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Supplementary Figure 1. Additional analysis of HCA BM+CB 3K dataset. a. Joint graph default embedding, as 
shown in Figure 1b of the main manuscript. b. Expression of select marker genes. c. An alternative embedding 
of the same joint graph as shown in panel a, performed using node2vec. d. Distribution of samples within the 
graph2vis embedding. e. Adjusted rand index is shown for the three methods as a function of the 𝑝"#$ 
probability, with high probability pushing expression of each cell in the dataset closer to dataset-wide average 
expression profile. f. Fraction of single cells correctly classified in a “sensitivity to individual cells” assay (see 
Methods), where only a single cell was left in a randomly chosen cluster in a random dataset, and the ability of 
different methods to classify it correctly was measured. n=350 cells tested; Whiskers show the 95% confidence 
intervals of the binomial proportion. g. Comparison of adjusted Rand index (y axis) performance in the 
heterogeneity benchmark (see Methods, Figure 1f of the main manuscript) for different values of the 
neighborhood size k is shown. Low sensitivity to variation in k is observed. h. Comparison of different spaces 
and mappings for pairwise dataset alignments. i. A largeVis embedding of the joint graph constructed using 
nearest neighbor mapping. e,g,h: smoothed estimate of the mean is shown. Shading shows the 95% 
confidence band of the mean. n=10 random samples per point were used. 



 
 
Supplementary Figure 2. Re-analysis of Puram et al. dataset on head and neck cancer. a. Joint graph 
embedding, labeled by the annotations taken from the original publication. b. Clusters, as determined by  
conos on the joint graph. c. Mixing of samples is illustrated with different colors. d. Sample composition of 
each conos joint cluster is shown. e. t-SNE embeddings of the individual samples that were fed into to the 
conos analysis, colored and labeled according to conos joint clusters (panel b).  
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Supplementary Figure 3. Re-analysis of Guo et al. dataset on non-small cell lung cancer. a. Joint graph 
embedding, labeled by the annotations taken from the original publication. b. Clusters, as determined by 
conos on the joint graph. c. Mixing of samples is illustrated with different colors. d. Sample composition of 
each conos joint cluster is shown. e. t-SNE embeddings of the individual samples that were fed into to the 
conos analysis, colored and labeled according to conos joint clusters (panel b).  
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Supplementary Figure 4. Re-analysis of Azizi et al. dataset on breast cancer. a. Re-analysis starting with 
independent patient+tissue slices of the dataset. Joint graph embedding is shown in the left panel, labeled by 
the annotations taken from the original publication. The annotations have been simplified to collapse patient-
specific subpopulations and minor subpopulations. The central panel shows tissue distribution. The right panel 
shows conos joint clusters. b. Sample composition of each conos joint cluster is shown. c. t-SNE embeddings of 
the individual samples that were fed into to the conos analysis shown in a-b, colored and labeled according to 
conos joint clusters (right panel of a). d. Re-analysis starting with 53 independent patient+tissue+replicate 
slices of the dataset, reveals the same subpopulation structure despite large initial fragmentation of the 
dataset. 



 

 
 
Supplementary Figure 5. Re-analysis of Lambrechts et al. dataset on lung cancer. a. Joint graph embedding, 
labeled by the annotations taken from the original publication. b. Tissue distribution is shown on the joint 
graph embedding. c. Sample distribution is shown on the joint graph embedding. d-f. Similar to Figure 2c-e of 
the main manuscript, the panels show T cell subpopulations resulting from two different levels of the joint 
graph community structure (dendrogram). Lower cut results in more granular T cell subpopulations (panel d), 
however also results in clusters that show high tissue specificity (e.g. CDr_1 is composed almost entirely of 
tumor cells). At the same time a higher cut results is less granular clusters that more evenly mix tissues and 
samples. 
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Supplementary Figure 6. Re-analysis of human cortex datasets. a. Conos joint graph embedding labeled by 
dataset. The following datasets were clustered: temporal (TC), visual (VC) and frontal cortex (FC) from Lake et 
al. (2016) Science; Allen Brain Institute datasets for temporal cortex (TC) from Hodge et al. (2018) bioRxiv, for 
anterior cingulate (ACC), and visual cortex (VC). Note that single cell transcriptomics data for each cortical area 
from Allen Brain Institute source consists of three datasets each obtained from a different patient (p1, p2 and 
p3). b. Cells labeled by Conos joint clusters (multilevel.community clusters were used). c. Cell composition of 
each Conos cluster based on the cortical area, i.e. temporal, visual and anterior cingulate cortices. Note that 
due to smaller sample size of Lake et al., only cells derived from Allen Brain Institute datasets are shown. d. 
Conos clustering annotated by subtypes described for the temporal cortex data in Hodge et al. The annotation 
was propagated from the Hodge et al. temporal cortex dataset to all the other datasets. The same embedding 
is labeled based on major neuronal and non-neuronal cell types (d’) and major classes of principal (Exc) and 
GABAergic (Inh) neurons as in Hodge et al. annotation (d’’). e. Normalized fraction of cells in each subtype 
from different cortical areas. Note high diversity of layer 4 principal neurons (subtypes are labeled in red) that 
might be due to differences in cortical laminar architecture, i.e. ACC has agranular or dysgranule structure, 
while TC and VC are eulaminate. Black, grey and white bars below the graph label GABAergic neurons, 
principal neurons and non-neuronal cells. 



