

Supplemental material

Chang et al., https://doi.org/10.1083/jcb.201902061

Figure S1. **M1 Spastin promotes LD-peroxisome contact formation in U2-OS and MRC-5 cells. (A)** Association between BODIPY-665/676-labeled LDs and mEmerald-SKL-labeled peroxisomes in U-2 OS (top) and MRC-5 (bottom) cells expressing mApple-M1 Spastin in the presence of 300 μ M oleic acid treatment. Representative confocal MIP images are shown. OE, overexpression. **(B)** Fraction of LD overlapping peroxisome as described in A. Means ± SEM are shown (23–34 cells from three independent experiments). ***, P < 0.001. **(C and D)** Localization of BODIPY-665/676-labeled LDs and mEmerald-SKL-labeled peroxisomes in HeLa cells overexpressing mApple-M87 Spastin (C). Images from the inset (D). Representative confocal MIP images are shown. **(E)** Fraction of LD overlapping peroxisome in control and mApple-M87 Spastin-expressing HeLa cells. Red dashed line indicates the fraction of LD overlapping peroxisome as shown in Fig. 1 E. Means ± SEM are shown (20–25 cells from three independent experiments).

%JCB

Figure S3. **Subcellular localization of M1 Spastin synthetic constructs and mutants respective to LDs and peroxisomes. (A and B)** Localization of mApple-M1¹⁻⁹² (A) and M1¹⁻⁹²-mApple (B) and BODIPY-493/503–labeled LDs in HeLa cells in steady state (top) or following 300 μM oleic acid treatment for 16 h (bottom). Representative confocal images are shown. **(C)** mApple-M1¹⁻⁹² colocalizes with mEmerald-GPAT4^{152–208} in steady-state HeLa cells. Representative confocal images are shown. **(D)** Diagrams of FP-M1 Spastin^{Δ1-56} and FP-M1 Spastin^{HFDD}. The red dashed line indicates domain deletion. Mutated residues are labeled in red. **(E)** The association between BODIPY-665/676–labeled LDs and mEmerald-SKL–labeled peroxisomes in HeLa cells expressing mApple-M1 Spastin^{Δ1-56} or mApple-M1 Spastin^{Δ1-56} or mApple-M1 Spastin^{Δ1-56} or mApple-M1 Spastin^{Δ1-56} or mApple-M1 Spastin^(D). Representative confocal MIP images are shown. **(F)** Fraction of LD overlapping peroxisomes as described in E and in cells overexpressing mApple-M1 Spastin (red dashed line). Mean ± SEM is shown (28–34 cells from three independent experiments). **(G)** Co-localization of BODIPY-665/676–labeled LDs and mApple-M1 Spastin^{Δ1-56} or mApple-M1

Figure S4. **ABCD1 supports LD-peroxisome contact formation. (A)** Number of mCherry-SKL-labeled peroxisome in HeLa cells transfected with siCtrl or siABCD1. Means \pm SEM are shown (30–32 cells from four independent experiments). n.s., not significant. **(B)** Fraction of BODIPY-665/676-labeled LD overlapping mEmerald-SKL-labeled peroxisome in siCtrl and siABCD1-transfected HeLa cells treated with cumyl-OOH or with As³⁺ for 30 min. Means \pm SEM are shown (25–27 cells from three independent experiments). ** P < 0.01. **(C)** IP of ACBD5 in HeLa cells transfected with mApple-C1 vector (Ctrl) and mApple-M1 Spastin (M1). Protein levels of endogenous ACBD5 and overexpressed constructs assessed by Western blotting. **(D)** Quantification of relative ACBD5 levels in the IP as described in C. The value of M1 is set as 1. Means \pm SEM from five independent IP experiments are shown.

