively, we can use these novel k-mers to identify reads that span the de novo variant—see Figure 1a.

We assessed this intuition by traversing the human reference genome (GRCh38) base by base, simulating variants
(SNVs and 5 bp deletions) at each position. For each simulated mutation, we determined the fraction of k-mers
spanning the mutation that exist nowhere else in the genome, and thus act as a diagnostic signature of that particular
variant. We then aggregated over the entire genome the probability that k-mer spanning a mutation (in this case
31-mers) will be novel—see Figure 1b and 1c.

Based on the results of this experiment, we formulate the de novo variant discovery problem as a search for
putatively novel k-mers that are abundant in the proband and effectively absent in each parent. For sake of simplicity,
we are using the term proband to refer generally to the subject or focal individual, and parent to refer generally to
control individuals.

Here, abundant and effectively absent are defined in terms of a simple threshold model. Let X be the absence
threshold, and Y be the presence threshold, and A = {Ap, Am, Af} be the abundances of a k-mer in the proband,
mother, and father. We designate this k-mer as “interesting” (putatively novel) if and only if Ap ≥ Y , Am ≤ X ,
and Af ≤ X . Based on our experience, the values Y = 5 and X = 1 produce desirable results for 30x sequencing
coverage.

Kevlar workflow
The steps of the Kevlar workflow, summarized at a high level in Figure 1d, are described in detail in the subsequent
sections.

Step 0: Compute k-mer counts
Preliminary to identifying novel k-mers, the abundance of each k-mer in each sample must be counted. Storing exact
counts of every k-mer requires a substantial amount of space (dozens of gigabytes or more per sample), so Kevlar
exploits several strategies to reduce the space required for keeping k-mer counts in memory.

First, Kevlar stores approximate k-mer counts in a Count-Min sketch, a probabilistic data structure similar to a
Bloom filter that operates in a fixed amount of memory, exchanging accuracy for space efficiency (Zhang et al., 2014).
A separate Count-Min sketch is used for each sample. The accuracy of each Count-Min sketch depends on its size
and the number of distinct elements (k-mers in this case) being tracked. The Count-Min sketch exhibits a one-sided
error, meaning that k-mer counts are sometimes overestimated but never underestimated. The extent of inaccuracy
in the k-mer counts is summarized by the false discovery rate (FDR) statistic computed from the occupancy of the
Count-Min sketch.

Second, Kevlar uses a masked counting strategy in which k-mers present in the reference genome and a contam-
inant database (composed of bacterial, viral, vector, and adapter sequences) are ignored. This substantially reduces
the number of k-mers to be stored in the Count-Min sketch, and as a consequence the desired level of accuracy can be
maintained using a smaller amount of space.

Third, k-mer counts are recomputed with exact precision in subsequent steps of the Kevlar workflow, which means
any k-mer retained erroneously due to an inflated count can be compensated for at a later stage. As a consequence, it
is possible to reduce the size of the Count-Min sketch even further, resulting in a FDR of 0.5 or greater.

Kevlar’s k-mer counting operations are invoked with the kevlar count command, and rely on bulk sequence
loading procedures and an implementation of the Count-Min sketch data structure from the khmer library (Crusoe
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et al., 2015; Standage et al., 2017; Zhang et al., 2014). Note that several alternative k-mer counting libraries and
tools (Marçais and Kingsford, 2011; Rizk et al., 2013) have been developed and utilized to solve a variety of different
biological problems (Bray et al., 2016; Patro et al., 2014; Rahman et al., 2018; Sun and Medvedev, 2018).

Step 1: Identifying novel k-mers and reads
To identify sequences spanning de novo variants, Kevlar scans each read sequenced from the proband. The per-sample
abundances of each k-mer are queried from the Count-Min sketches computed in previous steps. If a k-mer is present
in high abundance in the proband and absent from the parents (that is, it satisfies user-specified abundance thresholds),
it is designated as “interesting” or putatively novel. This operation is similar to the selection of “novo” k-mers by
NovoBreak (Chong et al., 2017) and “significant” k-mers by HAWK (Rahman et al., 2018). Any read containing one
or more interesting k-mers is retained for subsequent processing. This step is implemented in the kevlar novel
command.

Step 2: Contamination, reference, and abundance filters
Reads containing putative novel k-mers are filtered prior to subsequent analysis. This filtering step serves two purposes.

First, Kevlar re-computes the abundance of each interesting k-mer in the proband sample. The relatively small
volume of these reads allows Kevlar to re-compute k-mer counts with perfect accuracy in a small amount of memory
and time. Any k-mer whose corrected count no longer satisfies the required abundance threshold is discarded. Note
that since only proband reads are retained, only the proband k-mer abundances can be recomputed. This filtering
step will not recover a k-mer that is erroneously discarded in the previous step due to an erroneously inflated k-mer
abundance in one of the control (parent and sibling) samples.

Second, if for any reason k-mers from the reference genome and contaminants are not ignored in the initial k-mer
counting step, this filtering step provides another opportunity to discard these k-mers.

