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Table S1. A variety of popular quantification tools and subsequent manipulation methods for analyzing MS-

based proteomic data together with the representative proteomics studies adopting each tool/method. 

Name of Tool / Method Extensive Application of Each Tool / Method in Current Proteomic Researches 

(1) Quantification Tools for Each Acquisition Technique 

P
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MaxQuant 
Applied to investigate the properties and function of the inner colonic mucus layer in 

mouse models of diet-induced and genetic obesity1. 

MFPaQ 
Applied to evaluate a quantitative proteomic workflow for impoving reproduciblity 

and accuracy quantification2. 

OpenMS 
Applied to deciphering physiological changes that mediate transition of 

Mycobacterium tuberculosis between replicating and nonreplicating states3. 

PEAKS 
Employs de novo sequencing as a subroutine and exploits the de novo sequencing 

results to improve both the speed and accuracy of the database search4. 

Progenesis 
Used to gain insight into mechanisms underpinning corticosteroid effects on neural 

stem cells5. 

Proteios SE 
Applied to identify the variant protein in intestinal epithelial cells from healthy 

subjects (H) and Crohn's disease patients (CD)6. 

Scaffold 
Used to investage interactions between NS4B involved in viral replication and 

immune evasion and human proteins7. 

Thermo Proteome 

Discoverer 

Applied to analyze and compare the total proteome of aqueous humor) from patients 

with primary angle closure glaucoma, open angle glaucoma and age-related cataract8. 

S
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Abacus 
Applied to extract and pre-process spectral count data for the label-free quantitative 

proteomic analysis9. 

Census 
Enabling the large-scale differential proteome analysis in Plasmodium falciparum 

under drug treatment10. 

DTASelect 
Used to facilitate to develop diagnostic biomarkers for subclinical IAI in amniotic 

fluid and blood of women with preterm labor11. 

IRMa-hEIDI 
Applied to facilitate to obtain molecular and cellular cerebral imprints in the striatum 

of anesthetized monkeys12. 

MaxQuant 
Applied to investigate the properties and function of the inner colonic mucus layer in 

mouse models of diet-induced and genetic obesity1. 

MFPaQ 
Applied to evaluate a quantitative proteomic workflow for impoving reproduciblity 

and accuracy quantification2. 

ProteinProphet 
Applied to identify secreted glycoproteins of human prostate and bladder stromal 

cells by comparative quantitative proteomics13. 

S
W
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T
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DIA-Umpire 
Applied to quantity and identify Host Cell Proteins (HCPs) of an IgG1 monoclonal 

antibody (mAb) sample14. 

OpenSWATH 
Enabling to identify protein characterization of lung extracellular matrix for 

describing the specific matrisome remodeling mechanisms15. 

PeakView 
Used to evaluate and identify optimal protein extraction method for proteomics 

analysis of green algae Chlorella vulgaris16. 

Skyline 
Applied to explore the total proteome and glycoproteins of synovial fluid obtained 

from osteoarthritis patients17. 

Spectronaut 
Applied to discovery the high throughput and accurate serum proteome profiling 

workflow18. 



3 

(2) Transformation Methods 
T
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1 BOX 
Used to identify of novel biomarkers and the development of new therapeutic targets 

for seven important liver diseases19. 

2 LOG 
Applied for identifying the new therapeutic targets of the treatment of early-stage 

hepatocellular carcinoma (HCC)20. 

3 VSN 
Helping to address the accuracy and precision issues in the isobaric tags for relative 

and absolute quantification (iTRAQ)21. 

(3) Pretreatment Methods 

C
en

te
ri

n
g

 

1 MEC 
Used for facilitating the improvement of the sensitivity of significance test in spectral 

counting-based comparative discovery proteomics22. 

2 MDC 
Facilitating the normalization procedures in LC-MS proteomics experiments through 

dataset dependent ranking of normalization scaling factors23. 

S
ca

li
n

g
 

3 ATO 
Applied to discover the proteomic biomarkers for a variety of diseases, such as 

psoriasis and psoriasis arthritis24. 

4 PAR 
Implemented into the proteomic experiments based on the LC-MS/MS with great 

potential to be applied to metaproteomic research25. 

5 VAS 
Assessing the impact of delayed storage on the measured proteome and metabolome 

of human cerebrospinal fluid26. 

6 RAN 
Manipulating the non-targeted ultra-high performance liquid chromatography tandem 

mass spectrometry (UHPLC-MS) proteomic/metabolomic data27. 

N
o
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a
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o
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7 CYC 
A frequently adopted normalization method in the quantitative label-free proteomics, 

systematically compared with other methods28. 

8 EIG 
Enabling the normalization of peak intensities in bottom-up MS-based proteomics 

and label-free LC-MS based proteomics analysis29. 

9 LIN 
Developed to normalize or scale the label-free relative quantification of the endoge-

nous peptides30. 

10 LOW 
Designed to normalize and statistical analyze the quantitative proteomics data 

generated by metabolic labeling31. 

11 MEA 
Applied to the analysis by high throughput gel free quantitative proteomics and 

metaproteomic-related research32. 

12 MED 
Used to achieve the reproducible and consistent quantification of the Saccharomyces 

cerevisiae proteome by SWATH-mass spectrometry32. 

13 MAD 
Normalizing and improving the quality control procedure of the peptide-centric LC-

MS proteomics data33. 

14 PQN 
Normlizing and analyzing the protein profiles of antibody arrays based on a 

longitudinal twin model34. 

15 QUA 
Facilitating the rapid mass spectrometric conversion of tissue biopsy samples into the 

permanent quantitative digital proteome maps35. 

16 RLR 
Enabling the multidimensional normalization to minimize the plate effects of the 

suspension bead array data36. 

17 TIC 
Applied to achieve SELDI-TOF-MS proteomic profiling of serum, urine, and 

amniotic fluid in neural tube defects37. 

18 TMM 
Frequently used as a multi-model statistical approach for the proteomic spectral count 

quantitation38. 
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(4) Methods for Missing-value Imputation 
Im

p
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ta
ti
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n

 

1 BAK 
Treating the missing values for multivariate statistical analysis of the gel-based 

proteomics data39. 

2 BPC 
Used to improve the detection of differentially abundant proteins in current proteomic 

analysis40. 

3 CEN 
An integrative imputation method based on multi-omics datasets, especially in 

proteomic analysis41. 

4 KNN 
A frequently used imputation method in the quantitative label-free proteomics, sys-

tematically compared with other methods42. 

5 LLS 
Facilitating the normalization of peak intensities in bottom-up MS-based proteomic 

analysis29. 

6 SVD 
Helping the realizing the visualization, manipulating and quantitation of the isobaric 

tagged mass spectrometry based proteomic data43. 