 
 
 
Supplementary Figure 7. Correlation of gene expression for human cortical single cell transcriptomes 
between cell clusters determined by Conos and cortical cell subtypes annotated in Hodge et al. bioRxiv 
2018. Conos clusters are labeled in red. Note generally good correlation of Conos clustering with subtypes 
clustered by Hodge et al. that allows to annotate Conos clusters, e.g. major subtypes of GABAergic 
interneurons in Conos embedding are clusters 15 (VIP-expressing), 16 and 3 (Lamp5/Pax6-expressing), 17 (PV-
expressing) and 7 (SST-expressing). Pearson linear correlation was used. 



 
 
 
Supplementary Figure 8. Interactive application for navigating community hierarchies. Several screens of the 
interactive (Shiny) application for choosing appropriate cuts in the hierarchical community structures are 
shown. a. Initial screen, allowing user to select the number of top clusters, visualize tree and joint graph 
embedding colored by the resulting clusters. b. Heatmap visualization of the interactions between samples 
and clusters. Such heatmaps allow users to pick up on separation of both clusters and samples based on their 
composition in the joint clustering analysis. c. Community hierarchy clustered by tissue composition. d. 
Individual t-SNE sample embeddings, colored by joint clusters. 
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Supplementary Figure 9. Improvement of alignment quality over protocols with edge rebalancing and 
increase of alignment strength. a. Alignment of three human pancreas islet datasets (Datasets 10 in the “Data 
sources” listing), obtained using different protocols (10x Chromium, inDrops and Smart-seq2). The distribution 
of the cells associated with different platforms in the default Conos configuration is show in the top left corner 
of panel c (Strength 0). c. Increasing alignment strength 𝛼 from 0.0 to 1.0, we obtained 6 graphs and visualized 
them using largeVis embeddings, coloring cells by the protocol. The value of the alignment strength parameter 
𝛼 is shown in the top-left corner of each plot. The parameter 𝛼 implements a trade-off between sample 
mixing and cluster resolution.  b. To validate quality of each graph we estimated normalized relative entropy 
for Leiden clustering, uniformly varying its resolution parameter to obtain 15 different clusterings, which have 
between 1 and 100 clusters each. The same procedure was repeated with and without edge weight 
rebalancing on each graph, which is designed to further improve inter-platform alignment. The results are 
shown in panel c., where x-axis corresponds to number of clusters, y-axis represents entropy, colors show 
alignment strength and the line/marker style distinguishes results with and without edge weight balancing. 
While higher resolution clustering will always yield lower entropy, increasing the alignment strength 
parameter 𝛼  at a given cluster resolution improves mixing of the cells from different platforms. Moreover, for 
the same alignment level, edge balancing leads to significant increase in entropy. 

a. b.

c.



 
 