Table S1. Oligonucleotide information

Name	Sequence (5'–3')
M1 Spastin F	ATATGAATTCTCCGGGTGGAC (EcoRI)
M87 Spastin F	ATCGAATTCTATGGCAGCCAAGAGGAGCT (EcoRI)
Spastin R	ATCGGGATCCTTAAACAGTGGTATCTCCAAAGTC (BamHI)
M1 Spastin ^{M87A} F	TTCTCCCGCGCCCTCGCGGCAGCCAAGAGGAGCTCC (mutagenesis)
M1 Spastin ^{M87A} R	GCTCCTCTTGGCTGCCGCGAGGGCGCGGGAGAAGCG (mutagenesis)
FP-M1 ¹⁻⁹² F	Same as M1 Spastin F
FP-M1 ¹⁻⁹² R	ATCGGGATCCTTAGCTCCTCTGGCTGCCATG (BamHI)
M1 ¹⁻⁹² -FP F	ATCGAGATCTCACCATGAATTCTCCGGGTGGAC (BglII)
M1 ¹⁻⁹² -FP R	ATCGAAGCTTGCTCCTCTTGGCTGCCATG (HindIII)
2xFKBP F	ATCGGCTAGCACCATGGGTGCTCTCGAGGGAGTGCA (Nhel)
2xFKBP R	ATCGACCGGTAGTGCACTGCCTCCAGCTGA (Agel)
M1 Spastin ^{K388R} F	CCACCTGGGAATGGGAGGACAATGCTGGCTAAAGCAG (mutagenesis)
M1 Spastin ^{K388R} R	TTTAGCCAGCATTGTCCTCCCATTCCCAGGTGGAC (mutagenesis)
M1 Spastin ^{E442Q} F	ATAATTTTTATAGATCAAGTTGATAGCCTTTTGTGT (mutagenesis)
M1 Spastin ^{E442Q} R	AAAGGCTATCAACTTGATCTATAAAAATTATAGAAGGTTGAA (mutagenesis)
M1 Spastin ^{∆1–56} F	ATCGGAATTCTCTGTTTGTAGGCTTCGCG (EcoRI)
M1 Spastin ^{∆1–56} R	Same as Spastin R
M1 Spastin ^{HFDD} F	CGCGTCCGAGTCTTCGACAAACAGGCCGACGAGTACATCTCCATTGCCC (mutagenesis)
M1 Spastin ^{HFDD} R	AATGGAGATGTACTCGTCGGCCTGTTTGTCGAAGACTCGGACGCGCTCG (mutagenesis)
M1 ¹⁻⁹² -197–328 (PXI) F	GCAGCCAAGAGGAGCAAGATGCAACCAGTTTTGCC (In-Fusion cloning)
M1 ¹⁻⁹² -197–328 (PXI) R	TTATCTAGATCCGGTGGATCCTTACTATAAGGTTAGCAAGGTTGCT (In-Fusion cloning)
FP-197-328 (PXI) F	ATCGGAATTCTAAGATGCAACCAGTTTTGCC (EcoRI)
FP-197-328 (PXI) R	ATCGGGATCCTTACTATATAAGGTTAGCAAGGTTGCT (BamH)
GPAT4 ¹⁵²⁻²⁰⁸ F	ATCGAATTCTAACTTCCAGTACATCAGCCTT (EcoRI)
GPAT4 ¹⁵²⁻²⁰⁸ R	ATCGGGATCCTTAGAACTCCTTAAACCTCCCATT (BamHI)
IST1 F	ATCGGTCGACCTGGGCTCTGGATTTAAAG (Sall)
IST1 R	ATCGGGTACCCTATGTTTTCTTTTCAGCTCTTC (Kpnl)
CHMP1B F	ATCGGTCGACTCTAACATGGAGAAACACCTG (Sall)
CHMP1B R	ATCGGGTACCTCACACTTGATCCCGAAGG (Kpnl)
siControl F	TAATACGACTCACTATAGGGTTTGCCTTCCTGTTTTTGCT
siControl R	TAATACGACTCACTATAGGGTTGCCGGGAAGCTAGAGTAA
siSpastin F	TAATACGACTCACTATAGGGTTTAAGGCCTTGCCTTGATG
siSpastin R	TAATACGACTCACTATAGGGTTTAAGGCCTTGCCTTGATG
siABCD1 F	TAATACGACTCACTATAGGGTGGAGCCCACAAAGTCTACC
siABCD1 R	TAATACGACTCACTATAGGGGGCTTGGTCAGGTTGGAGTA
silST1 F	TAATACGACTCACTATAGGGCCAAAATCCTGGTGGAGAGA
silST1 R	TAATACGACTCACTATAGGGTCCGGGAAAGATCATCAAAG
siCHMP1B F	TAATACGACTCACTATAGGGCGGCCAAAGAACTGAGTAG
siCHMP1B R	TAATACGACTCACTATAGGGTCACACTTGATCCCGAAGG

Video 1. **Volumetric LD-peroxisome contacts driven by M1 Spastin.** Animation of 3D rendering in Fig. 1 H. Video begins by sectioning through the z axis, then repeating with the annotated LDs (red) and peroxisomes (cyan), and once more with the 3D rendering of the LD and peroxisome segmentations. The 3D renderings are rocked about the x axis. A 360° rotation with all the encompassing organelles in the volume follows (green, mitochondria; blue, ER; gray, plasma membrane; purple, endosome; orange, multivesicular body). Bounding box is 1.2 × 1.2 × 1.6 µm. Video frame rate, 25 frames per second.

Video 2. **Dynamic association between LDs and peroxisomes.** Dynamic association of LDs (magenta) and peroxisomes (green) as described in Fig. 1 I. Acquisition rate, 20 s per frame; video frame rate, 5 frames per second.

Video 3. **Stable association between LDs and peroxisomes mediated by M1 Spastin overexpression.** Stable association of LDs (magenta) and peroxisomes (green) in M1 Spastin-overexpressing HeLa cells as described in Fig. 1 I. Acquisition rate, 20 s per frame; video frame rate, 5 frames per second.

Video 4. **Dynamic association between M1¹⁻⁹² and GPAT4¹⁵⁸⁻²⁰⁸.** Dynamic association of M1¹⁻⁹² (red) and GPAT4¹⁵⁸⁻²⁰⁸ (green) as described in Fig. S3 C. Confocal images of M1¹⁻⁹² and GPAT4¹⁵⁸⁻²⁰⁸ were acquired simultaneously. Acquisition rate, 5 s per frame; video frame rate, 6 frames per second.