Supplementary information

The antimicrobial peptide thanatin disrupts the bacterial outer membrane and inactivates the NDM-1 metallo-β-lactamase

Ma et al.

Supplementary Figure 1. Examination of *bla*_{NDM-1} gene expression. The *bla*_{NDM-1} gene was detected in clinical isolates of *E. coli* (**a**) and *K. pneumonia* (**b**), with *E. coli* ATCC25922 and *K. pneumonia* ATCC13883 as negative controls. Source data are provided in Source Data file.

Supplementary Figure 2. Kill curves of thanatin and ceftazidime against clinical NDM-1 strains. NDM-1-producing *E. coli* (a-d) and *K. pneumoniae* (e-h) were treated with thanatin (Tha) and ceftazidime (Caz). Data are presented as the mean \pm s.e.m. from three independent experiments. **P* < 0.05, ***P* < 0.01, ****P* < 0.001 versus control (determined by two-way ANOVA with Bonferroni's comparison). Source data are provided in Source Data file.

Supplementary Figure 3. Thanatin promotes the release of Ca²⁺ and LPS from the outer membrane of NDM-1-producing *K. pneumoniae* in vivo. a, b LPS levels (a) and bacterial loads (b) in the BALF of *K. pneumoniae* XJ155017-infected mice were analyzed at 1 and 6 h after 9 mg/kg thanatin treatment (n=6 per group). c Survival curves for the *K. pneumoniae* XJ155017 pneumonia model. BALB/c mice were intranasally administered with a sublethal dose of *K. pneumoniae* XJ155017 and treated with three doses of thanatin via intraperitoneal injection (n=10 per group). d Bacterial loads in the lungs of thanatin-treated *K. pneumoniae* XJ155017-infected mice were analyzed 24 h after infection (n=6 per group). e Lung morphology was examined with H&E staining in the pneumonia model after thanatin treatment. Scale bar = 200 µm. All data are shown as the mean \pm s.e.m. *P* values were determined by two-way ANOVA (**a**, **b**), log-rank test (**c**), or one-way ANOVA with Bonferroni's comparison test (**d**). ns means not significant; **P* < 0.05, ***P* < 0.01, ****P* < 0.001 versus model. Source data are provided in Source Data file.

Supplementary Figure 4. Thanatin protects NDM-1-producing *E. coli*-infected pneumonia mice. **a** Bacterial loads in the lungs of thanatin-treated *E. coli* XJ141026-infected mice were analyzed 24 h after infection (n = 6 per group). Data are shown as the mean \pm s.e.m. **b** Lung morphology was examined with H&E staining in the pneumonia model after thanatin treatment. Scale bar = 100 µm. *P* values were determined by two-tailed unpaired t test (**a**). ****P* < 0.001 versus model. Source data are provided in Source Data file.

Supplementary Figure 5. ITC thermograms for the binding of LPS with $Ca^{2+}(a)$, $Mg^{2+}(b)$. The downward and upward peaks indicate the exothermic and endothermic process, respectively.

Supplementary Figure 6. H&E staining. Tissue morphology was examined with H&E staining in *E. coli* XJ141026 sepsis models after thanatin treatment. Scale bar = $200 \mu m$.

Supplementary Figure 7. Cytotoxicity of thanatin. a, b HPAEpiCs (a) and HUVECs (b) were treated with thanatin or colistin for 24 h, and cell viability was calculated on the basis of absorbance readings at 450 nm at 4 h after adding WST-8. c Representative photomicrographs of mouse neurons stained with Hoechst 33342 and PI fluorescent dye after exposure to 50 μ M thanatin or 0.1% Triton X-100 for 24 h. Scale bar = 200 μ m. Data are presented as the mean ± s.e.m. from at least three independent experiments. **P* < 0.05, ***P* < 0.01 (determined by two-way ANOVA). Source data are provided in Source Data file.

Supplementary Figure 8. NDM-1 protein levels and its hydrolytic activity to imipenem. a Increase in NDM-1 release to supernatants after treatment with colistin (Col). b Western blot analysis of NDM-1 in thanatin- and colistin-treated *E. coli* XJ141026 cell supernatants and precipitates for 6 h. GroEL is used as a loading control. c Relative expression of NDM-1 in thanatin- and colistin-treated *E. coli* XJ141026 cell precipitates for 6 h. d Hydrolytic effect of the cell precipitates obtained from thanatin-treated NDM-1 *E. coli* XJ141026 on imipenem. e, f Hydrolytic effect of the cell precipitates (e) and supernatants (f) obtained from colistin-treated NDM-1 *E. coli* XJ141026 on imipenem. The supernatants and cell precipitates were collected 6 h after incubation with thanatin or colistin. Data are presented as the mean \pm s.e.m. from three independent experiments. *P* values were determined by two-way ANOVA (a, d–f), or by one-way ANOVA with Bonferroni's comparison test (c). ns means not significant; **P* < 0.05, ***P* < 0.01, ****P* < 0.001. Original western blot images for b are shown in Supplementary Figure 13. Source data are provided in Source Data file.

