### **Electronic Supporting Information for:**

# Unnatural spirocyclic oxindole alkaloids biosynthesis in Uncaria guianensis

Adriana A. Lopes<sup>1\*</sup>, Bianca Chioca<sup>1†</sup>, Bruno Musquiari<sup>1†</sup>, Eduardo J. Crevelin<sup>2</sup>, Suzelei de C. França<sup>1</sup>, Maria Fatima das G. Fernandes da Silva<sup>3</sup> and Ana Maria S. Pereira<sup>1</sup>

<sup>1</sup>Unidade de Biotecnologia, Universidade de Ribeirão Preto (UNAERP), Av. Costábile Romano, 2201, 14096-900, Ribeirão Preto, SP, Brazil.

<sup>2</sup>Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (USP), Av. do Café s/n 14040-900, Ribeirão Preto, SP, Brazil.

<sup>3</sup>Centro de Ciências Exatas e de Tecnologia, Departamento de Química, Universidade Federal de São Carlos (UFSCar), Rod. Washington Luis s/n, 13565-905, São Carlos, SP, Brazil.

Correspondence and requests for materials should be addressed to A.A.L. (\*e-mail: alopes@unaerp.br)

#### natural oxindole alkaloids



**Figure S1.** Chromatogram of methanolic extract from aerial parts of *U. guianensis* using HPLC conditions described in methods section.



**Figure S2.** Chromatogram of control extract (A) and extracts obtained after supplementation with **a**-5-methyl-tryptamine (B) and **b**-7-methyl-tryptamine (C), an asterisk is used to represent unnatural oxindole alkaloids biosynthesis.



**Figure S3.** Chromatogram of control extract (A) and extracts obtained after supplementation with **c**-6-fluoro-tryptamine (B), the unnatural oxindole alkaloids co-eluted with natural oxindole alkaloids (**1-4**).



Figure S4. ESI-QTOF-MS/MS of natural oxindole alkaloids (1-4).



**Figure S5**. ESI-QTOF-MS/MS of methylated oxindole alkaloids produced by *U. guianensis* plantlets.

![](_page_4_Figure_0.jpeg)

**Figure S6.** ESI-QTOF-MS/MS of fluorated oxindole alkaloids produced by *U. guianensis* plantlets.

| Compounds                                                               | Observed<br>m/z | Calculated<br>m/z | error<br>(ppm) | Molecular Formula                 |
|-------------------------------------------------------------------------|-----------------|-------------------|----------------|-----------------------------------|
| mitraphylline (1)                                                       | 369.1820        | 369.1814          | 1.6            | $[C_{21}H_{24}N_2O_4{+}H]^+$      |
| isomitraphylline ( <b>3</b> )                                           | 369.1823        | 369.1814          | 2.4            | $[C_{21}H_{24}N_2O_4{+}H]^+$      |
| rinchophylline (2)                                                      | 385.2140        | 385.2127          | 3.4            | $[C_{22}H_{23}N_2O_4{+}H]^+$      |
| isorinchophylline (4)                                                   | 385.2142        | 385.2127          | 3.9            | $[C_{22}H_{23}N_2O_4+H]^+$        |
| 5-methyl-mitraphylline/5-methyl-<br>isomitraphylline ( <b>1a/3a</b> )   | 383.1982        | 383.1970          | 3.1            | $[C_{22}H_{26}N_2O_4{+}H]^+$      |
| 5-methyl-rinchophylline/5-methyl-<br>isorinchophylline ( <b>2a/3a</b> ) | 399.2291        | 399.2284          | 1.8            | $[C_{23}H_{30}N_2O_4{+}H]^+$      |
| 7-methyl-mitraphylline/7-methyl-<br>isomitraphylline ( <b>1b/3b</b> )   | 383.1985        | 383.1970          | 3.9            | $[C_{22}H_{26}N_2O_4{+}H]^+$      |
| 7-methyl-rinchophylline/7-methyl-<br>isorinchophylline ( <b>2b/3b</b> ) | 399.2295        | 399.2284          | 2.8            | $[C_{23}H_{30}N_2O_4{+}H]^+$      |
| 6-fluor-mitraphylline (1c)                                              | 387.1734        | 387.1720          | 3.6            | $[C_{21}H_{23}FN_{2}O_{4}+H]^{+}$ |
| 6-fluor-isomitraphylline ( <b>3c</b> )                                  | 387.1730        | 387.1720          | 2.6            | $[C_{21}H_{23}FN_2O_4+H]^+$       |
| 6-fluor-rinchophylline (2c)                                             | 403.2025        | 403.2033          | -2.0           | $[C_{22}H_{27}FN_2O_4+H]^+$       |
| 6-fluor-isorinchophylline ( <b>4c</b> )                                 | 403.2023        | 403.2033          | -2.5           | $[C_{22}H_{27}FN_2O_4+H]^+$       |