7 ZER 
Treating the missing values for multivariate statistical analysis of the gel-based 

proteomics data39. 
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Table S2. The level of dependence of precision and accuracy on the selection of LFQs assessed based on the benchmark datasets of the second study in Table 

112. The studied LFQs were collectively defined by 4 quantification tools and 8 representative manipulation chains. As reported in original study12, only the 

log transformation was adopted for analyses, which defined its manipulation chain as LOG-[NON-NON-NON]-NON (highlighted in grey background). The 

precision levels were defined by PMAD values (superior: <0.14, good: 0.14~0.3, fair: 0.3~0.7 and poor: >0.7), and the accuracy levels were defined by the 

absolute deviation from the expected abundance ratios (high: <0.05, medium: 0.05~0.1 and low: >0.1). Each manipulation method in a chain was abbreviated 

by a three-letter code which was systematically defined in Table 1. 

Representative 

Chains for Data 

Manipulation 

Precision: reproducibility among technical replicates (PMAD) Accuracy: absolute deviation from expected abundance ratios 

IRMa-hEIDI MFPaQ MaxQuant Scaffold IRMa-hEIDI MFPaQ MaxQuant Scaffold 

LOG-[NON-NON-

NON]-NON 

2.02E-01 

(Good) 

2.50E-01 

(Good) 

2.56E-01 

(Good) 

2.09E-01 

(Good) 

1.42E-04 

(High) 

5.07E-03 

(High) 

2.80E-02 

(High) 

5.15E-03 

(High) 

LOG-[MDC-PAR-

MAD]-SVD 

6.81E-01 

(Fair) 

7.27E-01 

(Poor) 

7.56E-01 

(Poor) 

6.47E-01 

(Fair) 

1.34E-01 

(Low) 

5.00E-02 

(High) 

1.56E-01 

(Low) 

1.06E-01 

(Low) 

LOG-[MDC-RAN-

EIG]-KNN 

1.03E-17 

(Superior) 

8.75E-18 

 (Superior) 

1.25E-17 

 (Superior) 

2.45E-17 

(Superior) 

3.83E-02 

(High) 

1.80E-02 

(High) 

4.50E-02 

(High) 

3.82E-02 

 (High) 

BOX-[NON-VAS-

EIG]-BAK 

1.14E+00 

(Poor) 

1.83E+00 

(Poor) 

2.82E+00 

(Poor) 

8.73E-01 

(Poor) 

4.16E-03 

(High) 

3.58E-03 

(High) 

7.24E-03 

(High) 

4.15E-03 

(High) 

BOX-[MDC-PAR-

TMM]-SVD 

2.63E-01 

(Good) 

3.67E-01 

(Fair) 

1.68E-01 

(Good) 

7.99E-02 

(Superior) 

1.20E-02 

(High) 

1.74E-01 

(Low) 

1.84E-01 

(Low) 

7.04E-02 

(Medium) 

BOX-[MEC-PAR-

TIC]-KNN 

3.60E-02 

(Superior) 

2.33E-02 

(Superior) 

1.46E-02 

(Superior) 

3.04E-02 

(Superior) 

4.99E-01 

(Low) 

6.57E-01 

(Low) 

8.77E-01 

(Low) 

6.91E-01 

(Low) 

BOX-[MEC-RAN-

MAD]-ZER 

3.97E-01 

(Fair) 

4.78E-01 

(Fair) 

5.03E-01 

(Fair) 

4.07E-01 

(Fair) 

2.18E-01 

(Low) 

1.07E-02 

(High) 

6.25E-02 

(Medium) 

7.90E-04 

(High) 

BOX-[MEC-ATO-

RLR]-BPC 

3.91E+00 

(Poor) 

2.35E+00 

(Poor) 

2.31E+00 

(Poor) 

2.09E+00 

(Poor) 

4.34E-01 

(Low) 

1.37E+00 

(Low) 

7.31E-01 

(Low) 

6.79E-01 

(Low) 
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Table S3. The PMAD values of ten representative manipulation chains for peak intensity data that performed 

consistently better across five quantification tools than the manipulation chain adopted by the original study 

(LOG-[NON-NON-MED]-NON, highlighted in dark grey background). 

Manipulation Chains DecyderMS MaxQuant PEAKS OpenMS Sieve 

 
LOG-[NON-NON-

MED]-NON 
5.56E-01 5.41E-01 6.43E-01 4.80E-01 4.71E-01 

1 
BOX-[MEC-RAN-

PQN]-KNN 
1.29E-01 1.24E-01 1.62E-01 1.47E-01 1.50E-01 

2 
BOX-[MDC-RAN-

QUA]-BAK 
1.90E-01 1.94E-01 2.09E-01 2.06E-01 1.38E-01 

3 
BOX-[MEC-ATO-

LOW]-SVD 
5.49E-02 6.22E-02 7.51E-02 5.76E-02 6.25E-02 

4 
BOX-[MDC-RAN-

TMM]-CEN 
1.48E-02 1.17E-02 3.02E-02 5.56E-03 8.15E-03 

5 
BOX-[MDC-VAS-

TIC]-BPC 
5.38E-04 3.61E-04 2.29E-04 2.74E-04 6.27E-04 

6 
LOG-[MDC-VAS-

TIC]-CEN 
8.39E-03 1.68E-03 2.82E-03 1.10E-02 6.79E-04 

7 
LOG-[MDC-PAR-

LOW]-SVD 
4.06E-02 2.39E-02 3.87E-02 2.48E-02 3.06E-02 

8 
LOG-[MEC-ATO-

LOW]-ZER 
4.23E-02 4.17E-02 6.01E-02 3.92E-02 5.22E-02 

9 
LOG-[MEC-RAN-

PQN]-BAK 
1.64E-01 1.94E-01 2.64E-01 4.63E-01 5.76E-02 

10 
LOG-[MDC-PAR-

TMM]-CEN 
4.87E-02 4.16E-02 5.56E-02 2.34E-02 6.39E-02 
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Table S4. PMAD values of ten representative manipulation chains for spectral counting data that performed 

consistently better across four quantification tools than the manipulation chain adopted by the original study 

(LOG-[NON-NON-NON]-NON, highlighted in dark grey background). 

Manipulation Chains IRMa-hEIDI MFPaQ MaxQuant Scaffold 

 
LOG-[NON-NON-

NON]-NON 
2.02E-01 2.50E-01 2.56E-01 2.09E-01 

1 
BOX-[MEC-RAN-

PQN]-CEN 
1.37E-01 1.64E-01 1.90E-01 1.37E-01 

2 
BOX-[MEC-ATO-

LOW]-KNN 
1.74E-02 2.75E-02 5.10E-02 1.82E-02 

3 
BOX-[MEC-PAR-

TIC]-BPC 
3.60E-02 2.33E-02 1.46E-02 3.04E-02 

4 
BOX-[MDC-ATO-

LOW]-KNN 
4.92E-02 6.03E-02 7.04E-02 4.62E-02 

5 
BOX-[MDC-RAN-

LOW]-SVD 
5.02E-03 2.04E-02 4.60E-03 4.24E-03 

6 
LOG-[MEC-ATO-

LOW]-KNN 
1.81E-02 2.68E-02 5.80E-02 1.45E-02 

7 
LOG-[MEC-RAN-

TIC]-CEN 
4.89E-02 1.10E-01 3.49E-02 5.32E-02 

8 
LOG-[MDC-PAR-

TIC]-BAK 
5.78E-02 2.84E-02 3.68E-02 6.29E-02 

9 
LOG-[MDC-VAS-

TIC]-SVD 
8.33E-03 8.05E-03 1.67E-02 1.34E-02 

10 
LOG-[MDC-RAN-

TMM]-ZER 
3.43E-02 5.25E-02 1.22E-01 3.44E-02 
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Table S5. Comparison among LFQ-related tools in terms of the acquisition technique, quantification tools, subsequent manipulation methods (transformation, 