Supplementary Figure 9. MST assay. Interaction between RED-tris-NTA second-generation dye-labeled purified apo-NDM-1with $ZnSO_4$ (a) or colistin (b). Data are presented as the mean \pm s.e.m. from three independent experiments. Source data are provided in Source Data file.

Supplementary Figure 10. In vitro inactivation of NDM-1 by thanatin. The initial rate of hydrolysis of imipenem (100, 200, 400, 800, and 1600 μ M) by 1 nM NDM-1 was evaluated in the absence and presence of three concentrations of thanatin. The curves show the fits to the competitive inhibition model. Data are shown as the mean \pm s.e.m. from three independent experiments. Source data are provided in Source Data file.

Supplementary Figure 11. Zn^{2+} restoration assays. NDM-1 activity inhibited by thanatin was gradually rescued with the increasing concentrations of Zn^{2+} . Data are shown as the mean \pm s.e.m. from three independent experiments. Source data are provided in Source Data file.

Supplementary Figure 12. Sub-MICs of thanatin reverse carbapenem resistance in vitro. Sub-MICs of thanatin restored the activity of meropenem (a-d, i, k) and imipenem (e-h, j, l) against NDM-1-producing *E. coli* and *K. pneumonia*. All data are shown as the mean \pm s.e.m. from at least three independent experiments. **P* < 0.05, ***P* < 0.01, ****P* < 0.001 (determined by one-way ANOVA with Bonferroni's comparison). Source data are provided in Source Data file.

Supplementary Figure 13. Original western blot images for Supplementary Figure 8b. a, b Western blot analysis of NDM-1 (a) and GroEL (b) in cell supernatants of thanatin- and colistin-treated *E. coli* XJ141026. c, d Western blot analysis of NDM-1 (c) and GroEL (d) in cell precipitates of thanatin- and colistin-treated *E. coli* XJ141026.

					Stra	ins			
Antibiotics		E. coli		NDM-1 E. coli		NDM-1 E. coli		NDM-1 E. coli	
		ATCC25922		XJ141015		XJ141026		XJ141047	
Imipenem	MIC	<=1	(S)	>8	(R)	>8	(R)	>8	(R)
Aztreonam	MIC	<=2	(S)	>16	(R)	>16	(R)	>16	(R)
Cefotaxime	MIC	<=1	(S)	>32	(R)	>32	(R)	>32	(R)
Ciprofloxacin	MIC	<=0.5	(S)	>2	(R)	>2	(R)	<=0.5	(S)
Ampicillin	MIC	<=4	(S)	>16	(R)	>16	(R)	>16	(R)
Meropenem	MIC	<=1	(S)	>8	(R)	>8	(R)	>8	(R)
Piperacillin	MIC	<=4	(S)	>64	(R)	>64	(R)	>64	(R)
Tetracycline	MIC	<=2	(S)	<=2	(S)	>8	(R)	<=2	(S)
Cefepime	MIC	<=2	(S)	>16	(R)	>16	(R)	>16	(R)
Moxifloxacin	MIC	<=1	(S)	>4	(R)	>4	(R)	<=1	(S)
Cotrimoxazole	MIC	<=0.5/9.5	(S)	<=0.5/9.5	(S)	>2/38	(R)	<=0.5/9.5	(S)
Aoxicillin/ clavulanic acid	MIC	8/4	(S)	>16/8	(R)	>16/8	(R)	>16/8	(R)
Chloramphenicol	MIC	<=4	(S)	>16	(R)	<=4	(S)	<=4	(S)
Gentamicin	MIC	<=2	(S)	<=2	(S)	>8	(R)	>8	(R)
Cefazolin	MIC	<=4	(S)	>16	(R)	>16	(R)	>16	(R)
Ampicillin/ sulbactam	MIC	<=4/2	(S)	>16/8	(R)	>16/8	(R)	>16/8	(R)
Piperacillin/ tazobactam	MIC	<=4/2	(S)	>64/4	(R)	>64/4	(R)	>64/4	(R)
Amikacin	MIC	<=8	(S)	<=8	(S)	<=8	(S)	<=8	(S)
Ceftazidime	MIC	<=1	(S)	>16	(R)	>16	(R)	>16	(R)
Levofloxacin	MIC	<=1	(S)	>8	(R)	>8	(R)	<=1	(S)
Cefoperazone/ sulbactam	KB	_	_	7	(R)	7	(R)	7	(R)
Nitrofurantoin	KB		_	14	(R)	17	(R)	19	(S)
Cefuroxime	KB			7	(R)	7	(R)	7	(R)

Supplementary Table 1. Identification and antibiotic susceptibility of NDM-1-producing *E. coli* strains.