## Table S1. ESI-QTof-MS data of compounds.

![](_page_6_Figure_0.jpeg)

Figure S9. <sup>1</sup>H-NMR spectrum (expanded view) of 1 (600 MHz, DMSO-d<sub>6</sub>).

![](_page_7_Figure_0.jpeg)

Figure S10. HSQC spectrum of 1 in DMSO-d<sub>6</sub> (600 MHz).

![](_page_7_Figure_2.jpeg)

Figure S11. HMBC spectrum of 1 in DMSO-d<sub>6</sub> (600 MHz).

![](_page_7_Figure_4.jpeg)

Figure S12. <sup>1</sup>H-NMR spectrum of 2 (600 MHz, DMSO-d<sub>6</sub>).

![](_page_8_Figure_0.jpeg)

Figure S13. <sup>1</sup>H-NMR spectrum (expanded view) of 2 (600 MHz, DMSO-d<sub>6</sub>).

![](_page_8_Figure_2.jpeg)

Figure S14. <sup>1</sup>H-NMR spectrum (expanded view) of 2 (600 MHz, DMSO-d<sub>6</sub>).

![](_page_8_Figure_4.jpeg)

Figure S15. HSQC spectrum of 2 in DMSO-d<sub>6</sub> (600 MHz).

![](_page_9_Figure_0.jpeg)

Figure S16. HMBC spectrum of 2 in DMSO-d<sub>6</sub> (600 MHz).

![](_page_9_Figure_2.jpeg)

Figure S17. <sup>1</sup>H-NMR spectrum of 3 (600 MHz, DMSO-d<sub>6</sub>).

![](_page_9_Figure_4.jpeg)

Figure S18. <sup>1</sup>H-NMR spectrum (expanded view) of 3 (600 MHz, DMSO-d<sub>6</sub>).

![](_page_10_Figure_0.jpeg)

Figure S19. <sup>1</sup>H-NMR spectrum (expanded view) of 3 (600 MHz, DMSO-d<sub>6</sub>).

![](_page_10_Figure_2.jpeg)

Figure S20. HSQC spectrum of 3 in DMSO-d<sub>6</sub> (600 MHz).

![](_page_10_Figure_4.jpeg)

Figure S21. HMBC spectrum of 3 in DMSO-d<sub>6</sub> (600 MHz).

![](_page_11_Figure_0.jpeg)

Figure S22. <sup>1</sup>H-NMR spectrum of 4 (600 MHz, DMSO-d<sub>6</sub>).

![](_page_11_Figure_2.jpeg)

Figure S23. <sup>1</sup>H-NMR spectrum (expanded view) of 4 (600 MHz, DMSO-d<sub>6</sub>).

![](_page_11_Figure_4.jpeg)

Figure S24. <sup>1</sup>H-NMR spectrum (expanded view) of 4 (600 MHz, DMSO-d<sub>6</sub>).

![](_page_12_Figure_0.jpeg)

Figure S25. HSQC spectrum of 4 in DMSO-d<sub>6</sub> (600 MHz).

![](_page_12_Figure_2.jpeg)

Figure S26. HMBC spectrum of 4 in DMSO-d<sub>6</sub> (600 MHz).

![](_page_13_Figure_0.jpeg)

Figure S27. <sup>1</sup>H-NMR spectrum of **3b** (600 MHz, DMSO-d<sub>6</sub>).

![](_page_13_Figure_2.jpeg)

Figure S28. <sup>1</sup>H-NMR spectrum (expanded view) of 3b (600 MHz, DMSO-d<sub>6</sub>).