pretreatment and imputation) and performance evaluation criteria. Gmine & Perseus integrated several manipulation methods in the quantification workflows, 

but no function of performance assessment was provided. LFQbench & msCompare were recognized as evaluating performances of 3~5 quantification tools, 

and Normalyzer, SPANS & GiaPronto were distinguished for being capable of assessing 1~8 pretreatment methods. Tools were ordered alphabetically. N.P.: 

not provided; PI: peak intensity; SC: spectral counting; SWATH: SWATH-MS. 

 

Automatic Detection of the Output 

Format of Quantification Tools 

(Quantification Measurement) 

No. of 

Quantification 

Tools 

No. of 

Transformation 

Methods 

No. of 

Pretreatment 

Methods 

No. of 

Imputation 

Methods 

Performance 

Evaluation 

No. of 

Evaluation 

Criteria 

This Study YES (PI, SC, SWATH) 18 4 18 7 YES 5 

GiaPronto YES (PI, SC) 1 1 1 N.P. YES 1 

Gmine NO N.P. 3 2 N.P. NO N.P. 

LFQbench NO 5 N.P. N.P. N.P. YES 2 

msCompare NO 3 N.P. N.P. N.P. YES 1 

Normalyzer NO N.P. 1 8 N.P. YES 1 

Perseus YES (PI, SC) 1 1 7 3 NO N.P. 

SPANS NO N.P. N.P. 5 N.P. YES 1 
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Figure S1. Two representative manipulation chains performing well (BOX-[NON-PAR-TIC]-KNN) and poor 

(BOX-[MEC-VAS-PQN]-BAK) consistently across multiple criteria: (a) precision; (b) differential abundance 

analysis; (c) robustness and (d) classification capacity. 

 
 



10 

Figure S2. The strategy proposed in this study to discover manipulation chains with simultaneously improved precision and accuracy based on the benchmark 

from Table 2 study 2 of distinct concentrations (12.5 vs 25fmol/μg) of spiked UPS1 proteins. First, the clustering analyses among manipulation chains across 

four quantification tools were conducted for (a) precision and (b) accuracy. Second, 2D scatter plot (c) was drawn to provide the ranks of manipulation chains 

(represented by gray dots) collectively determined by precision (horizontal axis) and accuracy (vertical axis). The pink, violet and green areas in (c) indicated 

the chains of good precision (A1+A2+A3 in (a)), good accuracy (A1+A2 in (b)) and good-performance for both precision and accuracy, respectively. As a 

result, 728 chains (within the green region of (c)) were found to perform well under both criteria (precision & accuracy). 
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Figure S3. The strategy proposed in this study to discover manipulation chains with simultaneously improved precision and accuracy based on the benchmark 

from Table 2 study 2 of distinct concentrations (0.5 vs 5fmol/μg) of the spiked UPS1 proteins. First, the clustering analyses among manipulation chains across 

four quantification tools were conducted for (a) precision and (b) accuracy. Second, 2D scatter plot (c) was drawn to provide the ranks of manipulation chains 

(represented by gray dots) collectively determined by precision (horizontal axis) and accuracy (vertical axis). The pink, violet and green areas in (c) indicated 

the chains of good precision (A1+A2+A3 in (a)), good accuracy (A1+A2 in (b)) and good-performance for both precision and accuracy, respectively. As a 

result, 406 chains (within the green region of (c)) were found to perform well under both criteria (precision & accuracy). 
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Figure S4. The strategy proposed in this study to discover manipulation chains with simultaneously improved precision and accuracy based on the benchmark 

from Table 2 study 2 of distinct concentrations (0.5 vs 12.5fmol/μg) of spiked UPS1 proteins. First, the clustering analyses among manipulation chains across 

four quantification tools were conducted for (a) precision and (b) accuracy. Second, 2D scatter plot (c) was drawn to provide the ranks of manipulation chains 

(represented by gray dots) collectively determined by precision (horizontal axis) and accuracy (vertical axis). The pink, violet and green areas in (c) indicated 

the chains of good precision (A1+A2+A3 in (a)), good accuracy (A1+A2+A3 in (b)) and good-performance for both precision & accuracy, respectively. As 

a result, 378 chains (within the green region of (c)) were found to perform well under both criteria (precision & accuracy). 

 
 



13 

Figure S5. The strategy proposed in this study to discover manipulation chains with simultaneously improved precision and accuracy based on the benchmark 

from Table 2 study 2 of distinct concentrations (0.5 vs 25fmol/μg) of the spiked UPS1 protein. First, the clustering analyses among manipulation chains across 

four quantification tools were conducted for (a) precision and (b) accuracy. Second, 2D scatter plot (c) was drawn to provide the ranks of manipulation chains 

(represented by gray dots) collectively determined by precision (horizontal axis) and accuracy (vertical axis). The pink, violet and green areas in (c) indicated 

the chains of good precision (A1+A2+A3 in (a)), good accuracy (A1 in (b)) and good-performance for both precision and accuracy, respectively. All in all, 

286 chains (within the green region of (c)) were found to perform well under both criteria (precision & accuracy). 
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Figure S6. The strategy proposed in this study to discover manipulation chains with simultaneously improved precision and accuracy based on the benchmark 

from Table 2 study 2 of distinct concentrations (0.5 vs 50fmol/μg) of the spiked UPS1 protein. First, the clustering analyses among manipulation chains across 

four quantification tools were conducted for (a) precision and (b) accuracy. Second, 2D scatter plot (c) was drawn to provide the ranks of manipulation chains 

(represented by gray dots) collectively determined by precision (horizontal axis) and accuracy (vertical axis). The pink, violet and green areas in (c) indicated 

the chains of good precision (A1+A2+A3 in (a)), good accuracy (A1 in (b)) and good-performance for both precision and accuracy, respectively. All in all, 

413 chains (within the green region of (c)) were found to perform well under both criteria (precision & accuracy). 
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Figure S7. The strategy proposed in this study to discover manipulation chains with simultaneously improved precision and accuracy based on the benchmark 

from Table 2 study 2 of distinct concentrations (5 vs 12.5fmol/μg) of the spiked UPS1 protein. First, the clustering analyses among manipulation chains across 

four quantification tools were conducted for (a) precision and (b) accuracy. Second, 2D scatter plot (c) was drawn to provide the ranks of manipulation chains 