Supplementary Figure 10. Estimation of common expression space by diffusion on a joint graph. The top 
panels show t-SNE embeddings of the HCA BM+CB 3k dataset after “correction” of the expression values 
through graph diffusion – a process that estimates “common” or “corrected” expression coordinates for all of 
the datasets. The left top plot shows major subpopulations (as in Figure 1b of the main manuscript), and the 
right panel shows distribution of the different datasets. The bottom row shows equivalent embeddings 
obtained by simply joining molecular count matrices of the different datasets without any additional 
corrections. Such processing leaves pronounced patient/batch effect. 
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Supplementary Figure 11. Published annotation of Tabula Muris dataset and joint clustering results. a. 
Published annotations are shown as labels and colors on the joint graph embedding of CPCA space analysis 
combining 48 separate datasets covering different mouse tissues is shown (100,605 cells). Platform 
distribution (red – 10x; blue – Smart-seq2) is shown in the top left inset. Distribution of individual samples is 
shown in the top right inset. b-d. Comparison of the joint clusters with the published annotation is shown for 
three tissues that were measured with both platforms. Joint clustering shows consistency between tissues and 
platforms, with some clusters giving higher resolution (e.g. separation of blood or mesenchymal populations 
in trachea samples), and others joining related cell types across tissues (e.g. fibroblast and part of the 
mesenchymal population are joined under cluster 4 in l-n). e. Details of the correspondence between Conos 
joint clusters (rows) and Tabula Muris annotation (columns). The size of the circle shows the number of cells, 
with shading indicating the Jaccard coefficient.  
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Supplementary Figure 12. Tabula Muris joint analysis using gene space. a. Published annotations are shown 
as labels and colors on the embedding of a joint graph determined using gene space analysis. b. Joint clusters 
determined by Conos. c. Distribution of platforms (red- 10x; blue- Smart-seq2). d. Distribution of individual 
samples. e. Correspondence of Conos joint clusters to published annotations.  



 
 
Supplementary Figure 13. Embedding of Tabula Muris joint graph (CPCA space) using graph2vec. Distribution 
of platforms is shown in the top-left inset (red-10x, blue-Smart-seq2). Distribution of individual samples is 
shown in the top-right inet. 

alveolar macrophage

astrocyteB cell

basal cell

basal cell of epidermis

basophil

Bergmann glial cell

bladder cell

bladder urothelial cell

blood cell

brain pericyte

Brush cell of epithelium proper of large intestine

cardiac muscle cell

ciliated columnar cell of tracheobronchial tree

classical monocyte

common lymphoid progenitor

dendritic cell

DN1 thymic pro−T cellduct epithelial cell

early pro−B cell

endocardial cell

endothelial cell

endothelial cell of hepatic sinusoid

enterocyte of epithelium of large intestine

enteroendocrine cell epidermal cell

epithelial cell

epithelial cell of large intestine
epithelial cell of lung

epithelial cell of proximal tubule

erythroblast

erythrocyte

fibroblast

Fraction A pre−pro B cell

granulocyte
granulocyte monocyte progenitor cell

granulocytopoietic cell

hematopoietic precursor cell

hepatocyte

immature B cell

immature natural killer cell

immature NK T cell

immature T cell

keratinocyte

keratinocyte stem cell

kidney capillary endothelial cell

kidney cell

kidney collecting duct epithelial cell

kidney loop of Henle ascending limb epithelial cell

kidney proximal straight tubule epithelial cell

Kupffer cell

Langerhans cell

large intestine goblet cell

late pro−B cell

leukocyte

luminal epithelial cell of mammary gland

lung endothelial cell

lymphocyte

macrophage

mast cell

mature natural killer cell

megakaryocyte−erythroid progenitor cell

mesangial cell

mesenchymal cell

mesenchymal stem cell

mesenchymal stem cell of adipose

microglial cell

monocyte

myeloid cell

myofibroblast cell

naive B cell

natural killer cell

neuroendocrine cell

neuron

non−classical monocyte

oligodendrocyte

oligodendrocyte precursor cell

pancreatic A cell
pancreatic acinar cell

pancreatic D cell

pancreatic ductal cell

pancreatic PP cell

pancreatic stellate cell

pre−natural killer cell

precursor B cell

proerythroblast

professional antigen presenting cell

promonocyte

regulatory T cell

skeletal muscle satellite cell

skeletal muscle satellite stem cell

Slamf1−negative multipotent progenitor cell

Slamf1−positive multipotent progenitor cell

smooth muscle cell

stem cell of epidermis

stromal cell

T cell

type B pancreatic cell

type II pneumocyte



 
 