![](_page_13_Figure_4.jpeg)

Figure S29. <sup>1</sup>H-NMR spectrum (expanded view) of 3b (600 MHz, DMSO-d<sub>6</sub>).

![](_page_14_Figure_0.jpeg)

Figure S30. HSQC spectrum of 3b in DMSO-d<sub>6</sub> (600 MHz).

![](_page_14_Figure_2.jpeg)

Figure S31. HMBC spectrum of 3b in DMSO-d<sub>6</sub> (600 MHz).

![](_page_14_Figure_4.jpeg)

Figure S32. <sup>1</sup>H-NMR spectrum of 3c (600 MHz, DMSO-d<sub>6</sub>).

![](_page_15_Figure_0.jpeg)

Figure S33. <sup>1</sup>H-NMR spectrum (expanded view) of 3c (600 MHz, DMSO-d<sub>6</sub>).

![](_page_15_Figure_2.jpeg)

Figure S34. <sup>1</sup>H-NMR spectrum (expanded view) of 3c (600 MHz, DMSO-d<sub>6</sub>).

![](_page_15_Figure_4.jpeg)

Figure S35. HSQC spectrum of 3c in DMSO-d<sub>6</sub> (600 MHz).

![](_page_16_Figure_0.jpeg)

Figure S36. HMBC spectrum of 3c in DMSO-d<sub>6</sub> (600 MHz).