After these filters are applied, any read that no longer contains any novel k-mers is discarded, and the remainder
of the reads are retained for subsequent analysis.

The kevlar filter command is used to execute these contamination, reference, and abundance filters.

Step 3: Partitioning reads using shared novel k-mers
Interesting reads spanning the same variant are expected to share numerous interesting k-mers. These shared novel
k-mers provide a mechanism for grouping the reads into disjoint sets reflecting distinct variants.

To be precise, we define a read graph G as follows: every read containing one or more novel k-mers is represented
by a node in G, and a pair of nodes is connected by an edge if they have one or more novel k-mers in common. With
this formulation, if two reads share a novel k-mer they are part of the same connected component in G. Overall G is
sparse, but typically each connected component of the graph is highly connected. In subsequent steps, each component
or partition p ∈ G is analyzed independently.

The kevlar partition command implements this partitioning strategy.

Step 4: Contig assembly and reference target selection
For each connected component p ∈ G, we assemble the corresponding reads using the overlap-based algorithm
implemented in the fermi-lite library (Li, 2017a). Briefly, fermi-lite performs error correction, trims reads at unique
l-mers, constructs an FM-index of the trimmed reads, and constructs a transitively reduced overlap graph. The optimal
path in the final graph is output as a contig Cp suitable for variant calling.

Next, we select a target reference sequence (or set of candidate targets) for the contig Cp. Briefly, Kevlar decom-
poses the contig into overlapping subsequences of length l (seeds; l = 51 by default), and uses BWA MEM (Li, 2013)
to identify locations of exact matches for each seed sequence in the reference genome. The genomic interval that
spans all seed exact matches, plus ∆ nucleotides in each direction (∆ = 50 by default), is then selected as the target
reference sequence for Cp. If any adjacent seed matches are separated by more than D nucleotides (D = 10, 000 by
default), then the seed matches are split at that point and multiple reference targets are selected. The set of reference
target sequences corresponding to contig Cp is denoted TCp

.
Read assembly is invoked with the kevlar assemble command, and reference target selection is invoked with

the kevlar localize command.
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Step 5: Contig alignment and variant annotation
The contig Cp is aligned to each reference target sequence t ∈ TCp

using the ksw2 library (Li, 2017b)—specifically
its implementation of Green’s formulation of dynamic programming global alignment and extension (ksw2 extz).
If there are multiple candidate targets, only the highest scoring alignment is retained. When a contig aligns to multiple
locations with the same optimal score, all optimal alignments are retained for variant calling.

Prior to variant calling, kevlar right-aligns any gaps at the right end of the alignment to minimize the number of
alignment blocks/operations. Next, Kevlar inspects the alignment path (represented as a CIGAR string) of each align-
ment and tests for matches against expected patterns. Alignments matching the pattern
ˆ(\d+[DI])?\d+M(\d+[DI])?$ are classified as SNV events, and the “match” block of the alignment is scanned
for mismatches between the contig and the reference target. Any mismatch is reported as a single nucleotide vari-
ant. Alignments matching the pattern ˆ(\d+[DI])?\d+M\d+[ID]\d+M(\d+[DI])?$ are classified as indel
events. In addition to reporting the internal gap of this alignment as an indel variant, the flanking “match” blocks are
also scanned for mismatches between the contig and the target to be reported as putative SNVs. Any alignment not
matching the two patterns described above is designated as an uninterpretable “no-call” and listed in the output along
with the corresponding contig sequence.

In some cases, there is a possibility that kevlar will report two or more calls in close proximity. While the proba-
bility of two de novo variants occurring in close proximity is effectively nil, it is common for an inherited variant to
occur proximal to a de novo variant. Occasionally one of these inherited variants will not be spanned by any interesting
k-mers, in which case it can immediately be designated as a “passenger” variant call. However, in cases where an in-
herited variant is spanned by one or more interesting k-mers, we rely on subsequent examination of k-mer abundances
to distinguish novel variants from inherited variants.

The kevlar call command computes the contig alignments and makes preliminary variant calls.

Step 6: Likelihood scoring model for ranking and filtering variant calls
Given the filters already discussed, false interesting k-mer designations are rare throughout the genome overall. Re-
dundancy from a high depth of sequencing coverage prevents sequencing errors from driving the reported abundance
of k-mers present in the parents to 0. If a k-mer is present in either parent, it is disqualified from the interesting or
novel designation.

We observed false interesting k-mer designations are enriched around inherited mutations. It is very common for
variants present in one parent to be absent from the other parent. If by chance the depth of sequencing coverage is low
at such a locus in the donor parent, there may not be enough redundancy to compensate for sequencing errors. As a
result, some k-mers that are truly present in the donor parent will have a reported abundance of 0. Being truly absent
from the other parent, these k-mers are erroneously designated as unique to the proband.

A related complication occurs when a novel variant is proximal to an inherited variant. Both variants are reflected in
the alignment of the associated contig (assembled from proband-derived interesting reads) to the reference genome. In
both of these cases, distinguishing novel variants from inherited variants benefits from examination of the abundances
of all k-mers containing each variant, as well as the corresponding reference k-mers.