(represented by gray dots) collectively determined by precision (horizontal axis) and accuracy (vertical axis). The pink, violet and green areas in (c) indicated 

the chains of good precision (A1+A2+A3 in (a)), good accuracy (A1+A2 in (b)) and good-performance for both precision and accuracy, respectively. As a 

result, 752 chains (within the green region of (c)) were found to perform well under both criteria (precision & accuracy). 
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Figure S8. The strategy proposed in this study to discover manipulation chains with simultaneously improved precision and accuracy based on the benchmark 

from Table 2 study 2 of distinct concentrations (5 vs 25fmol/μg) of the spiked UPS1 proteins. First, the clustering analyses among manipulation chains across 

four quantification tools were conducted for (a) precision and (b) accuracy. Second, 2D scatter plot (c) was drawn to provide the ranks of manipulation chains 

(represented by gray dots) collectively determined by precision (horizontal axis) and accuracy (vertical axis). The pink, violet and green areas in (c) indicated 

the chains of good precision (A1+A2+A3 in (a)), good accuracy (A1+A2 in (b)) and good-performance for both precision and accuracy, respectively. As a 

result, 585 chains (within the green region of (c)) were found to perform well under both criteria (precision & accuracy). 
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Figure S9. The strategy proposed in this study to discover manipulation chains with simultaneously improved precision and accuracy based on the benchmark 

from Table 2 study 2 of distinct concentrations (5 vs 50fmol/μg) of the spiked UPS1 proteins. First, the clustering analyses among manipulation chains across 

four quantification tools were conducted for (a) precision and (b) accuracy. Second, 2D scatter plot (c) was drawn to provide the ranks of manipulation chains 

(represented by gray dots) collectively determined by precision (horizontal axis) and accuracy (vertical axis). The pink, violet and green areas in (c) indicated 

the chains of good precision (A1+A2 in (a)), good accuracy (A1+A2 in (b)) and good-performance for both precision and accuracy, respectively. All in all, 

827 chains (within the green region of (c)) were found to perform well under both criteria (precision & accuracy). 
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Figure S10. The strategy proposed in this study to discover manipulation chains with simultaneously improved precision & accuracy based on the benchmark 

from Table 2 study 2 of distinct concentrations (12.5 vs 50fmol/μg) of spiked UPS1 proteins. First, the clustering analyses among manipulation chains across 

four quantification tools were conducted for (a) precision and (b) accuracy. Second, 2D scatter plot (c) was drawn to provide the ranks of manipulation chains 

(represented by gray dots) collectively determined by precision (horizontal axis) and accuracy (vertical axis). The pink, violet and green areas in (c) indicated 

the chains of good precision (A1+A2+A3 in (a)), good accuracy (A1+A2 in (b)) and good-performance for both precision and accuracy, respectively. All in 

all, 441 chains (within the green region of (c)) were found to perform well under both criteria (precision & accuracy). 
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Figure S11. The strategy proposed in this study to discover manipulation chains with simultaneously improved precision & accuracy based on the benchmark 

from Table 2 study 2 of distinct concentrations (25 vs 50fmol/μg) of the spiked UPS1 protein. First, the clustering analyses among manipulation chains across 

four quantification tools were conducted for (a) precision and (b) accuracy. Second, 2D scatter plot (c) was drawn to provide the ranks of manipulation chains 

(represented by gray dots) collectively determined by precision (horizontal axis) and accuracy (vertical axis). The pink, violet and green areas in (c) indicated 

the chains of good precision (A1+A2+A3 in (a)), good accuracy (A1+A2 in (b)) and good-performance for both precision and accuracy, respectively. All in 

all, 797 chains (within the green region of (c)) were found to perform well under both criteria (precision & accuracy). 
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Figure S12. Distribution of manipulation methods in these 133 well-performing chains identified based on forty DDA-based benchmarks of Table 2 study 2. 

Manipulation method was abbreviated by three-letter code which was defined in Table 1. For the seven imputation methods together with the non-imputation 

(NON), they demonstrated the exactly equal chances within the 133 well-performing chains, which showed that the selection of different imputation methods 

(even NON) had nothing to do with the performance under this circumstance. Therefore, the imputation methods were not displayed in this distribution. 
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Supplementary Methods 

1. Detailed Descriptions of Quantification Tools that Were Used in This Work 

1.1 Quantification Tools for Pre-processing the Data Acquired Based on SWATH-MS 

DIA-UMPIRE: A comprehensive computational workflow and open-source software for processing the data 

independent acquisition (DIA) MS-based proteomics44. It enables untargeted protein quantification based on 

SWATH-MS data obtained by Orbitrap family of mass spectrometers45, and also enables targeted extraction 

of quantitative information based on peptides initially identified in only a subset of the samples, resulting in 

more consistent quantification across multiple samples44. It is used to identify similar number of peptide ions 

with better identification reproducibility between replicates and samples, than conventional data-dependent 

acquisition46. It has also been used to process untargeted data for identifying host cell protein6 and export the 

peptide identification results of pseudo-MS2 spectra47. 

OpenSWATH: An open-source software that allows targeted analysis of DIA data based on SWATH-MS in 

automated, high-throughput fashion48. It is cross-platform software relying on open data formats, allowing it 

to analyze DIA data from multiple instrument vendors and is integrated and distributed with OpenMS49. It is 

widely applied to analyze the proteome of streptococcus pyogene48, to estimate q-value of peptide and protein 

level50. Its generic utility for all types of modification and its scalability could enable confident quantification 

of the post-translational modifications in DIA-based large-scale studies50. 

PeakView: A commercial software (also name SWATH 2.0) which covers all major components of in-silico 

process in SWATH workflow from extended assay library building to final statistical analysis and reporting51. 

PeakView uses a set of processing settings to filter the ion library and determine which peptides or transitions 

should be adopted for proteome quantification52, which is demonstrated to be a powerful strategy particularly 

for marker discovery and clinical applications53. It was used for N-linked glycoproteins enrichments prior to 

the tryptic digestion, library creation & analysis54, evaluating the amount of sample needed for PCT-SWATH 

analysis55 and selecting the best method for extracting green algae16. 

Skyline: An open source application for building selected reaction monitoring, multiple reaction monitoring, 

parallel reaction monitoring (targeted MS/MS), DIA/SWATH, targeted DDA of MS1 quantitative methods16. 

It was explicitly designed to accelerate targeted proteomics and foster broad sharing of the method and results 

across instrument platforms56. It has been used to peptides and transition selection for targeted experiments57, 

the retention time determination for scheduled MS58 and isolation window determination for DIA59 

Spectronaut: For targeted analysis of DIA measurement based on SWATH-MS independent of MS vendor60. 

It demonstrates a powerful ability to peak picking and automatic interference correction by utilizing spectral 

libraries generated from the raw data acquired on multiple instrument platforms, and is specifically designed 

to support spectral-library-free workflow and targeted analysis of OMICs data by hyper reaction monitoring61, 
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62. It is widely applied to the DIA-based quantitative proteome profiling61, improved proteomic quantification 

by sequential window acquisition62 and high-precision indexed retention time prediction in targeted DIA60. 