|                   | 31                                                       |                        | 3b                    |        | 3c                     |        |  |  |  |
|-------------------|----------------------------------------------------------|------------------------|-----------------------|--------|------------------------|--------|--|--|--|
|                   | RMN de <sup>1</sup> H                                    | RMN de <sup>13</sup> C | RMN de <sup>1</sup> H | gHMQC* | RMN de <sup>1</sup> H  | gHMQC* |  |  |  |
| 2                 | -                                                        | 181.6                  | -                     | по     | -                      | no     |  |  |  |
| 3                 | 2.50 m                                                   | 71.6                   | 2.41 m                | 71.8   | 2.39 m (1H)            | 71.8   |  |  |  |
| 5                 | 2.50 m; 3.19 t                                           | 53.3                   | 3.2 m (2H)            | 53.5   | no                     | по     |  |  |  |
|                   | (J=6,8 Hz)                                               |                        |                       |        |                        |        |  |  |  |
| 6                 | 2.0 m; 2.3 m                                             | 35.3                   | 2.28 m; 1.57 m        | 34.1   | 1.85 m                 | 35.3   |  |  |  |
|                   |                                                          |                        | (2H)                  |        |                        |        |  |  |  |
| 7                 | -                                                        | 56.4                   | -                     | no     | -                      | 58.0   |  |  |  |
| 8                 | -                                                        | 133.7                  | -                     | no     | -                      | 129.3  |  |  |  |
| 9                 | 7.27 d (J=7.5 Hz)                                        | 124.7                  | 7.06 d (J= 7.5        | 122.1  | 7.21 dd (J=            | 126.4  |  |  |  |
|                   |                                                          |                        | Hz; 1H)               |        | 8.4; <b>6.0</b> Hz;    |        |  |  |  |
|                   |                                                          |                        |                       |        | 1H)                    |        |  |  |  |
| 10                | 6.90 ddd (J= 7.5;                                        | 122.2                  | 6.8 t (J= 7.5 Hz;     | 122.1  | 6.72 ddd (J=           | 107.8  |  |  |  |
|                   | 7.6; 0.9 Hz)                                             |                        | 1H)                   |        | <b>10.0</b> ; 7.8; 2.4 |        |  |  |  |
|                   |                                                          |                        |                       |        | Hz; 1H)                |        |  |  |  |
| 11                | 7.09 ddd (J= 7.6;                                        | 127.4                  | 6.96 d (J= 7.5        | 129.3  | -                      | 162.6  |  |  |  |
|                   | 7.7; 1.3 Hz)                                             |                        | Hz; 1H)               |        |                        |        |  |  |  |
| 12                | 6.81 d (J= 7.7 Hz)                                       | 109.6                  | -                     | 119.0  | 6.68 dd (J=            | 97.9   |  |  |  |
|                   |                                                          |                        |                       |        | <b>9.0</b> ; 2.4 Hz;   |        |  |  |  |
|                   |                                                          |                        |                       |        | 1H)                    |        |  |  |  |
| 13                | -                                                        | 140.3                  | -                     | 140.0  | -                      | 142.0  |  |  |  |
| 14                | 0.54 q (J=11.6 Hz),                                      | 29.1                   | 0.93 m                | 19.4   | 0.36 q (J=11.6         | 29.2   |  |  |  |
|                   | 2.5 m                                                    |                        |                       |        | Hz; 1H), 2.03          |        |  |  |  |
|                   |                                                          |                        |                       |        | m                      |        |  |  |  |
| 15                | 1.80 m; 2.10 m                                           | 29.9                   | 2.07 m (1H)           | 30.7   | 2.07 m (1H)            | 30.0   |  |  |  |
| 16                | -                                                        | 107.2                  | -                     | по     | -                      | 108.0  |  |  |  |
| 17                | 7.31 d (J=1.4 Hz)                                        | 153.7                  | 7.39 d (J= 1.5        | 154.2  | 7.39 d (J= 1.8         | 154.1  |  |  |  |
|                   |                                                          |                        | Hz, 1H)               |        | Hz, 1H)                |        |  |  |  |
| 18                | 1.05 d (J=6.6 Hz)                                        | 14.8                   | 1.05 d (J= 6.6        | 15.1   | 1.05 d (J=6.6)         | 15.0   |  |  |  |
|                   |                                                          |                        | Hz, 3H)               |        | Hz, 3H)                |        |  |  |  |
| 19                | 4.30 m                                                   | 73.8                   | 4.47 m (1H)           | 74.2   | 4.46 m (1H)            | 73.8   |  |  |  |
| 20                | 1.85 m                                                   | 40.8                   | 1.71 m (1H)           | 41.08  | 1.71 m                 | 41.2   |  |  |  |
| 21                | 1.8 t (J=10.4 Hz);                                       | 54.2                   | 3.13 m; 1.8 m         | 54.4   | 3.12 dd ( <i>J</i> =   | 53.7   |  |  |  |
|                   | 3.10  dd (J=10.4;                                        |                        | (2H)                  |        | 10.0; 2.0 Hz,          |        |  |  |  |
|                   | 2.0 Hz)                                                  |                        |                       |        | 1H); 1.85 m            |        |  |  |  |
| 22                | -                                                        | 167.0                  | -                     | по     | -                      | 166.6  |  |  |  |
| 23                | 3.49 s                                                   | 50.7                   | 3.48 s                | 51.0   | 3.49 s                 | no     |  |  |  |
| 24                | -                                                        | -                      | 2.20 s (3H)           | 17.2   | -                      | -      |  |  |  |
| no-"              | non-observed"                                            |                        |                       |        |                        |        |  |  |  |
| * <sup>13</sup> C | * <sup>13</sup> C data based in gHMQC                    |                        |                       |        |                        |        |  |  |  |
| The               | The coupling constant in bold is related to <b>H-F</b> . |                        |                       |        |                        |        |  |  |  |

**Table S2.** <sup>1</sup>H and <sup>13</sup>C NMR data for isomitraphylline (3), 7-methyl-isomitraphylline (3b)and 6-fluoro-isomitraphylline (3c) (600 MHz; DMSO-d<sub>6</sub>)

![](_page_18_Figure_0.jpeg)

Figure S37. ESI-MS/MS spectra of 3, 3b and 3c obtained on an ESI-QTOF.