R, resistant; S, sensitive; MIC, minimum inhibitory concentration; KB, Kirby Bauer disc diffusion method. The unit of MIC is "µg/mL". The unit of KB is "mm".

						Strai	ns				
Antibiotics		K. pneumo	oniae	NDM K. pneum	-1 Ioniae	NDM K. pneum	-1 Ioniae	NDN K. pneun	I-1 noniae	NDN K. pneur	1-1 noniae
		ATCC13	8883	XJ155	017	XJ155	018	XJ155	5019	XJ15	5020
Imipenem	MIC	<=1	(S)	>8	(R)	>8	(R)	>8	(R)	>8	(R)
Aztreonam	MIC	<=2	(S)	>16	(R)	>16	(R)	>16	(R)	>16	(R)
Cefotaxime	MIC	<=1	(S)	>32	(R)	>32	(R)	>32	(R)	>32	(R)
Ciprofloxacin	MIC	<=0.5	(S)	>2	(R)	>2	(R)	>2	(R)	>2	(R)
Ampicillin	MIC	16	(R)	>16	(R)	>16	(R)	>16	(R)	>16	(R)
Meropenem	MIC	<=1	(S)	>8	(R)	>8	(R)	>8	(R)	>8	(R)
Piperacillin	MIC	8	(S)	>64	(R)	>64	(R)	>64	(R)	>64	(R)
Tetracycline	MIC	<=2	(S)	4	(S)	>8	(R)	>8	(R)	>8	(R)
Cefepime	MIC	<=2	(S)	>16	(R)	>16	(R)	>16	(R)	>16	(R)
Moxifloxacin	MIC	<=1	(S)	>4	(R)	>4	(R)	>4	(R)	>4	(R)
Cotrimoxazole	MIC	=0.5/9.5	(S)	>1/19	(S)	>2/38	(R)	>2/38	(R)	>2/38	(R)
Aoxicillin/ clavulanic acid	MIC	<=4/2	(S)	>16/8	(R)	>16/8	(R)	>16/8	(R)	>16/8	(R)
Chloramphenicol	MIC	<=4	(S)	>16	(R)	>16	(R)	>16	(R)	>16	(R)
Gentamicin	MIC	<=2	(S)	<=2	(S)	<=2	(S)	<=2	(S)	<=2	(S)
Cefazolin	MIC	<=4	(S)	>16	(R)	>16	(R)	>16	(R)	>16	(R)
Ampicillin/ sulbactam	MIC	8/4	(S)	>16/8	(R)	>16/8	(R)	>16/8	(R)	>16/8	(R)
Piperacillin/ tazobactam	MIC	<=4/4	(S)	>64/4	(R)	>64/4	(R)	>64/4	(R)	>64/4	(R)
Amikacin	MIC	<=8	(S)	<=8	(S)	<=8	(S)	<=8	(S)	<=8	(S)
Ceftazidime	MIC	<=1	(S)	>16	(R)	>16	(R)	>16	(R)	>16	(R)
Levofloxacin	MIC	<=1	(S)		-		-	>8	(R)	>8	(R)
Cefoperazone/ sulbactam	KB	32	(S)	7	(R)	7	(R)	7	(R)	7	(R)
Nitrofurantoin	KB	21	(S)	7	(R)	9	(R)	10	(R)	9	(R)
Cefuroxime	KB	23	(S)	7	(R)	7	(R)	7	(R)	7	(R)

Supplementary Table 2. Identification and antibiotic susceptibility of NDM-1-producing K. pneumonia strains.

R, resistant; S, sensitive; MIC, minimum inhibitory concentration; KB, Kirby Bauer disc diffusion method. The unit of MIC is "µg/mL". The unit of KB is "mm".

	<i>K</i> _d (μM)	∆H (Cal/mol)	ΔS (Cal/mol/deg)
Thanatin + LPS	1.09 ± 0.11	-6.46×10^{3}	5.62
$Ca^{2+} + LPS$	114.24 ± 26.05	-9.42×10^{4}	-2.98×10^{2}
$Mg^{2+} + LPS$	208.46 ± 52.28	2.83×10^{6}	9.50×10^{3}

Supplementary Table 3. Thermodynamic parameters for the binding of LPS with thanatin, Ca²⁺, and Mg²⁺ were estimated by ITC.

Kinetic parameters	Enzyme/substrate				
	NDM-1/Imipenem				
$K_{\rm m}$ (μ M)	103.80 ± 10.34				
V _{max} (µM·s ⁻¹)	0.13 ± 0.03				
K_{cat} (s ⁻¹)	130.40 ± 2.67				

Supplementary Table 4. Kinetic parameters for imipenem hydrolysis catalyzed by NDM-1.