1.2 Quantification tool for Pre-processing the Data Acquired Based on Peak Intensity 

MaxQuant: Integrated suite of algorithms for processing the high-resolution, quantitative mass-spectrometry 

data, which is one of the most frequently used platforms for analyzing the MS-based proteome data63, 64. It is 

widely used to analyze the tandem spectra generated by collision-induced dissociation (CID), higher-energy 

collisional dissociation (HECD) and electron transfer dissociation (ETD)65. MaxQuant is used for analyzing 

datasets derived from all major relative quantification techniques, including label-free quantification64, MS1-

level labeling readouts and isobaric MS2-level labeling readouts66. 

MFPaQ: A web-based tool which runs on a server on which Mascot Server 2.1 and Perl 5.8 must be installed. 

To perform quantification, the external module: Extract Daemon is developed to extract intensity values from 

the raw proteomic data67. One of its distinguished features lines in its quantification modules, which provides 

information on protein relative expression following the isotopic labeling and identification with the Mascot2. 

It has been used to quantify the membrane proteins from primary human endothelial cell67, and SILAC-based 

proteomic profiling of the human MDA-MB-231 metastatic breast cancer cell line68. 

OpenMS: A robust, open-source, cross-platform software specifically designed for flexible and reproducible 

analysis of high-throughput MS data66. It uses the modern software engineering concepts with the emphasis 

on modularity, reusability and extensive testing using continuous integration, and implements common mass 

spectrometric data processing tasks through well-defined application programming interface and through the 

standardized open data format52. OpenMS is widely applied to the quantitative and variant enabled mapping 

of peptides to genome69, the analysis of cerebrospinal fluid proteome in alzheimer's disease70 and quantitative 

analysis of label-free LC-MS data for comparative candidate biomarker studies71. 

PEAKS: Software platform with complete solution for discovery proteomics, including protein identification 

and quantification, analysis of posttranslational modification and sequence variants, and peptide/protein de 

novo sequencing4. It relies on sophisticated dynamic programming algorithm to efficiently compute the best 

peptide sequence whose fragment ions can best interpret the peaks in the MS/MS spectrum. It is thus a useful 

tool for protein identification and quantification of known and unknown genomes4. PEAKS has matured into 

a comprehensive proteomic platform supporting the analysis of label-free and label-based data, and achieves 

significantly improved accuracy and sensitivity over other commonly applied software packages72. 

Progenesis: New generation of bioinformatics vehicle targeting small molecule analysis for proteomics that 

quantifies proteins based on peak intensity73. It allows full operator control over every processing step such 

as alignment of peptide ion signal landscapes and indeed individual peptide ion signal peaks74. It is used for 

protein label-free quantification and peak picking with the automatic sensitivity75. 
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Proteios SE: A tool integrating protein identification search engine access into several proteomic workflows, 

both gel-based and liquid chromatography-based and allowing seamless combination of search result, protein 

inference, protein annotation and quantitation76. It is targeted large project of shared data, integrated sample 

tracking and aimed at becoming standard analysis platform in proteomics, whose major feature is automated 

linking of data from various proteomic pipelines. It has built-in support to some protein identification engines 

such as Mascot, X!Tandem, and combines search results from multiple engines, and automatically generates 

the protein identification reports containing information required for publication of proteomics results77. 

Scaffold: Commercial bioinformatics tool, which attempts to increase the confidence in protein identification 

reports through the use of several statistical methods. It supports a wide variety of search engines and uses a 

pipeline of several peptide and protein validation methods after an initial database-search analysis78. Scaffold 

has been widely used to the identification of proteome for new target to inhibit yellow fever virus replication7, 

analysis of the follicle fluid proteome for preconception folic acids79, 80. 

Thermo Proteome Discoverer: Tool for workflow-driven data analysis in proteomics integrating all different 

steps in quantitative proteomic experiment (MS spectrum extraction, peptide identification and quantification) 

into the user-configurable, automated workflows81. It has a convenient graphical user interface in which users 

can load raw data directly from the instrument and explore and analyze it since it supports multiple sequence 

database search engines (Sequest HT, Mascot), spectral library searching, peptide spectrum-match validation 

(Percolator), as well as various quantification techniques, like isobaric mass tagging (e.g., iTRAQ, TMT) or 

SILAC82. It has been applied to iTRAQ-based quantitative analysis of protein mixture83. 

1.3 Quantification tool for Pre-processing the Data Acquired Based on Spectral Counting 

Abacus: A stand-alone tool for extracting and processing spectral count data9 aiming at streamlining analysis 

of spectral count data by providing automated solutions and extracting information from proteomics data for 

statistical analysis4. It has the disadvantage of losing information or attempting to apportion large number of 

spectra based on relatively small set of differentiating spectra84. It is compatible with popular trans-proteomic 

pipeline suite of tools and comes with a graphical user interface making it easy to interact with the program9. 

Census: A quantitative tool analyzing the high-throughput mass spectrometry data from shotgun proteomics 

experiments in efficient ways and various stable isotope labeling experiments (e.g., 15N, 18O, SILAC, iTRAQ 

and TMT) in addition to labeling-free experiment85. It is flexible in handling the most quantitative proteomics 

labeling strategies, as well as label-free experiment with multiple statistical algorithms to improve quality of 

results86. It is used to discover differential proteins in plasmodium falciparum patients under drug treatment87. 

DTASelect: A java tool used to organize, filter and interpret results generated by SEQUEST (one of the most 

widely used protein database searching programs for tandem mass spectrometry)88. It assembles protein-level 

signals from peptide data and focuses on peptides of interest by sweeping away the less likely identification88. 



24 

It makes complex experiment feasible by streamlining data analysis for proteomics89. It can be applied for a 

proteogenomic study with a controlled false discovery rate90 and palmitoylated protein identifications91. 

IRMa-hEIDI: IRMa toolbox provides an interactive application to assist in the validation of Mascot® search 

results, and allows an automatic filtering of Mascot identification result and manual confirmation or rejection 

of individual PSM (a match between a fragmentation mass spectrum and a peptide)92. Its main originality is 

to filter matches rather than identified proteins and its features are easy navigation within identification result 

and batch mode to automatically validate multiple identification results92. It is used to filter the spectral count 

workflows results with the compromise between sensitivity and false discovery rate12. 

MFPaQ: A software facilitating organization, mining and validation of Mascot results and offering different 

functionalities to work on validated protein lists, and data quantification by isotopic labeling methods or label 

free approaches67. MFPaQ extracts quantitative data from raw files obtained by nano-LC-MS/MS, calculates 

peptide ratios, and generates a non-redundant list of proteins identified in a multisearch experiment with their 

calculated averaged and normalized ratio67. It is used to large scale analysis of inflammatory endothelial cell2, 

and the label-free quantification of cerebrospinal fluid by combining peptide ligand library treatment93. 

ProteinProphet: A statistical model designed for computing probabilities that proteins are present in a sample 

on the basis of peptides assigned to tandem mass (MS/MS) spectra acquired from proteolytic digest sample94. 