| Observed <i>m/z</i> <sup>a,b</sup> | Calculated <i>m/z</i> | Error<br>(ppm) | Formula of the ion                              | Assignment                                                                   |
|------------------------------------|-----------------------|----------------|-------------------------------------------------|------------------------------------------------------------------------------|
| 3                                  |                       |                |                                                 |                                                                              |
| 369.1804 (25)                      | 369.1809              | +1.4           | $C_{21}H_{25}N_2O_4^+$                          | Α                                                                            |
| 337.1542 (13)                      | 337.1547              | +1.5           | $C_{20}H_{21}N_2O_3^+$                          | <b>B</b> ( <b>A</b> –CH <sub>3</sub> OH)                                     |
| 281.0918 (10)                      | 281.0921              | +1.1           | $C_{16}H_{13}N_2O_3^+$                          | <b>C</b> ( <b>B</b> –C <sub>4</sub> H <sub>8</sub> )                         |
| 241.1329 (15)                      | 241.1335              | +2.5           | $C_{15}H_{17}N_2O^+$                            | $\mathbf{D}$ (A-C <sub>6</sub> H <sub>8</sub> O <sub>3</sub> )               |
| 187.0861 (48)                      | 187.0866              | +2.7           | $C_{11}H_{11}N_2O^+$                            | <b>E</b> ( <b>D</b> –C <sub>4</sub> H <sub>6</sub> )                         |
| 160.0753 (100)                     | 160.0757              | +2.5           | $C_{10}H_{10}NO^+$                              | F (E-HCN)                                                                    |
| 142.0646 (11)                      | 142.0651              | +3.5           | $C_{10}H_8N^+$                                  | <b>G</b> ( <b>F</b> –H <sub>2</sub> O)                                       |
| 132.0440 (13)                      | 132.0444              | +3.0           | $C_8H_6NO^+$                                    | $H (E - C_2 H_4 - HCN)$                                                      |
| 3b                                 |                       |                |                                                 |                                                                              |
| 383.1959 (26)                      | 383.1965              | +1.6           | $C_{22}H_{27}N_2O_4^+$                          | Α                                                                            |
| 351.1697 (11)                      | 351.1703              | +1.7           | $C_{21}H_{23}N_2O_3^+$                          | <b>B</b> ( <b>A</b> –CH <sub>3</sub> OH)                                     |
| 295.1070 (14)                      | 295.1077              | +2.4           | $C_{17}H_{15}N_2O_3^+$                          | <b>C</b> ( <b>B</b> –C <sub>4</sub> H <sub>8</sub> )                         |
| 255.1487 (13)                      | 255.1492              | +2.0           | $C_{16}H_{19}N_2O^+$                            | $\mathbf{D}$ ( $\mathbf{A}$ - $\mathbf{C}_{6}\mathbf{H}_{8}\mathbf{O}_{3}$ ) |
| 201.1016 (20)                      | 201.1022              | +3.0           | $C_{12}H_{13}N_2O^+$                            | <b>E</b> ( <b>D</b> –C <sub>4</sub> H <sub>6</sub> )                         |
| 174.0909 (100)                     | 174.0913              | +2.3           | $C_{11}H_{12}NO^+$                              | F (E-HCN)                                                                    |
| 156.0803 (18)                      | 156.0808              | +3.2           | $C_{11}H_{10}N^+$                               | G (F–H <sub>2</sub> O)                                                       |
| 146.0596 (20)                      | 146.0600              | +2.7           | C <sub>9</sub> H <sub>8</sub> NO <sup>+</sup>   | $H (E - C_2 H_4 - HCN)$                                                      |
| 3c                                 |                       |                |                                                 |                                                                              |
| 387.1711 (20)                      | 387.1715              | +1.0           | $C_{21}H_{24}FN_2O_4^+$                         | Α                                                                            |
| 355.1447 (13)                      | 355.1452              | +1.4           | $C_{20}H_{20}FN_2O_3^+$                         | <b>B</b> ( <b>A</b> –CH <sub>3</sub> OH)                                     |
| 299.0819 (14)                      | 299.0826              | +2.3           | $C_{16}H_{12}FN_2O_3^+$                         | <b>C</b> ( <b>B</b> –C <sub>4</sub> H <sub>8</sub> )                         |
| 259.1236 (15)                      | 259.1241              | +1.9           | $C_{15}H_{16}FN_2O^+$                           | $\mathbf{D}$ (A-C <sub>6</sub> H <sub>8</sub> O <sub>3</sub> )               |
| 205.0768 (41)                      | 205.0772              | +2.0           | $C_{11}H_{10}FN_2O^+$                           | <b>E</b> ( <b>D</b> –C <sub>4</sub> H <sub>6</sub> )                         |
| 178.0659 (100)                     | 178.0663              | +2.2           | C <sub>10</sub> H <sub>9</sub> FNO <sup>+</sup> | F (E-HCN)                                                                    |

 $\mathbf{G}(\mathbf{F}-\mathbf{H}_2\mathbf{O})$ 

 $H(E-C_2H_4-HCN)$ 

Table S3. ESI-QTOF-MS/MS data of oxindole alkaloids 3, 3b and 3c.