Supplementary Figure 14. Published annotation of two mouse atlases on a joint graph embedding. The analysis combined Tabula Muris and Han 
et al. mouse atlases, joining a total of 173 datasets (>400k+ cells) measured using one of three different platforms. The joint embedding plots show 
annotations from Tabula Muris (a.) and Han et al. (b.), in each case showing only the subset of cells in the joint embedding from one of the atlases. 
The top left inset shows overview of complete joint embedding (all 174 datasets), and right inset shows distribution of the platforms within the 
joint embedding.  
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Supplementary Figure 15. Correspondence of published annotations and Conos clusters across mouse atlases. Individual samples from there 
different tissues (a-c) contained in the Tabula Muris (Smart-seq2 and 10x Chromium rows) and Han et al (Mcirowell row) are shown, together with 
Conos clusters called on the joint graph combining the two atlases. Joint clustering shows consistency between tissues and platforms.  
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Supplementary Figure 16. Agreement of Conos clustering with the published Tabula Muris annotations. The agreement is illustrated using dot 
plots, with the size of the dot corresponding to the number of cells intersecting between a given cluster and a published annotation category, and 
the color specifying Jaccard coefficient.  
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Supplementary Figure 17. Agreement of Conos clustering with the published Han et al. annotations. The agreement is illustrated using dot 
plots, with the size of the dot corresponding to the number of cells intersecting between a given cluster and a published annotation category, 
and the color specifying Jaccard coefficient.  
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Supplementary Figure 18. Published annotation of two mouse atlases on an embedding of a joint graph optimized using decoy cell alignment. 
Similar to the Supp. Fig. 15, the panels show annotation of the joint graph combining Tabula Muris and Han et al. mouse atlases (173 datasets 
>400k cells), using the annotation from the original publications of Tabula Muris (a.) and Han et al. (b.) The top left inset shows overview of 
complete joint embedding (all 174 datasets), and right inset shows distribution of the platforms within the joint embedding (green: Smart-seq2, 
blue: microwell, red: 10x Chromium). The bottom right insert shows the schematic logic of the decoy cell refinement: based on the initial low-
resolution clustering of a joint graph, Conos identifies major subpopulations that are missing from different samples (in the case, Sample B was 
missing a blue subpopulation). Conos then reruns pairwise sample comparisons, adding blue decoy cells into Sample B when comparing it with 
samples that have blue subpopulations in them (like Sample A). The edges mapping to the decoy cells are then discarded, giving cleaner graph.  
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Supplementary Figure 19. Runtime and memory performance. a. The plots show average runtimes for the 
cell subsampling benchmark (16 HCA BM+CB datasets were downsampled from 3k cells each to lower 
numbers of cells; n=10 downsampling rounds were performed for each point). The CPCA performance stays 
constant, as the runtime complexity of the CPCA fit depends critically on the number of samples, not on the 
number of cells. b. Runtime complexity of combining increasing number of datasets, each containing 1k cells. 
c,d. Memory usage under the scenarios shown in panels a. and b. Note: the benchmarking scripts did not 
estimate embeddings, which would lead to additional CPU and memory load. The shading shows the 95% 
confidence region of the mean. 
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Supplementary Note 1. Clustering Stability Under Perturbations 
 
Systematic difference in the output of clustering algorithms 
Clustering serves as a convenient grouping of cells, facilitating further interpretation and 
navigation of the datasets. It is important to point out that just like in most other contexts, 
clustering of cells is an approximation, and does not have a unique solution. Consider clustering 
of the HCA BM+CB dataset using two different community detection (graph clustering) methods 
(Figure 1).  
 

 
 
 
Figure 1. Variation of clustering 
granularity. The four panels show clustering 
of the integrated HCA BM+CB dataset using 
two different clustering methods (Leiden and 
walktrap community detection algorithms) 
each with two different parameter settings 
(varying “resolution” parameter for Leiden 
clustering, “steps” for walktrap). The 
resulting clusters can split and merge different 
subpopulations and systematically vary in 
their characteristic size. Algorithmically, 
there is no clear single “correct” resolution. 

 
 
 
Both algorithms are designed around 

heuristic optimization of certain network features. While one algorithm returns more fine-
grained clusters than others, it is usually impossible to claim that one of them is better without 
bringing in additional biological knowledge.  
 
The relationships between the cells can be usually approximated better using hierarchical 
clustering. For instance, one may separate a cluster of T lymphocyte, and then within it CD8+ 
naïve or cytotoxic T cells. Or CD4+ Treg and Th subpopulations, etc. The coarse clusters (such as 
a cluster combining all T lymphocytes) represents a real and, likely, stable grouping of cells. 
However, as one considers more fine-grained groupings (small clusters), at some point the 
ability to resolve different subpopulations will approach the noise of the observations, and the 
clusters will become unstable. Here we discuss various measures for assessing cluster stability 
under a simple subsampling perturbation (i.e. rerunning clustering on just 95% of cells).  
Stability of simple partition clustering.  
We first consider the simplest case, when clustering returns only a flat partition of cells into a 
set of non-overlapping clusters. Evaluation of agreement between the original clustering result 
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and a result on a subsampled dataset (95% of cells) can be performed using standard measures, 
such as the adjusted Rand index (aRI). One can also assess cluster-specific stability measures, 
such as Jaccard coefficient of the optimally matching cluster (JC)[Hennig, 2007 #90]. The plot 
below shows both cluster-specific JC and combined aRI for the HCA BM+CB dataset, for the 
partition determinized by the Leiden clustering algorithm, based on 100 such randomized 
subsampling runs. 
 