It allows the filtering of large-scale proteomic data with a predictable sensitivity and false positive discovery 

rates94. It was applied to discriminate true assignments of spectra to peptide sequences from false assignments, 

to assign probability for each identified peptide, and to compute sensitivity and error rates for the assignment 

of spectra to the sequences in each experiment95. It was used to infer the protein identification and to compute 

probabilities that a protein had been correctly identified, based on the available peptide sequence evidence94. 

2. Detailed Descriptions of Three Transformation Methods Applied in This Study 

Box-cox Transformation (BOX): A parametric power transformation technique in order to reduce anomalies 

such as non-additivity, non-normality and heteroscedasticity96. The method has been extensively studied, and 

an attempt is made to review its corresponding studies96. This method has been used to facilitate the discovery 

novel biomarkers and the development of new therapeutic target for seven important liver diseases based on 

the proteomic and transcriptomic data19. In this study, the parameter lambda (λ) of the BOX method was set 

to 0.3, and its algorithm was programed and implemented under the R environment (version 3.5.1). 

Log Transformation (LOG): For obtaining the more symmetric distribution prior to statistical analysis, LOG 

is carried out almost routinely97. It works for data where you can see that the residual get bigger for the bigger 

values of the dependent variable97. Such trends in the residuals occur frequently, because the errors or changes 

in the value of an outcome variable is often a percent of the value rather than an absolute value97. This method 

has been applied for identifying new therapeutic target of early-stage hepatocellular carcinoma20. In this study, 
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LOG was performed by log2-scale, and its algorithm was programed and implemented under R environment. 

Variance Stabilization Normalization (VSN): As a transformation method that integrated with normalization 

technique, the VSN was unique in determining data-dependent transformation parameters by having built-in 

transformation98, 99. It is one of the non-linear methods aiming at keeping variances constant over entire data 

range, therefore removing heteroscedasticity. For small protein abundances, it performs linear transformation 

behavior to make variance unchanged99. It was developed for label-free relative quantification of endogenous 

peptides30. In this study, the VSN method was implemented with the justvsn function using R/Bioconductor 

vsn-package and programed with the default parameter settings under R environment (version 3.5.1). 

To facilitate the reproduction of the transformation methods discussed above, their source code can be readily 

downloaded from the official website (https://idrblab.org/anplea/) of the newly developed online tool. 

3. Detailed Descriptions of Eighteen Pretreatment Methods Applied in This Study 

3.1 Two Centering Methods 

Mean centering (MEC): Converting all the concentrations to fluctuations around zero instead of around the 

mean of the protein intensities. Hereby, it adjusts for differences in the offset between high and low abundant 

proteins. It is therefore used to focus on the fluctuating part of the data, and leaves only the relevant variation 

(being the variation between the samples) for analysis100. MEC has been applied for the improvement of the 

sensitivity of significance tests in spectral counting-based comparative discovery proteomics22. In this study, 

the algorithm of MEC was programed by integrating the basic mean function (mean value) in the R-statistical 

programming and implemented under the R environment (version 3.5.1). 

Median centering (MDC): Converting all the concentrations to the fluctuations around zero instead of around 

the median of the protein intensities. Hereby, it adjusts for differences in the offset between proteins of high 

and low abundances. It is thus applied to focus on the fluctuating part of the data, and leaves only the relevant 

variation (being the variation between samples) for analysis100. MDC facilitates the normalization procedures 

in LC-MS proteomics experiments through dataset dependent ranking of normalization scaling factors23. In 

this study, the algorithm of MDC was programed by integrating the basic median function (median value) in 

the R-statistical programming and implemented under the R environment (version 3.5.1). 

To facilitate the reproduction of the centering methods discussed above, their source code can be downloaded 

from the official website (https://idrblab.org/anplea/) of the newly developed online tool. 

3.2 Four Scaling Methods 

Auto Scaling (Unit Variance Scaling, ATO): One of the simplest methods for adjusting proteomics variances, 

scaling protein intensities based on the standard deviation of proteomic data99. It scales all protein intensities 

to unit variance, and all intensities are equally important and comparably scaled101. All data is analyzed based 

https://idrblab.org/anplea/
https://idrblab.org/anplea/
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on correlations and standard deviation of all intensities99. It has been used to identify proteomic markers for 

psoriasis and psoriasis arthritis24 and normalize LC-MS proteomics based on scan-level data102. In this study, 

the algorithm of ATO was programed by integrating basic sd function (standard deviation) in the R-statistical 

programming and implemented under the R environment (version 3.5.1). 

Pareto Scaling (PAR): Using square root of the standard deviation of the data as scaling factor99, this method 

is able to reduce the weight of large fold changes in protein intensities, which is more significant than ATO99. 

The dominant weight of extremely large fold changes may still be unchanged99. Therefore, the disadvantage 

of PAR is the sensitivity to large fold changes100. The PAR was applied to normalize LC-MS proteomics data 

using scan-level information in the Gaussian process regression model102. In this study, the algorithm of PAR 

was programed by integrating two basic functions sd and sqrt (standard deviation and square root) in the R-

statistical programming and implemented under the R environment (version 3.5.1). 

Vast Scaling (VAS): An acronym of variable ability scaling and an extension of autoscaling that focuses on 

stable variables and uses standard deviation and the so-called coefficient of variation (cv) as scaling factors100. 

It was applied for investigating the feasibility of OMICs for immediate analysis of resection margins during 

breast cancer surgery103. In this study, the algorithm of VAS was programed by integrating two basic functions 

var and mean (variance and mean value) in R-statistical program and implemented under R environment. 

Range Scaling (RAN): The measured intensity was divided by the range of the intensities over all samples104. 

Biological range is the difference between the minimal and maximal abundances reached by a certain protein 

in a set of experiments and RAN uses it as a scaling factor100. RAN was applied to a fuzzy C-means clustering 

for the chromatographic fingerprint analysis105. In this study, RAN’s algorithm was programed by integrating 

two basic functions max and min (maximum value and minimum value) in the R-statistical programming and 

implemented under the R environment (version 3.5.1). 

To facilitate the reproduction of the scaling methods shown above, the source code can be downloaded from 

the official website (https://idrblab.org/anplea/) of the newly developed online tool. 

3.3 Twelve Normalization Methods 

Cyclic Loess (Cyclic Locally Weighted Regression, CYC): Originated from the combination of MA-plot and 

logging Bland-Altman plot by assuming the existence of non-linear bias99. It can estimate regression surface 

using multivariate smoothing procedure106, but is one of the most time-consuming methods107. CYC has been 

applied to the proteomic profiling in the context of common experimental designs108. In this study, the CYC 

method was implemented with the CyclicLoess function using the limma-package in R/Bioconductor, which 

was then programed with the default parameter settings under R environment (version 3.5.1). 