We utilize a likelihood based model to score and rank the predicted de novo variants. We consider the abundance
of the interesting k-mers to calculate the likelihood of the event observed being de novo, inherited, or a false call.
Using these likelihood probabilities, we calculate a score for each variant being truly a de novo variant based on ratio
of likelihoods.

First, for each variant we define a set of alternate k-mers A as the k-mers indicating existence of the variant
(alternate genotype). We consider only k-mers that are unique to this variant (that is, they don’t appear in any other
location in the reference genome). We assume that there are a total of n alternate k-mers.

Let the random variables vc, vf , and vm indicate the genotype (i.e. {0/0, 0/1, 1/1}) of the putative variant in the
proband/child, father, and mother respectively. The random variable Ac = {Ac1 , Ac2 , ..., Acn} denotes the counts
of the alternate allele k-mers in the proband, Am = {Am1

, Am2
, ..., Amn

} the alternate allele k-mer counts in the
mother, and Af = {Af1 , Af2 , ..., Afn} the alternate allele k-mer counts in the father. The likelihood that a putative
variant is de novo can be calculated as follows.
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L(dn = 1) = P (Ac,Am,Af | dn = 1)

= P (Ac,Am,Af | vc = 0/1, vm = 0/0, vf = 0/0)

= P (Ac | vc = 0/1)P (Am | vm = 0/0)P (Af | vf = 0/0)

We note that there are dependencies between k-mer counts within a sample. However, to simplify the calculation
of likelihoods, we assume independence between the k-mer counts and provide an approximation of the likelihoods.
For calculating the probability of an observed k-mer count conditioned on a 1/1 genotype, we assume a normal distri-
bution where parameters are learned empirically for each sample using only exonic k-mers that occur only once in the
reference genome. For the genotype 0/0 we use binomial distribution to calculate the likelihood of the observed k-mer
abundance assuming the k-mer is generated by, e.g., sequencing error. Similarly, we calculate the likelihood that a
putative variant is a false positive prediction by conditioning on the variant’s non-existence (genotype 0/0) in all three
samples, i.e. L(fp = 1) = P (Ac,Am,Af | vc = 0/0, vm = 0/0, vf = 0/0).

Finally, we calculate the likelihood of observed k-mer counts under the inheritance assumption. As there are
several different valid scenarios to represent variant inheritance the likelihood calculation requires additional steps as
explained below (again assuming independence of k-mer abundances as an approximation).

L(ih = 1) = P (Ac,Am,Af | ih = 1)

≈
n∏

i=1

P (Aci , Ami , Afi | ih = 1)

=

n∏
i=1

P (ih = 1 | Aci , Ami
, Afi)P (Aci , Ami

, Afi)

P (ih = 1)

=

n∏
i=1

P (Aci , Ami
, Afi)

P (ih = 1)
× P (ih = 1 | Aci , Ami

, Afi)

We calculate the P (ih = 1 | Aci , Ami , Afi) as summation of probability of possible trio-genotype combinations
representing inheritance scenarios (e.g., (vc = 1/0, vf = 1/0, vm = 0/0) or (vc = 1/0, vf = 0/0, vm = 1/0)).
Furthermore, we assume a constant prior value for P (ih = 1) based on all possible valid inheritance scenarios.

Finally, we utilize a heuristic score motivated from the likelihood ratio test to score and rank any predicted variant
as being a de novo variant. Note that, as numerical calculation of the likelihoods is numerically prone to error we
consider the logarithm of the score. Thus, we formally define the score assigned to each variant for being de novo
as SL = logL(dn = 1) − max{log(L(ih = 1)), log(L(fp = 1))}. The kevlar simlike command computes
likelihoods for preliminary variant calls, sorts the calls, and filters out low scoring and otherwise problematic calls.

Data simulations
We simulated whole-genome shotgun sequencing for a hypothetical trio (father, mother, and proband) to evaluate the
accuracy of our de novo variant discovery algorithm. Using the human reference genome (GRCh38) and a catalog
of common variants (dbSNP), we constructed two independent diploid genomes representing the two parents. We
randomly selected SNPs and indels from dbSNP and assigned the variants to each parental haplotype at a rate of 1 for
every 1000 bp.

We then constructed the diploid proband genome through recombination of the parental diploid genomes and sim-
ulated germline mutation. SNVs and indels ranging from <10 bp to 400 bp in length were simulated as heterozygous
events unique to the proband, representing de novo variation.

Finally, we used wgsim (Li, 2011) to simulate whole-genome shotgun sequencing of each individual. This pro-
duced sequences resembling Illumina 2x150bp paired-end reads with low sequencing error rate. The sequencing was
repeated at four different average depths of sequencing coverage: 10x, 20x, 30x, and 50x.
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Figure S1 Accuracy of five de novo variant prediction algorithms at 10x coverage, Related to Figure 2.
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Figure S2 Accuracy of five de novo variant prediction algorithms at 20x coverage, Related to Figure 2.
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Figure S3 Accuracy of five de novo variant prediction algorithms at 50x coverage, Related to Figure 2.
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