 
Figure 2. Stability measures on flat partition clustering. Given a simple flat partition of cells into 
clusters, the stability is assessed by repeating the clustering procedure on the subset of cells (95% of cells) 
and calculating standard agreement coefficients: a. adjusted Rand index, b. Jaccard coefficient, calculated 
for each cluster relative to the best-matching cluster in the subsampled partition. Results of 100 
randomized subsampling rounds are visualized using boxplots. Panels a,b show the results for the Leiden 
community detection algorithm, and panels c,d for the walktrap community detection method. In this plot 
and all others, the boxplot center shows median, upper/lower box lines mark top 75% (Q3) and bottom 
25% (Q1) levels; Whiskers extend from max(min(x),Q1-1.5 IRQ) to min(max(x),Q3+1.5 IQR, where 
IRQ is the inter-quartile range. The notch shows 95% confidence interval of the median. 

The example above shows good overall stability (aRI), however cluster-specific stability of 
cluster 2 in panel d. (and some others) are low. This can be due to several reasons: 

1. Cluster 2 is a noise artifact and groups random cells that don’t have a tendency to form 
a separate cluster. 

2. Cluster 2 represent a smaller grouping of cells that’s not typically distinguished at this 
level of resolution, but may a stable feature if the resolution of clustering is increased. 

To distinguish between the two, one must scan through a range of resolutions. A good way of 
doing this is to consider hierarchical clustering methods. 
 
Stability of a partitioning cut in hierarchical clustering. 
Hierarchical community detection algorithms, like walktrap, report the entire hierarchy, where 
the leaves of the dendrogram correspond to the individual cells. The optimal cut is then 
determined based on some criteria (modularity optimization, in the case of walktrap), resulting 
in a flat partition assignment of cells. Given the set of clusters comprising the flat partition, one 
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can use various measures to evaluate to what extent any given cluster is matched by some 
subtree in the dendrogram derived from a perturbed (95% subsampled) dataset.  The boxplots 
below (Figure 3) show statistics for the walktrap clustering algorithm. The cluster stability 
evaluation is performed comparing the original flat partition to the flat partitions in each 
perturbation (left), or comparing the original flat partition to the full dendrogram of each 
perturbation (right): 
 

Figure 3. Stability 
based on hierarchical 
clustering. a. 
Distribution of Jaccard 
coefficients calculated 
relative to flat partition 
results of the walktrap 
method (same as in Fig. 
2b). b. Distribution of 
Jaccard coefficients for 
the same clustering, but 
calculated relative to an 
optimal subtree within 
the hierarchical result of 
the walktrap algorithm. 

As expected, when entire tree is considered, the results improve, as the benchmark is no longer 
affected by unstable cluster split/merge effects as these differences simply represent different 
levels in the hierarchical clustering. 
 
Hierarchical view of cluster stability.  
The hierarchical considerations are also useful to consider with respect to the reference 
clusters (that are being tested for stability). These can also be considered in a hierarchical 
context, and various stability measures can be evaluated not just for the leaves (i.e. individual 
clusters), but internal nodes representing combinations of related clusters.  

 
Figure 4. Jaccard coefficients for dendrograms of clusters. a. Hierarchical relationships among the 14 
clusters determined by Leiden (resolution=1) algorithm is shown. The median of optimal Jaccard 
coefficients (calculated relative to similar hierarchies reconstructed from 95% subsampling rounds) is 
shown next to every leaf and internal node in red. b. Analogous view of the walktrap (steps=8) results. 
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This view can illustrate that while some of the lower-level nodes may not be very stable, their 
combinations can be very stable. For example, for the Leiden (r=1) results (see Figure 1), the 
clusters 1,4,5,6  represent different subpopulations of T cells. While stability of the individual 
clusters (relative to Leiden clustering on the subsampled dataset) can be marginal, their 
combination is always detected (Figure 4a).  
 
The cluster dendrograms can be derived in a variety of ways. The analysis above (Figure 4) used 
upper part of the hierarchical clustering reported by walktrap to determine the dendrogram for 
the walktrap clusters. To determine a hierarchy for the Leiden clustering, the joint graph was 
simplified by collapsing all the nodes (cells) belonging to the same cluster and combining 
corresponding edges. The hierarchical clustering of the resulting small graph was then 
calculated using walktrap algorithm. 
 