160.0553 (26)

150.0345 (38)

<sup>a</sup>Relative intensities are provided in parentheses. <sup>b</sup>Only ions with relative intensities higher than 5% are reported.

160.0557

150.0350

+2.5

+3.3

 $C_{10}H_7FN^+$ 

 $C_8H_5FNO^+$ 

|                           | Relative intensity of signal |       |     |     |      |
|---------------------------|------------------------------|-------|-----|-----|------|
|                           |                              |       | L   | U   | ΔC   |
| С                         | δ <sub>c</sub>               | δc*   |     |     |      |
| 2                         | 180.5                        | 180.9 | 1.5 | 1.4 | 1.18 |
| 3                         | 74.1                         | 74.6  | 1.8 | 2.3 | 0    |
| 5                         | 53.3                         | 54.3  | 2.1 | 1.9 | 1.21 |
| 6                         | 34.7                         | 35.1  | 2.8 | 1.9 | 1.62 |
| 7                         | 55.4                         | 55.5  | 2.0 | 2.6 | 0    |
| 8                         | 134.0                        | 133.3 | 0.9 | 0.9 | 0    |
| 9                         | 123.6                        | 123.0 | 2.5 | 1.3 | 2.11 |
| 10                        | 122.3                        | 122.6 | 1.1 | 1.3 | 0    |
| 11                        | 128.2                        | 128.0 | 1.7 | 1.5 | 1.24 |
| 12                        | 109.5                        | 109.5 | 1.5 | 1.8 | 0    |
| 13                        | 142.1                        | 140.6 | 1.3 | 0.6 | 2.38 |
| 14                        | 28.4                         | 28.3  | 2.1 | 1.6 | 1.44 |
| 15                        | 30.1                         | 30.4  | 1.6 | 2.4 | 0    |
| 16                        | 106.9                        | 106.9 | 1.0 | 1.6 | 0    |
| 17                        | 154.2                        | 154.0 | 2.1 | 1.6 | 1.44 |
| 18                        | 15.1                         | 14.8  | 5.1 | 3.4 | 1.65 |
| 19                        | 73.8                         | 73.8  | 1.9 | 2.4 | 0    |
| 20                        | 40.6                         | 40.5  | 1.7 | 2.1 | 0    |
| 21                        | 53.8                         | 54.3  | 2.0 | 1.7 | 1.30 |
| 22                        | 166.7                        | 167.1 | 1.5 | 1.9 | 0    |
| 23-OCH3                   | 51.1                         | 50.7  | 5.3 | 3.3 | 1.77 |
| * literature <sup>1</sup> |                              |       |     |     |      |

**Table S4.** <sup>13</sup>C NMR data of mitraphylline (1) isolated from *U. guianensis* shoots after incorporation of  $1-^{13}$ C-D-glucose into cultures (DMSO-d<sub>6</sub>).

U: control experiments with unlabeled precursor; L: labeling experiment with <sup>13</sup>C precursor;  $\Delta C= 1.1\% \text{ x L/U}$ : increase in the relative intensity (significant increases in bold for enriched carbons).