EigenMS (EIG): Removing the biases of unknown complexity from LC/MS-based proteomics data. It allows 

for increased sensitivity in differential analysis, and aims at preserving the original difference while removing 

https://idrblab.org/anplea/
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the bias from the data28. It preserves true differences by estimating the treatment effects with ANOVA model, 

and has been used to profile MS-based quantitative label-free proteomics109-111. In this study, the EIG method 

was implemented using its R-codes available for downloading from the Sourceforge-repositories. 

Linear Baseline (Linear Baseline Scaling, LIN): Based on the assumption of the constant linear relationship 

between each feature of a given spectrum and the baseline, it maps each spectrum to the baseline99. Baseline 

is the median of each feature across all spectra and the scaling factor is computed as the ratio of mean intensity 

of the baseline to the mean intensity of each spectrum99. The intensities of all spectra are multiplied by their 

particular scaling factors99, but this assumption of a linear correlation may be oversimplified99. In this study, 

the LIN method was programed by integrating two basic functions median and mean (median value and mean 

value) in the R-statistical programming and implemented under the R environment (version 3.5.1). 

Locally Weighted Scatterplot Smoothing (LOW): A normalization method assuming that the systematic bias 

is non-linearly dependent on the magnitude of peptide abundances112. This non-linearity potentially originates 

from the effects of the ion suppression on measured peptide abundances, or on measured peptide abundances 

approaching detector saturation or background112. This method has been applied to MS-based proteomics110. 

In this study, the LOW method was implemented with the preprocess function using the LPE-package in the 

R environment, which was then programed with the LOWESS parameter settings under R environment. 

Mean Normalization (MEA): Commonly used method to normalize data by the mean value of all signals to 

eliminate background effect113. Intensity of each protein in a given sample is adopted by the mean of intensity 

of all variables in samples97. To make the samples comparable, the mean of intensities for each experimental 

run is forced to equal to one another using this method114. Each sample is scaled such that the mean of protein 

abundances in a sample equals one97. This method has been applied in the profiling of urine peptidome115. In 

this study, the MEA method was implemented with the Normalise function using the metabolomics-package 

in R/Bioconductor, which was then programed with the mean parameter settings under R environment. 

Median normalization (MED): Based on assumption that the samples of a dataset are separated by a constant, 

it scales the samples so that they have the same medians116. As one of the commonly applied methods without 

the need for internal standards, it is more practical than sum normalization especially when several saturated 

abundances are associated with the factors of interests116. It has previously been used in MS-based label-free 

proteomics analysis for removing systematic biases associated with mass spectrometry112. In this study, MED 

method was implemented with the Normalise function using the metabolomics-package in R/Bioconductor, 

which was then programed with the median parameter settings under R environment. 

Median Absolute Deviation (MAD): A robust measure of how a set of univariate samples of quantitative data 

spreads out especially when data is unnormal. MAD takes the absolute deviations based on the median within 

a sample to normalize rather than directly uses median like MED31. It has been applied to improve the quality 
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control procedures of peptide-centric LC-MS proteomics data31. In this study, MAD method was programed 

by integrating two basic functions median and mad (median value and median absolute deviation) in the R-

statistical programming and implemented under the R environment (version 3.5.1). 

Probabilistic Quotient Normalization (PQN): Based on an overall estimation on the most probable dilutions, 

it transforms the proteomics spectra117. It has been reported to be significantly robust and accurate comparing 

to the integral and vector length normalizations117. PQN performs an integral normalization of each spectrum, 

calculate the quotient between test and reference spectrum, then all variables of the test spectrum are divided 

by the median quotient28. PQN has been applied in MALDI-TOF mass spectrometry knowledge discovery118. 

In this study, the median values over all samples as the reference sample (to which all the other samples were 

normalized to) were first calculated, and then PQN method was implemented with the median function in the 

R-statistical programming and implemented under the R environment. 

Quantile (Quantile Normalization, QUA): Aiming at achieving the same distributions of protein abundances 

across all samples, quantile-quantile plot in this method is used to visualize distribution similarity99. Quantile 

is motivated by the idea that the distribution of two data vectors is the same if quantile-quantile plot is straight 

diagonal line116. QUA has been adopted for removing systematic bias associated with mass spectrometry and 

label-free proteomics112. In this study, QUA method was implemented with the normalize.quantiles function 

using the affy-package in R/Bioconductor, which was then programed with default parameter settings under 

R environment (version 3.5.1). 

Robust Linear Regression (RLR): One robust measure is used for transference when you want to rescale one 

reference interval to another scale and it is robust against outliers in the data than linear regression using least 

squares estimation28, 36. In this study, the median values over all the samples as the reference sample (to which 

all the other samples were normalized to) were first calculated, and then RLR method was implemented with 

the rlm function using the Normalyzer-package in the R environment, which was then programed with default 

parameter settings. 

Total Ion Current (TIC): Summing all separate ion currents carried by the ions of different m/z, it contributes 

to complete mass spectrum or in specified m/z range of mass spectrum. The sum of all peak areas of peptides 

unique to a particular organism is called pTIC (proteome total ion current)119. This method has been used in 

MALDI-TOF and SELDI-TOF mass spectra proteomic profiling120. In this study, TIC method was programed 

by integrating the basic sum function (summation) in R-statistical programming and implemented under the 

R environment (version 3.5.1). 

Trimmed Mean of M Values (TMM): Estimating scale factors between samples that can be incorporated into 

current statistical methods for differential abundance analysis in proteomics, and removing the low-expressed 

proteins121. In this study, TMM method was implemented with the tmm function using the NOISeq-package 
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in R/Bioconductor, and was then programed with the default parameter settings under R environment. 

To facilitate the reproduction of the normalization methods discussed above, their source code can be readily 

downloaded from the official website (https://idrblab.org/anplea/) of the newly developed online tool. 

4. Detailed Descriptions of Seven Missing-value Imputation Methods Applied in This Study 

Background Imputation (BAK): Simulating the situation where protein values are missing because of having 

small concentration in samples and thus cannot be detected during MS runs122. Missing values were replaced 

with the lowest detected intensity value of dataset as a representative of background122. This method has been 

applied in popular proteomic software workflows for label-free proteome quantification and imputation62. In 

this study, the missing values were first identified, and then the BAK method was programed using the basic 

min function (minimum value) in the R-statistical programming and implemented under R environment. 

Bayesian Principal Component Imputation (BPCA): Reported as out-performing KNN and SVD122. One of 

its features allowing it better performance than these two is its capacity to auto-select the parameters used in 

the estimation122. BPCA produces improved estimation when the sample size is huge122 and is applied to treat 

missing values for multivariate statistical analysis of gel-based proteomics data39. In this study, BPCA method 

was implemented with the pca function using the pcaMethods-package in R/Bioconductor, which was then 

programed with the parameter settings of bpca method and nPcs equaling to 3 under R environment. 

Censored Imputation (CEN): Considered as being ‘missing completely at random’, no value is imputed for 

it if only single NA for a protein in a sample group was found62. If a protein contained more than one missing 

value in one sample group (consisting of technical replicates), they are considered missing due to being below 

detection capacity, and the lowest intensity value in the data set is imputed for them62. CEN has been used to 

improve detection of the differentially abundant proteins40. In this study, missing values were first identified 

and assessed. When the value of a particular protein is missing in multiple (>1) samples within single sample 

group, the CEN method was programed and applied using the basic min function (minimum value) in the R-

statistical programming and implemented under R environment. 