Stability under parameter perturbations 
In constructing the joint graph, on which the clusters (node communities) are determined, 
Conos employs a number of parameters. Here we use example of the BM+CB 16-dataset 
collection to analyze sensitivity to these parameters. 
 
Neighborhood size k. The neighborhood size parameter k is used to determine the size of the 
neighborhood considered during inter-sample comparisons. As such, it directly influences the 
number of the resulting inter-sample edges. Under the default mutual-nearest neighbor 
matching, relationship depends on other factors, such as subpopulation sizes, homogeneity, 
and the magnitude of the batch effect. There is no obvious optimal value of k. One can select k 
to optimize the overall modularity of the resulting clustering (see Figure 5), however it is 
unclear to what extend this heuristic would reflect the biologically meaningful integration of 
samples (e.g. a situation where all the samples remain well-separated may end up having 
higher modularity).  

Larger values if k connect samples more densely, however we 
expect major community structure to remain the stable. To 
illustrate that, we have used HCA BM+CB example to rerun 
graph construction using different values of k, comparing the 
similarity of the resulting clustering (using flat partition-based 
adjusted Rand index, or mean Jaccard coefficient in a 

hierarchical comparison) between different values of k. The results (Figure 6) show that 
clustering stabilizes once a minimal value of k reached to establish reasonable connectivity of 
the graph. Importantly, further increases in k do not disrupt the structure of the major 
communities in the graph. Specifically, the stability of the resulting clustering is comparable to 
the base-level stability of the clusters, as assessed from 95% subsampling of the cells (Figure 6). 
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Figure 6. Clustering stability with respect to variations in parameter k. a. As a reference, stability of the 
clustering with respect to a 95% random subsampling of the cells is shown using adjusted Rand Index 
(same as in the left panel of Figure 2c). b. Adjusted Rand index as a function of k. The vertical red line 
gives the position of the reference point (k=15). Clustering stabilizes beyond minimal values of k. c. As a 
reference, stability of the clustering with respect to a 95% random subsampling of cells is quantified as a 
mean Jaccard coefficient across clusters, calculated based on the best matching subtree (as in the right 
panel of Figure 2c, averaged across clusters). d. Mean Jaccard coefficient as a function of k. All clustering 
analysis were performed using walktrap.community() method with steps=8. 

 
Within-sample neighborhood size k.self. Analogous to the k parameter in the inter-sample 
comparisons, k.self determines the number of neighbors used to establish within-sample edges. 
These edges are mostly meant to tie in cells that end up with no or very few inter-sample edges 
into the joint graph, and should be kept at minimal levels (not to increase influence of dataset-
specific subpopulations). Here as well, the results show that the stability with respect to 
variations in k.self parameter remains at the base-level, as determined by the 95% subsampling 
of cells. 

 
Figure 7. Stability with respect to k.self parameter. Analogous to the Figure 6, the plots compare the 
stability of the clusters due to variations in k.self parameter (b,d) with the base-level stability of the 
clusters as determined by the 95% subsampling of cells (a,c). 

Relative weight of the within-sample edges (k.self.weight). To ensure that the major structure 
of the graph is driven by inter-sample relationships, Conos by default maintains lower weight of 
the within-sample edges using k.self.weight=0.1 (note, k.self.weight parameter is referred to as 
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𝑐"#$% in the Methods section). The plots below show sensitivity to the exact value of this relative 
weight parameter. 

 
Figure 8. Stability with respect to k.self.weight parameter. Analogous to the Figure 6, the plots compare 
the stability of the clusters due to variations in k.self.weight parameter (b,d) with the base-level stability of 
the clusters as determined by the 95% subsampling of cells (a,c). The red dashed line marks the default 
value of 0.1. 

 
Number of principal components. The number of principal components (PCs or CPCs) can 
influence the results. Clearly, selecting too few components will degrade the ability to identify 
subpopulations as a substantial amount of variance would be left unexplained (Figure 8). 
Selecting too many components should not be a problem, particularly since by default Conos 
uses correlation-based distance measure which is robust to increasing number of components. 