|                     |                |       | Relative intensity of signal |     |      |
|---------------------|----------------|-------|------------------------------|-----|------|
|                     |                |       | L                            | U   | ΔC   |
| С                   | δ              | δ.*   |                              |     |      |
| 2                   | 179.9          | 181.6 | 1.6                          | 1.5 | 1.17 |
| 3                   | 71.1           | 71.6  | 2.1                          | 2.2 | 0    |
| 5                   | 52.7           | 53.3  | 2.2                          | 1.9 | 1.27 |
| 6                   | 34.8           | 35.3  | 3.9                          | 1.9 | 2.26 |
| 7                   | 55.7           | 56.4  | 2.4                          | 2.2 | 1.20 |
| 8                   | 133.6          | 133.7 | 0.8                          | 1.2 | 0    |
| 9                   | 124.3          | 124.7 | 2.9                          | 1.5 | 2.13 |
| 10                  | 121.5          | 122.2 | 1.4                          | 1.6 | 0    |
| 11                  | 127.6          | 127.4 | 1.9                          | 1.5 | 1.39 |
| 12                  | 109.3          | 109.6 | 1.9                          | 1.7 | 1.22 |
| 13                  | 141.5          | 140.3 | 1.7                          | 1.1 | 1.70 |
| 14                  | 28.7           | 29.1  | 2.6                          | 1.7 | 1.68 |
| 15                  | 29.4           | 29.9  | 2.0                          | 2.1 | 1.05 |
| 16                  | 106.7          | 107.2 | 1.2                          | 1.5 | 0    |
| 17                  | 153.7          | 153.7 | 2.2                          | 1.5 | 1.61 |
| 18                  | 14.7           | 14.8  | 5.7                          | 3.2 | 1.96 |
| 19                  | 73.3           | 73.8  | 2.4                          | 2.4 | 0    |
| 20                  | 40.6           | 40.8  | 2.0                          | 2.2 | 0    |
| 21                  | 53.4           | 54.2  | 2.7                          | 1.6 | 1.86 |
| 22                  | 166.1          | 167.0 | 1.5                          | 1.5 | 0    |
| 23-OCH <sub>3</sub> | 50.7           | 50.7  | 5.4                          | 3.2 | 1.86 |
| * literatur         | e <sup>1</sup> |       |                              |     |      |

**Table S5.** <sup>13</sup>C NMR data of isomitraphylline (**3**) isolated from *U. guianensis* shoots after incorporation of  $1-^{13}$ C-D-glucose into cultures (DMSO-d<sub>6</sub>).

U: control experiments with unlabeled precursor; L: labeling experiment with <sup>13</sup>C precursor;  $\Delta C= 1.1\% \text{ x L/U}$ : increase in the relative intensity (significant increases in bold for enriched carbons).

|                           |       |                  | <b>Relative intensity of signal</b> |     |      |
|---------------------------|-------|------------------|-------------------------------------|-----|------|
|                           |       |                  | L                                   | U   | ΔC   |
| С                         | δc    | δ <sub>c</sub> * |                                     |     |      |
| 2                         | 180.2 | 182,4            | 2.5                                 | 2.3 | 1.19 |
| 3                         | 72.0  | 72.2             | 1.0                                 | 1.0 | 0    |
| 5                         | 53.5  | 54.2             | 4.5                                 | 4.5 | 0    |
| 6                         | 34.7  | 36.5             | 2.0                                 | 0.9 | 2.4  |
| 7                         | 56.0  | 57.0             | 4.5                                 | 6,4 | 0    |
| 8                         | 133.8 | 134.2            | 0.9                                 | 1.1 | 0    |
| 9                         | 124.4 | 125.2            | 5.8                                 | 3.9 | 1.6  |
| 10                        | 121.4 | 122.1            | 0.7                                 | 0.7 | 0    |
| 11                        | 127.4 | 127.1            | 4.0                                 | 4.0 | 0    |
| 12                        | 109.0 | 109.6            | 3.5                                 | 4.2 | 0    |
| 13                        | 141.3 | 140.7            | 2.0                                 | 2.0 | 0    |
| 14                        | 30.0  | 30.1             | 1.1                                 | 0.5 | 2.4  |
| 15                        | 37.3  | 38.3             | 1.7                                 | 1.7 | 0    |
| 16                        | 110.8 | 113.0            | 1.0                                 | 1.1 | 0    |
| 17                        | 160.2 | 159.5            | 1.0                                 | 0.7 | 1.6  |
| 18                        | 11.0  | 11.2             | 2.2                                 | 1.5 | 1.6  |
| 19                        | 23.8  | 24.3             | 3.4                                 | 4.1 | 0    |
| 20                        | 37.3  | 38.3             | 1.7                                 | 1.7 | 0    |
| 21                        | 57.7  | 58.2             | 1.7                                 | 1.1 | 1.7  |
| 22                        | 166.6 | 168.4            | 0,3                                 | 0.3 | 0    |
| 23-OCH <sub>3</sub>       | 50.4  | 50.9             | 1.6                                 | 0.7 | 2.5  |
| 24- OCH <sub>3</sub>      | 61.3  | 61.2             | 1.7                                 | 0.7 | 2.7  |
| * literature <sup>1</sup> |       |                  |                                     |     |      |

**Table S6.** <sup>13</sup>C NMR data of isorhynchophylline (**4**) isolated from *U. guianensis* shoots after incorporation of 1-<sup>13</sup>C-D-glucose into cultures (DMSO-d<sub>6</sub>).