K-nearest Neighbor Imputation (KNN): Aiming at identifying K proteins similar to the one of missing value, 

where the similarity is estimated by Euclidean distance measure, and the missing values are imputed with the 

values of weighted average from the neighboring proteins122. KNN tends to select proteins with an expression 

profile similar to the proteins of interest, and it outperforms BPCA and LLS in relatively small size datasets122. 

This method has been used in integrative analyses of multi-omics data41. In this study, the KNN method was 

implemented with the impute.knn function using the impute-package in R/Bioconductor, and then programed 

with the parameter settings of k value equaling to 10 under R environment. 

Local Least Squares Imputation (LLS): This technique exploits the local similarity structures in the data, as 

well as the least squares optimization process122. It represents a protein of missing value as linear combination 

https://idrblab.org/anplea/
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of similar proteins123. Similar proteins are chosen by K-nearest neighbors that have large absolute values of 

Pearson correlation. As a nonparametric missing value estimation method, LLS was designed by introducing 

an automatic K-value estimator123, and it is used in missing value imputation for proteomics data or any data 

that can be represented as matrix (e.g. NGS or microarray data)42. In this study, LLS method was implemented 

with the llsImpute function using the pcaMethods-package in R/Bioconductor, and then programed with the 

k value equaling to 10 together with the default parameter settings under R environment. 

Singular Value Decomposition (SVD): Known as Karhunen-Loève expansion in the pattern recognition and 

as principal-component analyses in statistics124, it is a linear transformation of protein abundance data124. In 

contrast to KNN imputation, SVD attempts to utilize global information in the entire matrix to predict missing 

values125. Its basic concept is to find the dominant component to summarize the entire matrix and then predict 

missing values in target protein by regressing against dominant components125. This method has been applied 

to enable greater accuracy and precision in quantitative comparison of the protein abundances29. In this study, 

the SVD method was implemented with the pca function using the pcaMethods-package in R/Bioconductor, 

and then programed with the parameter settings of svdImpute method under R environment. 

Zero Imputation (ZER): Deemed to the simplest imputation by replacing the missing values with zeros. This 

zero replacement method does not utilize any information about the data125. The integrity and usefulness of 

the data can be jeopardized by zero imputation since erroneous relationship among proteins can be artificially 

created125. ZER has been used in the analysis of quantitative proteomic experiment that use isobaric tagging43. 

In this study, the ZER method was programed in the R-statistical programming and implemented under the 

R environment (version 3.5.1). 

To facilitate the reproduction of missing value imputation methods discussed above, their source code can be 

readily downloaded from the official website (https://idrblab.org/anplea/) of the newly developed online tool. 

5. Detailed Descriptions of Criteria for Performance Evaluation Applied in This Work. 

In total, 5 well-established criteria for a comprehensive evaluation on the performance of LFQs are provided, 

and each criterion is either quantitatively or qualitatively assessed by various metrics. 

5.1. Precision Measuring the Reduction in Proteome Variation among Replicates 

Different modes of acquisition, various kinds of software for pre-processing raw proteomics data, and diverse 

methods for data manipulation (such as transformation, pretreatment and value imputation) profoundly affect 

the precision of LFQ, which could be assessed by the pooled median absolute deviation (PMAD) of reported 

protein intensities among replicates28. In particular, the metric PMAD is designed to reflect LFQ’s ability to 

reduce variations among replicates, and thus to enhance the technical reproducibility126. The lower value of 

PMAD denotes more thorough removal of experimentally induced noise and indicates better precision. 

https://idrblab.org/anplea/
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5.2. Classification Ability of Proteome Quantification between Distinct Sample Groups 

An appropriate LFQ is expected to retain or even enlarge the difference in proteomic data between distinct 

sample groups127. A heatmap hierarchically clustering samples based on their protein intensities is therefore 

frequently used as effective metric to assess LFQ’s classification ability127. Firstly, the total number of protein 

intensities in each sample is reduced using feature selection (first, the differential significance of each protein 

between distinct sample groups measured by adjusted p-value was calculated by ROTS package; second, the 

significant features (adjusted p-value <0.05) were selected for subsequent heatmap analyses). Then, proteins 

(rows) and samples (columns) are clustered based on their similarities in protein intensities. Detail procedure 

for assessing LFQ’s classification ability can be found in the publication by Griffin NM, et al127. 

5.3. Differential Abundance Analysis in Proteomics Based on Reproducibility-optimization 

To avoid overfitting/confounding, the distribution of p-values of protein intensities between distinct sample 

groups is explored128. Ideally, a uniform distribution for the bulk of non-differential proteins is expected with 

a peak in the [0.00, 0.05] interval corresponding to proteins with differential intensities128. In proteomics (and 

other OMICs) studies that explore the mechanism underlining complex biological process, a limited number 

of proteins of differential abundance may resulted in false discovery129. Thus, the differential significance of 

protein intensities between distinct sample groups measured by p-values is first calculated by reproducibility-

optimized test statistic (ROTS) package130. A skewed distribution of p-values may indicate overfitting and/or 

confounding110. 

5.4. Robustness among Different Sets of Protein Biomarkers Identified from Different Datasets 

Consistency score is a popular criterion used to represent the robustness of protein marker identification131, 

which is calculated to quantitatively measure the overlap of identified biomarkers among different partitions 

of a given dataset132. A higher consistency score represents the more robust results in marker identification131. 

Thus, the random sampling is first preformed within the quantified dataset to produce multiple sub-datasets. 

Then, each protein is ranked according to its significance measured by the q-value and absolute fold changes. 

Third, the top-ranked proteins in each sub-dataset are selected as biomarkers. Finally, a consistency score is 

calculated based on these markers using equation132 as follow: 

𝑆 =∑∑2𝑖−2

𝑆∈𝐼𝑖

∙ 𝑛𝑆

𝐶

𝑖=2

 

where C denoted the total number of sub-datasets, Ii indicated a set of significant biomarkers containing the 

intersections of any i sub-datasets, and nS referred to the number of markers in the intersection S. 

5.5. Accuracy Assessing the Deviation of Spiked Proteins from Their Expected Abundance Ratio 

Additional experimental data (e.g. spiked proteins) are frequently generated and used as references to validate 
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or adjust the performance of LFQ61, 133, and expected log fold changes (logFCs) are known both for the spiked 

and background proteins (the expected LogFC for background proteins equals to zero)62. Herein, the logFCs 

of protein intensities (for both the spiked and background proteins) between distinct sample groups were first 

calculated, and the level of correspondence between the quantification and expected logFCs is then assessed 

using the mean squared error (MSE). The performance of LFQ can be reflected by how well the quantification 

logFCs corresponded to what are expected based on the references62. The preferred median values would be 

zero with minimized deviations. 
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