 
Figure 9. Fraction of variance explained by principal components. a. Fraction of variance explained by 
top principal components (PCs). Colored lines show values for each dataset, with boxplots summarizing 
the values across datasets. b. Fraction of variance explained by top common principal components 
(CPCs). Colored lines show variance explained by CPCs in each pairwise dataset comparison, with the 
boxplots showing summaries across all pairwise comparisons. HCA CB+MB dataset was used. The plots 
were constructed using conos::plotComponentVariance() function. Boxplots show  
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Evaluating the stability of the clustering with respect to the number of utilized components 
(Figure 9), shows the expected picture, with the results stabilizing once some minimal number 
(e.g. 12) of components is reached.  

 
Figure 10. Stability of the clustering with respect to the variation in the number of principal 
components. Using the same layout as in Figure 6, the plots compare the stability of the clusters due to 
variations in the number of top CPCs used (b,d) with the base-level stability of the clusters as determined 
by the 95% subsampling of cells (a,c). As expected, the clustering stabilizes after some minimal number 
of components are taken into account. 

●

●

●
●

●●

●

●

●
●●

●●
●

●●

●●
●

●

●

●●
●

●
●

●

●●●●

●●●
●

●
●●●

●●●
●●●●

●

●●
●●●●●

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

10 20 30 10 20 30
 number of CPCs  number of CPCs

ad
ju

st
ed

 R
an

d 
In

de
x

ad
ju

st
ed

 R
an

d 
In

de
x

m
ea

n 
Ja

cc
ar

d 
co

ef
fic

ie
nt

m
ea

n 
Ja

cc
ar

d 
co

ef
fic

ie
nt

a. b. c. d.



Supplementary Note 2. Integrating RNA-seq and ATAC-seq datasets 
 
Integration between distinct modalities, such as transcriptional and epigenetic measurements is a challenging 
topic that introduces additional technical considerations. Here we apply Conos approach to integrate an ATAC-
seq based panel of measurements, and then show integration between ATAC-seq and RNA-seq datasets. We 
illustrate that although Conos such integration can be quite effective, its success depends on the resolution of 
the data and ability to find an informative link between gene expression and other modalities.   
 
Integration of multiple ATAC-seq datasets 
To introduce chromatin accessibility data, we first show integration of 17 sci-ATAC-seq replicates covering 13 
mouse tissues1. We integrate the data based on accessibility-based gene activity scores2, feeding them into 
Conos in the same manner as is normally done for RNA-seq. The resulting integration clearly separates distinct 
cell types, joining analogous cell types across tissues and replicates where appropriate (Figure 1).  
 

 
Figure 1. Integration of multiple sci-ATAC-seq datasets. a. largeVis embedding of the joint graph integrating data from 
17 sci-ATAC-seq replicates are shown, colored and labeled according to the annotation provided in the original 
publication1. b. Coloring by batches (see legend). Most of the batches sample distinct tissues and do not intersect. The two 
bone marrow replicates show expected mixing. The whole brain replicates are appropriately grouped by cell types 
(typically together with the prefrontal cortex sample), however retain some batch specificity within each cell type. c. 
Conos clustering of the joint graph separates expected cell types and integrates across replicate batches. 

 
Integration of scRNA-seq and sci-ATAC-seq 
To demonstrate integration between different modalities we focused on specific tissues that were covered in 
the mouse transcriptional atlases3,4. First, we consider lung, using Conos to integrate the two sci-ATAC-seq 
replicates for that tissue, together with three scRNA-seq datasets produced using different platforms (Smart-
seq2, 10x Chromium, and microwell technique). 
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Figure 2. Integration of scRNA-seq and sci-ATAC-seq data on the lung. (top left) scRNA-seq annotations (as provided 
in the original publications) are shown on the joint embedding. Only RNA-seq cells are shown. (top right) sci-ATAC-seq 
annotations, as provided by the original publication are shown on the joint embedding. Only sci-ATAC-seq cells are 
shown. (bottom left) Cell clusters, as determined by Conos on the joint embedding. (bottom right) Joint embedding, 
colored by the dataset identity of each cell. 

Conos effectively integrates the RNA and accessibility data on the lung (Figure 2), based on the gene-level 
accessibility summary scores derived using Cissero2, aggregating major cell types (e.g. macrophages, T, B, 
endothelial cells), as well as subtle differences such as that between T and NK cells. Note that we show all 
annotations provided for all integrated cells in the original publications, and some of them appear to include 
erroneous labels for small groups of cells (e.g. Sperm, Cardiomyocytes) stemming from the aggregation 
method used. We next performed similar analysis for bone marrow datasets (Figure 3). 
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Figure 3. scRNA-seq and sci-ATAC-seq integration of the bone marrow data. Similar to Figure 2, the panels show 
original RNA-based and ATAC-seq based annotations (top panels), Conos clusters, and platform factors on the joint 
embedding. 