U: control experiments with unlabeled precursor; L: labeling experiment with <sup>13</sup>C precursor;  $\Delta C= 1.1\% \text{ x L/U}$ : increase in the relative intensity (significant increases in bold for enriched carbons).

![](_page_23_Figure_0.jpeg)

Figure S38. <sup>13</sup>C NMR (150 MHz, DMSO-d<sub>6</sub>) spectrum of **1** with natural <sup>13</sup>C-isotopic abundance.

![](_page_23_Figure_2.jpeg)

**Figure S39**. <sup>13</sup>C NMR (150 MHz, DMSO-d<sub>6</sub>) spectrum of **1** after *U. guianensis* plantlets grew on culture with 1-<sup>13</sup>C-D-glucose.

![](_page_23_Figure_4.jpeg)

**Figure S40.** <sup>13</sup>C NMR (150 MHz, DMSO-d6) spectrum of **1** after *U. guianensis* plantlets grew on culture with 2-<sup>13</sup>C-tryptophan.

![](_page_24_Figure_0.jpeg)

Figure S41. <sup>13</sup>C NMR (150 MHz, DMSO-d<sub>6</sub>) spectrum of **3** with natural <sup>13</sup>C-isotopic abundance.

![](_page_24_Figure_2.jpeg)

**Figure S42**. <sup>13</sup>C NMR (150 MHz, DMSO-d<sub>6</sub>) spectrum of **3** after *U. guianensis* plantlets grew on culture with 1-<sup>13</sup>C-D-glucose.

![](_page_24_Figure_4.jpeg)

**Figure S43.** <sup>13</sup>C NMR (150 MHz, DMSO-d6) spectrum of **3** after *U. guianensis* plantlets grew on culture with 2-<sup>13</sup>C-tryptophan.

![](_page_25_Figure_0.jpeg)

Figure S44. <sup>13</sup>C NMR (150 MHz, DMSO-d<sub>6</sub>) spectrum of 4 with natural <sup>13</sup>C-isotopic abundance.

![](_page_25_Figure_2.jpeg)

**Figure S45**. <sup>13</sup>C NMR (150 MHz, DMSO-d<sub>6</sub>) spectrum of **4** after *U. guianensis* plantlets grew on culture with 1-<sup>13</sup>C-D-glucose.

![](_page_26_Figure_0.jpeg)

**Figure S46**. Biosynthetic pathway to oxindole alkaloids scaffolds (1-4) derived from  $1^{-13}$ C-D-glucose and  $2^{-13}$ C-tryptophan.

PENTOSE PHOSPHATE PATHWAY

![](_page_27_Figure_1.jpeg)

![](_page_27_Figure_2.jpeg)

Figure S46 (continued)

VIA DOS TERPENOS (MEP)

![](_page_28_Figure_1.jpeg)

Figure S46 (continued)

#### Reference

 a) Toure, H., Babadjamian, A., Balansard, G., Faure, R., Houghtons, P. J. Complete <sup>1</sup>H and <sup>13</sup>C NMR chemical shift assignments for some pentacyclic oxindole alkaloids. *Spectrosc. Lett.*, **25**, 293-300 (1992); b) Seki, H., Takayama, H., Aimi, N., Sakal, S., Ponglux, D. A nuclear magnetic resonance study on the eleven stereoisomers of heteroyohimbine-type oxindole alkaloid. *Chem. Pharm. Bull.* **41**, 12, 2077-2086 (1993); c) Carbonezi, C. A., Hamrski, L. H., Junior, O. A. F., Furlan, M., Bolzani, V. Da S., Young, M. C. M. Determinação por RMN das configurações relativas e conformações de alcalóides oxindólicos isolados de *Uncaria guianensis*. *Quim. Nova* **27**, 6, 878-881 (2004).