The cell type representation of the bone marrow differs notably between the sci-ATAC-seq and scRNA-seq, 
with scRNA-seq data showing extensive granulocyte maturation trajectory, and sci-ATAC-seq data focused on 
the hematopoietic progenitor population. Nevertheless, Conos correctly aligns the overlapping cell types, 
including erythroblasts, T, B cells, macrophages, and hematopoietic progenitors. It also resolves the difference 
between immature and mature B cell clusters. The mapping of the progenitor populations is slightly shifted, 
however that could also be due to the representational biases. 
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Evaluating RNA-seq/ATAC-seq alignment consistency and limitations using sci-CAR data 
While the results above illustrate the general ability to align across modalities, to get a more precise idea 
about the mapping correspondence we examined data from the sci-CAR technique that measures both 
transcriptomes and chromatin accessibility in the same cell. In this case, the true alignment across the 
datasets is in essence established by the barcode identity of the RNA-seq and ATAC-seq data, making for a 
convenient benchmark.  
 
The joint nature of the sci-CAR technique represents an impressive technical feat, but the molecular coverage 
achieved for each cell is lower, which is particularly notable in the analysis of the chromatin accessibility 
aspect. As was shown in the original publication, however, more robust accessibility profiles can be 
constructed by aggregating molecules across cells with similar transcriptional profiles. For the first analysis 
below, we used RNA-seq based clustering of the cells to partition ATAC-seq cells into groups of 10 cells based 
on the similarity of their transcriptomes, and then combined all the data within each group of 10 cells to 
obtain “meta-cells” with 10x coverage (note, the original publication used 50x aggregation). We then 
summarized the chromatin accessibility at a gene level as a sum of all accessibility signal at the detected peaks 
(as defined in the original publication) across the entire gene body and the 10kb margins around the gene. 
Feeding such matrices into Conos, and increasing k to 200 to get a more focused mapping results in a 
reasonable alignment of the two modalities (Figure 4). 
 

 
Figure 4. Integration of RNA and accessibility data from sci-CAR mouse kidney measurement. Using the panels 
analogous to those shown in Figures 2 & 3, the plots show results of Conos integration between RNA and accessibility 
modalities measured using sci-CAR, using 10x aggregation of the ATAC-seq cells.  
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On a population level, Conos integration performs well, aggregating RNA- and accessibility- based 
measurements on Renal pericytes, Loop of Henle cells, Endothelial, Collecting duct, and Distal convoluted 
cells. The abundant Proximal tubule S1/S2 and S3 subtypes also show corresponding alignments, though quite 
a few of these cells are mismapped to other cell types.  The obvious advantage of using sci-CAR is that we can 
explicitly quantify this performance. Here we use the normalized rank of the true corresponding cell based on 
the Euclidean distance in the resulting embedding as the measure of performance (Figure 5). 

 
Figure 5. Performance of RNA-ATAC-seq alignment based on whole-gene summary scores. The boxplots show, for 
each cell type, the distribution of the rank of the corresponding RNA cell in terms of Euclidean distance in the embedding 
from the ATAC-seq version of the same cell. An ideal alignment would have all ranks at 0. A random alignment would be 
closer to ½. The performance varies by cell type, with the proximal tubule and proliferating cells showing worst 
performance. In this plot and all others, the boxplot center shows median, upper/lower box lines mark top 75% (Q3) and 
bottom 25% (Q1) levels; Whiskers extend from max(min(x),Q1-1.5 IRQ) to min(max(x),Q3+1.5 IQR, where IRQ is the 
inter-quartile range. The notch shows 95% confidence interval of the median. 

The reason why Conos alignment works is because the devised per-gene accessibility summary scores show 
some linear correlation with the gene expression. Therefore, we expect the choice of the scoring scheme to be 
critical. To illustrate that, we will use another (reasonable) summary measure on the same dataset: a total 
accessibility in 10kb or 4kb region around TSS of each gene (Figure 6). As it can be seen, the performance of 
the TSS measure is worse than that of the whole-gene measure, with 4kb measure showing near-random 
performance 
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Figure 6. Alignment performance using gene-level accessibility summaries with windows of different size. To illustrate 
how alignment depends on the method for summarizing gene-level accessibility, we the plots show matching cell ranks 
(same as Figure 5) for alignments where ATAC-seq data was summarized as total signal within (a.) 10kb around TSS, or 
(b.) 4kb around TSS. The later, clearly provides too little signal and the cells are not well aligned. 
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